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Abstract

Training BERT to simultaneously perform well on multiple downstream tasks can
be challenging due to the lack of data for each task as well as conflicting objectives
between the different tasks. For this paper, we focus on three downstream tasks -
sentiment analysis (SST), paraphrase detection (PARA), and semantic textual simi-
larity (STS). We explore various methods that can avoid the problem of conflicting
objectives while learning to perform well on all three tasks simultaneously. We
first explore various schemes to share weights while freezing different parts of
the model in order to avoid conflicting training objectives. We then also explore
methods to improve the general quality of our sentence embeddings, including
contrastive learning and using a triplet network structure. We find that sharing
weights with freezing has limited success, while improving sentence embeddings
via triplet network structures works best. We report on our results on the three
downstream tasks.
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2 Introduction

Given the limited labeled data for our downstream tasks, we need to rely on transfer learning to
achieve good performance. Having a larger pretrained model that is also trained on more data, such
as BERT-large or GPT3+ is one such solution to our problem. The problem constraint we have for
this paper is to limit the pretrained model size to the smaller BERT-base model, while also achieving
the best performance we can on the downstream tasks. We explore various ways to maximize the
effectiveness of our limited dataset, as well as ways to augment the base model by improving the
overall quality of the sentence embeddings generated by the model.

The downstream tasks are sentiment analysis (SST), paraphrase detection (PARA), and semantic
textual similarity (STS). For SST, the goal is to predict an integer label from 0 to 4 given a sentence,
which signifies the sentiment of the sentence from negative to positive. In paraphrase detection, we
output a binary value indicating whether the input pair are paraphrases of one another. Finally, for
STS, we output a similarity score (float) between the input pair between 0 and 5, indicating how
similar we perceive the two sentences to be.

To deal with the limited size of our training data, especially for SST and STS, which contain less than
10,000 examples each, we experiment with various architectures where weights are shared among the
three tasks in the hopes that such a structure would allow the model to leverage the data for the other
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tasks, as well as its own. For example, we try to share weights between STS and PARA since these
two tasks are related in that they try to measure the similarity between a pair of sentences. We also
try to avoid conflicting learning objectives between the different tasks by designing an architecture
where we first finetune the model for PARA and STS, and then freeze the weights when training the
task head for SST. We also try an architecture where we convert the SST problem into a STS problem,
where we sample 500 examples from the training data for SST (100 for each label from 0 to 4), and
then calculate the similarity score between the input sentence and each sentence in this ‘ensemble’ of
sampled sentences, and throw the result into a linear layer. We provide as information how similar
the input sentence is to sample points with known labels and use that to make a prediction on the
class label. Overall, we find such methods to have limited success.

In order to deal with the lack of data, we also finetune the model on two external datasets (SNLI
Bowman et al. (2015) and MNLI Williams et al. (2018)) in order to increase the general quality of
our sentence embeddings before doing any training on downstream tasks. We try multiple objectives,
including contrastive learning Gao et al. (2021), regression with cosine similarity, as well as a triplet
learning objective detailed in Reimers and Gurevych (2019) where we try to minimize the distance
between similar sentences and maximize the distance between negative sentences. We find that the
triplet learning objective works best.

3 Related Work

Sun et al. (2019) describes general strategies where one can finetune a BERT model for sentence
classification tasks. Sun also describes a multi-task scheme, where the underlying BERT model is
shared while each task head gets an additional linear layer to morph the output into one suitable for
each task.

Chen et al. (2021) gives a holistic overview of multi-tasking strategies, including parallel and
hierarchical methods, some of which inspired a few of the models presented in this paper. Chen
describes various methods to share partial layers in the model across different tasks to achieve better
results.

Gao et al. (2021) and Reimers and Gurevych (2019) give ideas on tuning sentence-level embeddings
using the SNLI and MNLI datasets using different training objectives. Gao et al. (2021) describe a
contrastive learning method, where similar pairs count negatively while negatively related pairs count
positively towards the overall loss. This loss is calculated at the batch level, where negative pairs are
dynamically generated by paring up unrelated sentences together as pairs within the batch, whereas
positive pairs come from the training data. Reimers and Gurevych (2019) gives a triplet training
objective that does something similar, which minimizes the distance between the pair of sentences
that are positively related and maximizes the distance between sentences that are negatively related.
However, this triplet comes straight from the training data instead of dynamically adding negative
data from the batch, and also the formulation is a bit different, as explained in later sections.

4 Approach

4.1 Baseline

Our baseline consists of fine-tuning BERT-base on the three individual tasks simultaneously. At each
epoch, we go through all of the training data for each task, and when that is finished, move onto the
next task.

Each task contains a task head that is unique to the task. The SST head contains a dropout layer and a
linear layer to convert the vector embedding to a 5-dimensional logit, which is then used to calculate
the cross-entropy loss against the true labels. The PARA head uses the same underlying BERT-base
to convert the two input sentences into respective embeddings, concatenates them, and then applies
a dropout and linear layer to output a single logit, which is then used for binary cross-entropy loss.
Finally, STS head similarly converts the two input sentences into embeddings, concatenates them,
and then applies a dropout and linear layer to generate a single number, which is then passed into
mean-squared-error loss (MSE loss).
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Figure 1: Model architecture after updating STS and PARA heads

Figure 2: Forcing SST to
hierarchically depend on
STS

4.2 Sharing Weights between STS and PARA

We had the intuition that STS and PARA were inherently similar tasks in that they try to predict the
similarity of the two input sentences. Therefore, we try an architecture where both STS and PARA
share 2 linear layers interleaved with dropout layers and RELU activation, after which each have a
different final linear to output the final value. We train the model by training all three tasks in each
epoch, where we go through all of the training data for each task, one at a time.

4.3 Modifying STS and PARA heads

4.3.1 Using Cosine Similarity for STS

Looking at a few previous papers such as Reimers and Gurevych (2019), we found that using cosine
similarity for STS may drastically improve our model’s performance. We simplify the STS head by
simply outputting the cosine similarity of the input embeddings. Since the data consists of similarity
scores between 0 to 5, we scale the scores during training to be between 0 and 1 in order to match the
output of cosine similarity. We scale to [0, 1] instead of [−1, 1] because empirically it gave us better
results. After applying cosine similarity, we still use MSE loss between the cosine similarity value
and the scaled true similarity score.

4.3.2 Modifying the PARA head

We also found that instead of just concatenating the two input embeddings to pass to the linear layer,
passing it extra information that captures some relationship between the two input embeddings helped
improve the result for PARA. We try the following two approaches, inspired by Reimers and Gurevych
(2019): concatenate the absolute element-wise difference between the two input embeddings to the
two input embeddings to pass to a linear layer, and concatenate the cosine similarity of the two input
embeddings to the two input embeddings.

o = W (u, v, |u− v|) (1)

o = W (u, v, cos_sim(u, v)) (2)

4.4 Freezing weights for SST

We found that while the PARA and STS results were quite good using the cosine similarity and PARA
head approaches described above, the STS results did not improve much from the baseline. We also
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found that training SST in conjunction with STS and PARA caused the PARA and STS scores to
detriment significantly. Therefore, we first try training STS and PARA in conjunction, after which we
freeze the weights to train SST. Since the underlying weights were frozen, we modified the SST head
to be much more complex, with 4 additional BERT layers added on top of the existing BERT, as well
as an additional dropout and linear layers to output logits.

4.5 Forcing SST to hierarchically depend on STS

Another approach we tried was to essentially convert the SST problem into a STS problem by
sampling 500 examples from the SST training data, 100 from each possible label, and comparing the
similarity between the input embedding and the embeddings for these 500 data points. The intuition
was that by knowing how close the input is to data points with known labels, we could gain a better
sense of the label of the input. The embeddings for the 500 data points were pre-computed, and
loaded into the model for efficiency. Finally, the 500 similiarity scores are concatenated with the
true labels of the sample data points to pass into a linear layer, which outputs logits. Essentially, this
converts a classification problem into one that is simliarity matching with known samples.

4.6 Enhancing sentence embeddings with external datasets

We try enhancing the general quality of the sentence embeddings generated by BERT by fine-tuning
the model on two external datasets: SNLI (Bowman et al. (2015)) and MNLI (Williams et al. (2018)).
The SNLI and MNLI training data consists of pairs of sentences, labeled as entailment, neutral, or
contradiction. We try three different learning objectives for this fine-tuning process.

4.6.1 Regression objective

First, we try a method that is similar to STS training - We assign 0.0 to contradiction, 0.5 to neutral,
and 1.0 to entailment for the SNLI and MNLI datasets, and then use cosine similarity paired with
MSE loss to train the data, similar to STS.

4.6.2 Contrastive learning

A second method we try is using contrastive learning, inspired by (Gao et al. (2021)). The SNLI
and MNLI datasets can be converted into a triplet sentence format where each sentence has both and
entailment and a contradiction. This can be done by matching the rows against the given promptID
for MNLI or captionID for SNLI. Then, we have the sentence triplets (xi, x

+
i , x

−
i ), where x+

i is the
entailment and x−

i is the contradiction for xi. We implement the following learning objective:

− log
exp[sim(hi, h

+
i )]∑N

j=1(exp[sim(hi, h
+
j )] + exp[sim(hi, h

−
j )])

(3)

where hi, h
+
i , h

−
i are the embeddings of xi, x

+
i , x

−
i , respectively. N is the size of each minibatch. In

the process, we modify the system to handle sentence triplets.

4.6.3 Triplet objective from SBERT

A third method inspired by Reimers and Gurevych (2019) is to use a different type of triplet objective,
which is designed to maximize the distance between the positively related sentence embeddings
(entailments) and maximize the distance between the negatively related sentence embeddings (contra-
dictions).

max(||hi − h+
i || − ||hi − h−

i ||+ ϵ, 0) (4)

For the distance, we use Euclidean distance, and for ϵ, we use the value of 1, as suggested in the
paper. The ϵ value ensures that ensures that hi is at least closer to h+

i than h−
i .
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Figure 3: Triplet objective for finetuning sentence embeddings

5 Experiments

5.1 Data

We use the Stanford Sentiment Treebank Socher et al. (2013) for sentiment analysis (SST), the
Quora Question Pairs Iyer et al. (2017) for paraphrase detection (PARA), and the Semantic Textual
Similarity dataset Agirre et al. (2013) for STS. The SST dataset consists of sentences paired with
a sentiment label, ranging from 0 to 5. The Quora dataset consists of sentence pairs with a 0 or
1 depending on whether the sentences are paraphrases of each other. The STS dataset consist of
sentence pairs with a similarity score ranging from 0.0 to 5.0.

We also use the MNLI Williams et al. (2018) and SNLI Bowman et al. (2015) datasets for regres-
sion, contrastive learning, and tripet objectives described above for improving general sentence-
embeddings.

Figure 4: Dataset size
Training Dev Test

SST 8545 1101 2210
PARA 141507 20214 40431
STS 6041 863 1726
SNLI Pair 550152
SNLI Triplet 151196
MNLI Pair 392703
MNLI Triplet 128737

We omit the Dev and Test set sizes for SNLI and MNLI since they were not used. Only the training
data was used to fine-tune the sentence embeddings in one epoch.

5.2 Evaluation method

Both SST and PARA use prediction accuracy as an evaluation metric, since both are classification
problems. For STS, we use the Pearson Correlation between the true values and the predicted
similarity values, similar to the original SemEval paper Agirre et al. (2013).

Finally, to measure the overall success of the model, we calculate the following formula by normaliz-
ing and averaging the three scores:

score =
sst_accuracy + paraphrase_accuracy + (sts_correlation + 1)/2)

3
(5)

which is the metric used for the leaderboard.
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5.3 Experimental details

There are a total of 9 experiments:

• Baseline (BASELINE),

• Sharing weights between STS and PARA (SHARED),

• Modifying STS and PARA heads with cosine similarity and absolute distance between
embeddings (STS_PARA_HEAD_MOD),

• Modifying the PARA head by providing it the cosing similarity between the input embedding
pair (STS_PARA_HEAD_MOD_1),

• Freezing weights for SST (FREEZE_SST),

• Forcing SST to hierarchically depend on STS (SST_TO_STS),

• Enhancing sentence embeddings using SNLI and MNLI with the regression objective, where
we fine-tune the output further by applying STS_PARA_HEAD_MOD (NLI_REGRESSION).

• Using contrastive learning with SNLI and MNLI, and then following by
STS_PARA_HEAD_MOD. (NLI_CONTRASTIVE),

• Uinsg the triplet objective with SNLI and MNLI, and then following by
STS_PARA_HEAD_MOD (NLI_TRIPLET).

I provided some code words for the experiments above so that you can refer to them in the results
section.

We use a batch size of 32, a learning rate set to 2e-05, and a dropout rate of 0.1 for all of the
experiments, which we empirically found to be the best. During training, we only save the model
parameters that give the best dev leaderboard score.

5.3.1 Parallel training

We employ the same training strategy for the following experiments: BASELINE, SHARED,
STS_PARA_HEAD_MOD, STS_PARA_HEAD_MOD_1. We go task-by-task per epoch, where we finish
going through all of the data for one task before moving onto the next task at each epoch. The order
of the tasks is given by SST, PARA, then STS.

5.3.2 Partial freezing

For FREEZE_SST and SST_TO_STS, we first train the model on PARA and STS tasks, achieving
the best dev score we can get. We follow up by freezing all of the non-SST weights (including
BERT-base), and then train the model on SST data.

5.3.3 Finetuning sentence embeddings with NLI

For the experiments involving SNLI and MNLI datasets to enhance sentence embeddings, we first
train the model sequentially on the SNLI and MNLI data for one epoch. Afterwards, we train the
model in the same strategy as in the STS_PARA_HEAD_MOD experiment. It takes around 2 hours to go
through one epoch of the NLI data on a NVIDIA Tesla P100 GPU.

5.4 Results

The results are described in 5 and 6.

As you can see, the NLI_TRIPLET experiment performed the best with a total dev score of 0.784. It
performed better than all of the other experiments on all fronts.

For the test leaderboard, the NLI_TRIPLET experiment obtained the following results:

The results were better than expected for NLI_TRIPLET, and showed that the triplet objective de-
scribed in Reimers and Gurevych (2019) worked well in creating generalizable sentence embeddings
that were easily extended to downstream tasks. The change that had the biggest impact was modifying
the head for STS to cosine similarity, which saw a jump from 0.328 to 0.721. This strategy continued
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Figure 5: Summary of Experiments on Development Set
SST PARA STS DEV_TOTAL

BASELINE 0.479 0.634 0.347 0.596
SHARED 0.513 0.772 0.328 0.650
STS_PARA_HEAD_MOD 0.480 0.752 0.721 0.697
STS_PARA_HEAD_MOD_1 0.482 0.748 0.726 0.698
FREEZE_SST 0.420 0.775 0.758 0.691
SST_TO_STS 0.358 0.775 0.758 0.671
NLI_REGRESSION 0.501 0.823 0.850 0.750
NLI_CONTRASTIVE 0.490 0.790 0.802 0.727
NLI_TRIPLET 0.532 0.881 0.880 0.784

Figure 6: NLI_TRIPLET on Test Set
SST PARA STS TEST_TOTAL

NLI_TRIPLET 0.525 0.876 0.862 0.777

to work well for the rest of the experiments. In fact, having cosine similarity as the head seems to
help the performance on other tasks as well, since it makes the overall model a bit simpler.

6 Analysis

The methods which finetuned all of the weights without freezing did better than the ones that partially
froze weights. For FREEZE_SST and SST_TO_STS, only training on PARA and STS first allowed the
model to perform better on those two tasks. However, the separate head for SST failed to generalize
well to dev sets, even though it was able to achieve a high training accuracy (0.9+). Overall, we’ve
found that such task-specific freezing methods allowed us to train a smaller subset of the tasks during
the fine-tuning without freezing (PARA and STS), which allowed us to get a higher score on these
two tasks. However, the overall score was lower since our performance for SST was too low.

Our most interesting approach, SST_TO_STS, failed to perform well. It seems that the problem was
too complex for such an ensemble-like method to work well (ensemble of preselected embeddings).
One thing that we would have liked to try was to simply use all of the training data for SST as the
ensemble of pre-computed embedding vectors, after which we simply return the label of the most
closely related vector from the ensemble after performing cosine-similarity with the input vector. We
briefly tried with 500-1000 data points in the ensemble, but it did not work yet. It might be interesting
to see how the model performs with a larger ensemble.

Another interesting fact that we found was that scaling the true labels for STS to 0 to 1 instead of -1
to 1 performed better. This was initially strange, because cosine similarity naturally falls between -1
and 1. We reasoned that it may be because it is easier for the model to represent a negative relation as
a perpendicular vector rather than an anti-parallel vector.

Bringing in external datasets (SNLI, MNLI) seem to overall enhance the performance of the model,
regardless of the training objective used.

Overall, for larger datasets (PARA, SNLI, MNLI) - most of the training gains come from 1-2 epochs
and no more. As soon as the training went over those limits, the model started overfitting heavily. It
goes to show that when the datasets are large, we do not need many training epochs to learn a general
representation of the data.

7 Conclusion

Summarize the main findings of your project and what you have learned. Highlight your achievements,
and note the primary limitations of your work. If you’d like, you can describe avenues for future
work.

We have performed 8 significant experiments, that required custom model architectures as well
as varying training strategies. Out of all experiments performed, fine-tuning general sentence
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embeddings with the triplet objective seems to work best. The experiments where we used an
external dataset seem to enhance to model overall for all tasks involved, and combined with the
modifications to the various task heads, we were able to gain a significant boost to our performance
on the development set.

We would have also liked to experiment with more fine-grained experimentation strategies, such as
dynamically choosing which task to focus on over other tasks, which could help balance the losses
across all tasks. Another thing we would like to try in the future would be to finetune the sentence
embeddings using all three objectives that we tried at the same time (regression, contrastive learning,
and triplet objective). We are curious if such a method would result in a better generalizable sentence
embeddings.
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