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Abstract

We have implemented a single enhanced BERT model called Speedy SBERT
which can outperform a finetuned standard BERT model on three tasks: sentiment
classification, paraphrase detection, and semantic textual similarity. Our model
uses mean pooling to generate meaningful sentence embeddings that can be used
to improve all three tasks. We use these embeddings in our linear layers for
sentiment classification and paraphrase detection and calculate cosine similarity
for semantic textual similarity. Along with these accuracy improvements, we
significantly increase the time efficiency of our model compared to the baseline
by a factor of about 5 (hence the speediness of the SBERT). To do this, we use a
novel training optimization which we created ourselves by exploiting the hybrid
model design. Overall, we achieved improvements in all three tasks, though with
the most improvement in similarity textual similarity, as that was the principal goal
of using an SBERT-based model.

1 Introduction

In this paper, we present our take on a multi-purpose Sentence-Bert (SBERT) model built for sentiment
classification (SST), paraphrase detection, and semantic textual similarity (STS). BERT, introduced
in 2018, is a very powerful model that can be easily specialized for use on specific language problems
like the three we are examining. More difficult though, is creating a single modified model capable of
performing multiple tasks using the same underlying embeddings for each. In order to accomplish
these, we’ve made modifications to BERT in order to generate more meaningful embeddings for entire
sentences using the approach pioneered by Reimers and Gurevych (2019). The baseline approach
when using BERT is to use the embeddings for the start of sequence <CLS> token as the embedding
for the entire sentence. By using mean pooling, one can instead generate sentence embeddings which
far better capture the content and construction of the sentence. In our early testing on semantic textual
similarity, we found that a pre-trained BERT using a linear neural network finetuned on these <CLS>
token embeddings achieved a correlation score of 0.101. In our mean pooled embeddings, we were
able to achieve a correlation of 0.833, using only the pre-trained BERT model and cosine similarity
between the two sentences. Using these more meaningful sentence embeddings, we executed a variety
of optimizations to our model to increase accuracy and training efficiency. One such optimization
involved freezing BERT Parameters partway through our training method in order to speed up training
by a factor of 5x for both sentiment classification and paraphrase accuracy.
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2 Related Work

2.1 BERT

Large language models, developed for natural language (NLP) tasks, have experienced drastic changes
in recent years. The development of Bidirectional Encoder Representations from Transformers
(BERT) sparked great change in the field, setting a new state-of-the-art performance on various
NLP tasks (Devlin et al., 2018). Despite its impressive performance, BERT requires massive
computational overhead for tasks such as semantic textual similarity, one of the three tasks this
model performs. Sentence-BERT (SBERT) remedied this computational limitation without major
performance sacrifices.

2.2 SBERT

SBERT is a modification of the pre-trained BERT model that utilizes semantically meaningful
sentence embeddings for tasks including semantic textual similarity (Reimers and Gurevych, 2019).
By deriving fixed-size sentence embeddings, researchers can use linear algebra techniques to calculate
similarity scores. There are several methods for deriving these sentence embeddings. SBERT utilizes
an added pooling layer to the BERT output, testing three pooling strategies. They used the CLS-token
output, the calculated mean of output vectors, and the maximum of output vectors. Additionally,
SBERT used siamese and triplet BERT networks to handle tasks that require input sizes of two
and three sentences respectively. To calculate the similarity between sentence embeddings, SBERT
uses several objective and loss functions. Results found that the best combination of pooling and
concatenation strategies achieved the best performance at the time in 5 out of 7 tasks, including
multiple sentiment prediction tasks.

2.3 Further Extensions of SBERT

Since the publication of SBERT, there has been expanded interest in improving sentence embeddings.
Some models did not extend and improve SBERT’s derivation technique, opting for other methods.
Li et al. (2020) explored a smooth and isotropic Gaussian distribution for sentence embeddings that
showed significant performance improvements for semantic textual similarity tasks. Gao et al. (2021)
utilized a contrastive learning framework that uses an input sentence to predict itself, allowing for
more uniform sentence embeddings.

Other research methods have been dedicated to extending and improving SBERT’s derivation tech-
niques. One example is (Peng et al., 2021), which incorporated structural information to obtain
improved sentence embeddings that enable their model to outperform SBERT and other sentence
encoders on semantic textual similarity tasks.

3 Approach

3.1 Baseline Model

We use the 224n minBERT model we developed as a baseline. This model serves as a basic, smaller
version of the BERT model. The model consists of 12 encoder transformer layers, each of which has
multi-head attention, an additive and normalization layer with a residual connection, a feed-forward
layer, and a second additive and normalization with a residual connection. Our training consisted of
training over all three tasks, with different loss functions for each task. For sentiment classification,
we used the provided cross-entropy loss. For paraphrase detection, we used binary cross entropy.
For semantic textual similarity, we used the same loss function as sentiment classification, although
with different parameters. For each task, we use a linear layer and dropout to finetune the min-BERT
model after pre-training. For more details, see the 2024 CS224n default project handout.

3.2 Speedy SBERT Model

The sentence BERT model is a fairly simple modification on top of our existing minBert model.
There are two main differences. The first involves the embeddings we use to feed into the prediction
functions of our model. The default minBert model returns a pooled embedding in the form of the
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embedding for the CLS token of the sentence. This CLS embedding, performed adequately for
the sentiment classification and paraphrase detection tasks but resulted in a very low correlation
for semantic similarity. Instead, as in Reimers and Gurevych (2019), we sought to swap to more
meaningful embeddings for sentences, and did so by conducting mean pooling when retrieving
our embeddings from BERT. Mean pooling involves taking the geometric mean of all of the token
embeddings in the sentence to be our semantically meaningful embedding as opposed to simply using
the CLS token’s embedding for the sentence. Our sentence BERT model then uses these embeddings
for all 3 of the tasks as seen in Figure 1. Similar to the baseline model, our model passes the sentence
embeddings into two separate linear layers for sentiment classification and paraphrase detection.
Our model greatly differs in architecture from BERT for semantic similarity: we leverage the new
embeddings by using cosine similarity. Cosine similarity achieves correlation scores of roughly 0.8
on the unaltered pre-trained BERT model we implemented.

Additionally, we attempted to use cosine similarity for the paraphrase task but found that it performed
worse than our baseline linear layer (when run on the new embeddings). As in the baseline model,
we use cross entropy as our loss function for sentiment classification. For paraphrase detection, we
use binary cross entropy as our loss function. For semantic similarity, we swapped to mean squared
error loss.

We also implemented a new training method. We first train the model on STS, which modifies the
BERT parameters as there is no additional linear layer involved. Then, these parameters are frozen
before training the other two tasks. Since the other two tasks both have their own linear layers, we
skip back-propagating on BERT and instead, solely back-propagate over the linear layers. This
approach cuts 80% of the computation when training for these two tasks, with only a small reduction
in accuracy.

Figure 1: Speedy SBERT’s architecture.
Note: the output of cosine similarity computed for semantic textual similarity

is then scaled by 5 to match the desired 0, 1, ..., 4 similarity labels.
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4 Experiments

4.1 Data
Dataset Train Dev Test Total Example

Format
Label Range

Stanford Sentiment Treebank 8,544 1,101 2,210 11,855 Single 0, 1, ..., 4
Quora Dataset 141,506 20,215 40,431 202,152 Pairs 0 or 1

SemEval STS Benchmark 6,041 864 1,726 8,631 Pairs 0, 1, ..., 5

Table 1: Datasets used for training and testing the model developed in this project.

We are using three datasets: the Stanford Sentiment Treebank (SST) dataset, the Quora Dataset, and
the SemEval STS Benchmark Dataset. Table ?? is a visual representation of key information about
each dataset used for the development of this model.

• 4.1.1 Sentiment Analysis
The SST dataset, provided to us in the project spec, will be used for the sentiment analysis
task. In sentiment analysis, the model classifies how positive, negative, or neutral a sentence
is. This dataset classifies sentences as negative, somewhat negative, neutral, somewhat
positive, or positive, with labels ranging from 0 to 4.

• 4.1.2 Paraphrase Detection
The Quora dataset, provided to us in the project spec, will be used for the paraphrase
detection task. In paraphrase detection, the model outputs whether or not two sentences
convey the same semantic meaning. In this model, a pair of sentences is input, and the
model outputs 0 or 1, the former signifying not paraphrased, and the latter paraphrased.

• 4.1.3 Semantic Textual Similarity
The SemEval STS Benchmark dataset, provided to us in the project spec, will be used for
the semantic textual similarity (STS) task. In semantic textual similarity, the model outputs
how semantically similar two texts are. In this model, a pair of sentences is input, and the
model outputs a label ranging from 0 to 5 representing how similar the sentences are (5
being the exact same and 0 completely different).

4.2 Evaluation method

We use the evaluation methods defined in the default project handout. We use the accuracy for
sentiment analysis and paraphrase detection. For semantic textual similarity, we will use Pearson
correlation of the true similarity values against the predicted similarity values. Additionally, we
examined the iterations per second during each training task as a way of analyzing training efficiency.

4.3 Experimental details

4.3.1 Model Architecture Testing

When we set out on this research, we decided we wanted to use cosine similarity instead of neural
networks in our multitask classifier to optimize performance. To that end, we decided to run some
experiments to determine the increase in performance for using cosine similarity instead of linear
layers. Our baseline uses linear layers for all three tasks, for SST we pass the mean pooled embedding
into our SST linear layer, and for paraphrase and STS we concatenated our mean pooled embeddings
and passed them into the STS and paraphrase linear layers respectively. Then, in our experimental
cases for paraphrase and STS, we instead return the cosine similarity of the two mean pooled
embeddings. (SST remains the same during this experiment because it only takes one sentence as
input)

4.3.2 Dropout Testing

In our preliminary testing, our train loss for sentiment classification was low and our training
accuracy was very high, while our development accuracy was mediocre. In order to counteract
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over-fitting to the training data, we decided to test for an optimal dropout probability for our model.
Due to the time required to finetune using the full Quora dataset, for each epoch we used a random
selection of 1,000 batches from the dataset shuffled separately for both training and evaluating the
model with the different dropout probabilities.

4.3.3 Efficiency Testing

Once we had our general model architecture and our dropout set appropriately, we noticed a significant
difference in the training speed of the model when running the multitask_classifier with the
pretrain flag versus with the finetune flag. With the pretrain flag set, the model freezes the
BERT parameters. Alternatively, when the finetune flag is set, the training back-propagates over
BERT as well, modifying the whole model. Because we trained our model with the finetune flag
on SST, Paraphrase, and STS every epoch, this increased computation time caused our model to
take an extremely long time to train (roughly 11 hours). We knew that this back-propagation was
important for our method of training semantic textual similarity. This is because our using cosine
similarity resulted in no additional neural network whose parameters would be adjusted based on the
loss function when training STS. This means that changing the BERT parameters was the only way
to increase its performance. Because of this, we reworked our training function to fully train our STS
task at finetune’s slower speed, followed by freezing the BERT parameters and finally training SST
and paraphrase detections. We called this more optimized, speedier BERT model, Speedy Sentence
BERT, or Speedy SBERT for short.

4.4 Results

4.4.1 Model Architecture Results

Using cosine similarity leads to overall performance gains when compared to the baseline as
seen in Table 2, resulting in an overall score of 0.614, higher than the baseline overall score
of 0.540. We also noticed though that the Paraphrase accuracy when using cosine similarity
was quite a bit lower than the baseline paraphrase accuracy, so we reran the test swapping
back to the baseline implementation of paraphrase. In this new text, we found that using the
baseline neural network implementation of paraphrase, and the cosine similarity implementation of
semantic textual similarity raised the overall score to 0.696, giving us our finalized model architecture.

Sentiment (SST) Paraphrase (Quora) Similarity (STS)
Model Test Accuracy Test Accuracy Test Correlation Overall Score

Baseline 0.397 0.672 0.101 0.540
Paraphrase (Cosine Similarity) 0.457 0.472 0.824 0.614
Paraphrase (Neural Network) 0.507 0.668 0.824 0.696

Speedy SBERT 0.463 0.708 0.833 0.696

Table 2: Results of our models and the baseline on the test set.

4.4.2 Dropout Results

Table 3 depicts our preliminary testing on the effect of various dropout rates applied before the linear
layer for sentiment classification and paraphrase detection. This combination may potentially indicate
overfitting due to a too-low dropout rate, motivating these tests to identify an ideal dropout rate.

Due to the time required to finetune using the full Quora dataset, each epoch we used a random
selection of 1,000 of the dataset pairs for both training and evaluating the model. From these tests,
we found that the ideal dropout rate for the linear layers used in the sentiment classification and
paraphrase detection tasks is 0.3. Although the accuracy for paraphrase detection with a dropout of
0.3 is not the highest of the tests, our inclusion of the paraphrase accuracy was to ensure that finding
an ideal dropout rate for sentiment analysis doesn’t significantly affect our paraphrase accuracy.
Moreover, these paraphrase accuracies are not exact due to the subset they are trained and evaluated
on, further motivating their insignificance in this experiment.
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Training Accuracies Development Accuracies
Dropout Level Sentiment (SST) Paraphrase (Quora) Sentiment (SST) Paraphrase (Quora)

0.2 0.971 0.752 0.490 0.722
0.3 0.984 0.761 0.512 0.737
0.4 0.988 0.760 0.476 0.738
0.5 0.986 0.763 0.469 0.739

Table 3: Results on dev datasets, using 1,000 sentence pairs from the Quora dataset for paraphrase detection at a time.

4.4.3 Efficiency Results

As seen in Table 4, our efficiency experiment showed a massive increase in the number of iterations
per second for Sentiment Classification and Paraphrase Detection by freezing the BERT model after
STS. Sentiment classification and paraphrase detection trained 5x faster, allowing us to increase
the model’s epochs, and get an overall better model. Although the model trained much faster, the
accuracy improvement for each epoch was less. When run with the BERT freeze training method
for 15 epochs, the overall accuracy is on par with the accuracy of our standard training approach
after 10 epochs as can be seen in the data in Table 5 (where by some miracle they got the exact same
overall score). Nevertheless, the BERT freeze method completed 15 epochs in 4 hours, while the
standard model that runs 10 epochs takes 11 hours. Additionally, we found that the standard approach
of calculating train accuracy every epoch was taking up more time than actually training for the
epoch due to the size of the paraphrase training set. In order to remedy this, when calculating our
train accuracy in each epoch, we randomly selected 500 batches from the training dataset to evaluate,
decreasing each epoch duration from 30 minutes to only 10.

Task Standard Train Freeze BERT after STS

Sentiment (SST) ∼ 8 it/s ∼ 40 it/s

Paraphrase ∼ 6 it/s ∼ 30 it/s

Similarity (STS) ∼ 6 it/s ∼ 6 it/s

Table 4: Iterations per second of classic SBERT compared to our novel Speedy SBERT

Sentiment (SST) Paraphrase (Quora) Similarity (STS)
Training Method Test Accuracy Test Accuracy Test Correlation Overall Score

Standard Train 0.507 0.668 0.824 0.696
Speedy SBERT 0.463 0.708 0.833 0.696

Table 5: Results of our model with both training configurations.

5 Analysis

Our results for our model architecture testing were quite surprising. We expected to see substantial
improvements in accuracy for both the paraphrase and STS tasks after implementing cosine similarity,
but instead only saw meaningful improvement for STS. Cosine similarity resulted in a pretty signifi-
cant decrease in the paraphrase accuracy. Despite our initial assumption that paraphrase detection was
a less granular version of semantic similarity, our results showed that these tasks were more different
than we had anticipated. The results of this experiment caused us to change our model architecture to
use a linear layer for the paraphrase task, only utilizing cosine similarity for the STS task.

We also noticed anecdotally that even with no modification of BERT’s parameters (i.e. no finetuning),
our STS predictions using cosine similarity and our new mean pooled embeddings achieved a
correlation score of 0.833. This was 8 times higher than the trained neural network used with the
<CLS> tokens, showing that the <CLS> tokens do a poor job of capturing meaningful information
about the sentences.
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The Speedy SBERT model also tended to have much smaller differences between the training
accuracy and the development accuracy, making it less prone to over-fitting, theoretically allowing it
to continue improving after many epochs. Despite attempting to improve sentiment classification’s
overfitting by testing various dropout rates on the sentiment classification linear layer, We saw only
minor improvement from the baseline.

6 Conclusion

Overall, we achieved improvements in all three tasks, though with the most improvement in similarity
textual similarity, as that was the principal goal of using an SBERT-based model. Our most significant
novel finding was our Speedy SBERT’s speed optimization by freezing the BERT model once STS
training was completed. This optimization allowed us to run code less prone to over-fitting without
conducting unnecessary back-propagation calculations, instead only performing these calculations
when necessary to improve model accuracy.

Our main takeaway as researchers is that the approaches that should theoretically work the best
don’t always actually turn out that way. Sometimes instead of doing lots of theoretical work to find
something that will definitely be better, it’s more effective to try outside the box methods that might
work. We are especially proud of our modified, more efficient training approach, because this isn’t
something we read about in a paper, but instead something novel that we came up with without
outside influence. We did however, get this training method working rather close to the deadline and
were not able to test its limits when it comes to its slow accuracy improvements. Based on the way
the data was trending, we think it had the potential to score even higher if run for many many epochs,
as the over-fitting we observed was far less than in our other models.
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