
Mini Bert Optimized for Multi Tasks
Stanford CS224N Default Project

LIN LIN
Department of Computer Science

Stanford University
linwoods@stanford.edu

Abstract

In this study, we explored the intricacies of fine-tuning BERT, a state-of-the-art
transformer model, for multitasking across various NLP domains such as sentiment
analysis, paraphrase detection, and semantic textual similarity. Our findings illu-
minate the inherent challenges associated with multitask learning, including task
interference, data imbalance, and the complexity of model architecture and loss
function management.

1 Acknowledgement
• Mentor: Arvind Venkat Mahankali

2 Introduction

BERT(Bidirectional Encoder Representations from Transformers) is an Encoder based neural network
introduced by researchers at Google (Devlin et al., 2019). It has demonstrated transformative impact
in the field of Natural Language Processing(NLP). Different from traditional Word2Vec or GloVe
static representations, BERT utilized dynamic, contextualized embeddings for each word, interpreted
as token. The embeddings allow carrying richer understanding of complex language syntax and
capturing nuances, which makes it a better option in handling basic NLP tasks like Sentimental
Analysis, Sentence similarity comparison.etc. Multi task language models which are designed with
the ability to handle multiple NLP tasks simultaneously comes with many challenges, including
conflict of gradients, overfitting, data imbalance.etc. We will discuss how it’s handled in other
researches and our implementation over it.

3 Related Work

Multi task language models which are designed with the ability to handle multiple NLP tasks
simultaneously comes with many challenges. They have been a wide range of research works
proposed in this area.

Multi-Task Learning problem started with the intention to develop transformable knowledge for
one model to handle different tasks. Ideally, we also hope training on different tasks would benefit
each other. Large Language Model has demonstrated great universal language representation by
training on large amount of unlabeled data. Elmo proposed by (Peters et al., 2018) and GPT proposed
by (Radford and Narasimhan, 2018).etc have all demonstrated great capability in handling generic
language tasks in English context.

Multiple solutions have been presented by modifying BERT model with extra task specific layers and
parameters to handle the multi tasks. Adapter (Houlsby et al., 2019) is introduced a concept of small
learnt bottleneck layers inserted within each layer of a pre-trained model. Each adapter is trained for
one downstream task and (Pfeiffer et al., 2020) also introduced a universal interface enabling shoring
and sharing the adapters.

Stanford CS224N Natural Language Processing with Deep Learning

Figure 1: BERT Pre-Training and Finetuning for individual task

To share the majority of the weights of BERT model but still be able to optimized efficiently towards
each task, (Stickland and Murray, 2019) has presented works of Projected Attention Layers. By
inserting task-specified layers with parameters into BERT, PAL architecture is able to achieve state of
art performance across multiple tasks.

Multiple tasks work from(Liu et al., 2019) is also promising. They presented a multi-Task Deep
Neural Network(MT-DNN) framework leverages large amounts of cross-task data. By extending on
(?) with a pre-trained BERT model and they demonstrated good result on SNLI, SciTail and GLUE
tasks. To handle the overfitting problem comes with the long finetuning, SMART Regularization
(Jiang et al., 2020) has been introduced. They are good inspirations for our project. (Bi et al., 2022)
work is an extension on similar idea.

4 Approach

4.1 Design decisions

While finetuning a model for multitasks, sometime we will observe performance degradation com-
pared with single tasks. There are multiple factors behind it.

• Task Interference: The finetuning process on multiple tasks requires to find a balance
between different objectives. If tasks have conflicting requirements, both of the task perfor-
mance would be sub-optimal. Multiple researches have been done on it, (Yu et al., 2020)
describes the conflict of gradient across multiple tasks and how to adjust them to increase
efficiency.

• Data Imbalance: Multi-task fine-tuning involves combining datasets from different tasks.
If one task has significantly more data than others, the model would be trained towards
a single task heavily. We went with oversampling on the train dataset when training set
accuracy is still low for the relative smaller dataset to compensate.

• Hyperparameter Tuning: Optimal hyperparameters maybe different for different task head.
We introduced multiple options of learning rate scheduler to control the step size taken in
the direction of gradient descent. Also a early-stop strategy is implement to stop training for
the tasks that are not showing improvements.

• Regularization: Extensive finetuning job is prune to overfitting problem, which could be
observed when achieving high accuracy score in Training dataset, having much lower score
on DEV and TEST dataset. The SMART Regularization deployed a additional loss factor
Rs(θ),

minθF (θ) = L(θ) + λsRs(θ)

2

where

L(θ) =
1

n

n∑
i=1

ℓ(f(xi; θ), yi)

We customized a SMART Regularization under(Jiang et al., 2020) in this project. However,
there are multiple ways to integrate with SBERT pooling and we may need a more resources
in covering this part.

4.2 BERT Model

First, A baseline model is built based on BERT-base-uncased model from HuggingFace. The model
is pretrained and finetuned on classify sentence sentiment(SST-5) data and demonstrated great
performance for DEV and TEST dataset individually to provide a baseline. For multi-task support,
we implemented a task-specific, low-dimensional multi-head attention layer based on (Stickland and
Murray, 2019)’s approach. The model demonstrated basic capability of multiple heads for sentiment
analysis, paraphrase detection and textual similarity tasks.

4.3 Multi-head Architecture

Figure 2 shows an overview of the architecture. Building on top of the BERT base model, we added
three different multi task heads with corresponding evaluation logics for finetuning.

The of BERT architecture makes it unsuitable for semantic similarity search or unsupervised tasks
like clustering. Sentence Bert (Reimers and Gurevych, 2019) demonstrated a modified BERT with
siamese and triplet network structures that can be compared using cosine-similarity. It shows great
performance on Semantic Textual Similarity Benchmark(STS-B). Inspired by SBERT’s work, we
extracted the pooling logic from SBERT 1 and implemented with our Multi-Task model for the
sentence embedding processing. The goal is to improve performance for paraphrase and Semantic
evaluation. On top of the default CLS-TOKEN, there are two additional pooling strategies added:

• MEAN strategy: compute the average of all contextualized word embedding produced by
BERT. This strategy provides a fixed dimensional output vector regardless of the input text
length.

• MAX strategy: take a max-over-time of the BERT output vectors. It captures the most
salient features across the entire sentence

4.4 Task Specific heads

To capture the relation between sentences, we can either treat it as a classification problem or a
regression problem. In this project, we considered both cosine-similarity and Euclidean distances as
similarity measures and compare between sentence embeddings.

4.4.1 Sentiment Analysis Task

The first task is Sentiment Analysis. The goal of Sentiment Analysis in Natural Language Processing
(NLP) is to identify, extract, quantify, and study affective states and subjective information from text
data. This task should analyze a sentence and suggest what is the sentiment category it’s matching to.
In this project, we are working towards a general version defined by Stanford Sentiment Treebank.
(Socher et al., 2013) It defines five sentiment labels from Negative to Positive.

This is a classification problem. We use one linear layer on top BERT Layer with a soft-max function
to find the output with highest possibility. For multi-class classification, where there are M=5 classes,
we calculate a Cross Entropy loss based on each class label per observation:

CrossEntropy_Loss = −
M∑
c=1

yx,c log(px,c)

Where: (y) represents the ground truth label (0 or 1 for binary classification, one-hot encoded vector
for multi-class).

1https://github.com/UKPLab/sentence-transformers/

3

Figure 2: Project Model Architecture Diagram

4.4.2 Paraphrase Task

Paraphrase task is to provide a boolean suggestion on whether two sentences have the same meaning.
BERT is pre-trained on masking tokens from the word embedding in the sentence. So pre-processing
on the sentence doesn’t yield good result on pre-trained weights. Based on (Reimers and Gurevych,
2019)’s analysis on multiple options in calculating the distance, we consider the Euclidean distances
as similarity measures and compare between sentence embedding. Classification Objective Function
by concatenate the sentence embedding u and v with element-wise difference |(u− v)| and multiply
it with the trainable weight. Then we optimize for the cross-entropy lose:

BCE_Loss(y, p) = − (y log(p) + (1− y) log(1− p))

Where: (y) represents the ground truth label (0 or 1 for binary classification)

Note depending on the loss calculation, different tasks may produce loss value at different scale. We
adopted similar loss function to weight all loss equally between 0-1 range.

4.4.3 Semantic Task

Semantic Textual Similarity is a measure of semantic equivalence between a pair of text segments.
In NLP, STS quantifies the degrees of similarity or relatedness in meaning between two sentences.
This task is usually treated as a regression problem. State of the art methods often learn a complex
regression function that maps sentence bedding to a similarity score. We adopt a linear to adjust the
weight before calculating the cos-sim and concatenate with sentence embeddings for prediction.

Cosine similarity is defined

Cosine similarity =
A ·B

|A| · |B|
where |A| and |B| denote the Euclidean norms (magnitudes) of the vectors.

The Loss is measure with Mean Squared Error:

MSE_Loss =
1

mn

m∑
i=1

n∑
j=1

(xij − yij)
2

4

4.5 Projected attention layers

PAL and Adapters are two common ways for building multi-task BERT model with pretrained
weights and they have proven to be effective. In this practice, we also build a PAL version based
on our BERT implementation and try to evaluate the performance with the same multi-task heads
design. Our PAL implementation is inspired by works by JosselinSomervilleRoberts 2 and rewritten
for comparison purpose. The core idea of PAL is by introducing a low-rank task specific attention
layer in parallel to the BERT self-attention, we will be able to share the weights of BERT model
while still be able to store some parameters optimized for each tasks.

Figure 3: PAL Implementation

4.6 Details

The training setup is locally in RTX GPU with 24GB RAM. Batch size is fixed at 16 to accommodate
memory limit.

2https://github.com/JosselinSomervilleRoberts/BERT-Multitask-learning

5

For Baseline model, we adopted a learning rate of 1e-05, hidden dropout probability of 0.3. We train
10 epochs. For finetuning on non-baseline run, we adopt a initiate learning rate of 2e-5.

AdamW optimizer is set as typical betas with β1 = 0.9 and β2 = 0.99, ϵ = 10−6.
Bias correction is applied but no weight decay for the baseline. For the run other than
baseline, a learning rate scheduler is integrated. There are four schedulers available:
constantschedulewithwarmup, linearschedulewithwarmup, cosineschedulewithwarmup, polynomialdecayschedulewithwarmup.Ourresultsarepresentedwithlinearscheduler.Warmupissetto3step.

4.7 Data

Datasets:In the experiment, we used the following dataset provided from default final project: SST-5,
QQP and STS-B.

• Stanford Sentiment Treebank: A dataset consists of 11855 single sentences extracted
from movie reviews and parsed by Stanford parser as 215154 unique phrases. It comes with
sentimental label annotation on a scale from 0 (negative), 1(somewhat negative), 2(neutral),
3(somewhat positive), 4(positive).(Socher et al., 2013)

• Quora Question Pairs(QQP): A subset of the Quora dataset, consists of question pairs
with labels indicating whether particular question is a paraphrase of another. The expected
binary value shows whether the two sentences are equal or not. A random value may provide
around 0.5 accuracy, which we can use as a bottom line.

• SemEval STS Benchmark: A dataset consists of 8628 different sentence pairs with similar-
ity label on a scale from 0(unrelated) to 5(equivalent meaning). (Cer et al., 2017)

4.8 Evaluation method

• SST,QQP and STS are used for finetuning purpose and benchmark. For SST andQQP,
we finetune the model on the DEV set and assess the accuracy on the TEST set based on
whether the result matches the original label as the ground truth. For SST, we will predict
the similarity values and evaluate with Person correlation with true similarity values.

5 Results

5.1 BERT finetune for each task

BERT Single Task Finetune
Method DEV ACC
STS finetuned 0.528
QQP finetuned 0.838
STS-B Finetuned 0.421

Table 1: Results of BERT Finetuned for Single Tasks

The above results are generated from the finetuned BERT model with task specific head on EVERY
SINGLE dataset solely. By loading the Pretrain weights from Huggingface, we are able to achieve
moderate results on three tasks. Note they are all based on a learning rate of 1e-5 with Adam optimizer.
Batch size is 16 with Epoches of 10.

5.2 Multi Task BERT result

Accuracy
Method SST DEV QQP DEV STS-B DEV
SST-Finetuned BERT 0.528 0.510 0.283
MultiTask BERT 0.480 0.835 0.679
SBert(MAX,MAX,MAX) 0.358 0.742 0.630
SBert(MEAN,MEAN,MEAN) 0.342 0.826 0.657
SBert(CLS,MEAN,MEAN) 0.500 0.866 0.767
Original PALs 0.491 0.869 0.580

6

Table 2: Comparison of Multi-Task BERT Models

Some highlights of the Multi-Task BERT Model:

• The first SSS-Finetuned BERT is a baseline which was solely finetuned on SST dataset and
evaluated against QQP and STS-B

• A MultiTask BERT is finetuned on three datasets to achieve an overall lower Loss.

Lossoverall = Lossa + Lossb + Lossc

• SBert is BERT model with pooling enabled on the logits in forward function. In the case of
SBERT (MAX, MAX, MAX), it means MAX-pooling is enabled for all three tasks, while
SBERT (CLS, MEAN, MEAN) means no pooling for sentimental analysis but MEAN-
pooling for Paraphrase and Semantic analysis tasks.

• Original PALs is BERT model with Projected attention layers. There three tasks specific
low rank attention weights trained and stored. The low rank size is chosen to be 60, which
represents a small parameter size.

6 Analysis

With the first STS-Finetuned BERT as the baseline, we can see finetuning on SST dataset can fit
on the sentence sentimental information but is generated little value in completing Paraphrase and
Semantic analysis tasks. Their optimization objectives are not aligned.

The best overall performance of Multi-Task BERT model is with the following setup: CLS-Token
(No Pooling) for Sentimental and MEAN pooling for Paraphrase and Semantic Analysis. With SST
dev accuracy: 0.500 Paraphrase dev accuracy: 0.866 STS dev correlation: 0.767 In comparison with
baseline of individual tasks, we can see: 1. the SST performance decreased from 0.528. This is
probably due to QQP and STS-B have different optimization objective compared with SST, which
caused a conflict in gradient direction. Increasing the Sentiment training set size would help in this
case. 2. The QQP and STS-B performance both are improved in comparison of BERT tuned for
individual tasks. That means the QQP and STS-B dataset are contributing to each other in training,
which helps to extract better common understanding in the sentence tokens. 3. The QQP and STS-B
Performance also are improved in comparison of the MultiTask finetuned BERT model. SBERT
MEAN Pooling would be the reason in this case as this is the common contributing factor for both
variations.

When digging into SBert variations and compare them with the Baseline, we can see SBert Pooling of
MAX and MEAN strategies both show performance improvement over the QQP and STS-B dataset,
in comparison with default CLS-Token. However, SST task still runs best on the CLS-Token. MEAN
and MAX pooling strategy is not helping in sentimental analysis. This observation is aligned with the
finding in original Sentence Bert paper(Reimers and Gurevych, 2019).

Paraphrase binary classification problem is relative easy to train since we are provided with a relatively
larger dataset. In average, it took only 3 epoches to reach a relatively good accuracy rate(>0.85).

Complex structure may achieve good training accuracy but is prone to overfitting issue. It may learn
more irrelevant context which only works in the training dataset but not transferable to DEV and
TEST dataset.

7 Future works

One future work is the analysis of the impact of SMART Regularization (Jiang et al., 2020). It is
implemented for the project codebase but there were not enough data generated to evaluate the impact
on the result. I am expecting a good adjustment on the ratio would help the overfitting on problem.

We also integrated one version with idea of BITNET (Ma et al., 2024). The work tries to use bitlinear
layer of only [-1,0,1] values to train on the same tasks. Our initial attempt didn’t yield good results so
we are not including them into the report. We will continue exploring the possibilities of completing
the works with less complex model with similar performance.

7

8 Conclusion

Our implementation demonstrates the potential of BERT to adapt to multiple tasks simultaneously,
leveraging shared representations while maintaining task-specific capabilities through strategic
architectural modifications like Projected Attention Layers (PALs) and SBERT pooling strategies.
Our project underscores the delicate balance required in multitask model training, where task-
specific optimizations must be carefully weighed against the overarching model coherence to prevent
performance degradation in any single task.

References
Quora dataset release question pairs.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. 2024. The era of 1-bit llms: All large language models
are in 1.58 bits.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana.
Association for Computational Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020. Adapterhub: A framework for adapting transformers.

Alec Radford and Karthik Narasimhan. 2018. Improving language understanding by generative
pre-training.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

8

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/s17-2001
https://doi.org/10.18653/v1/s17-2001
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1902.00751
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/1901.11504
http://arxiv.org/abs/2402.17764
http://arxiv.org/abs/2402.17764
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/2007.07779
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

9

http://arxiv.org/abs/2001.06782

	Acknowledgement
	Introduction
	Related Work
	Approach
	Design decisions
	BERT Model
	Multi-head Architecture
	Task Specific heads
	Sentiment Analysis Task
	Paraphrase Task
	Semantic Task

	Projected attention layers
	Details
	Data
	Evaluation method

	Results
	BERT finetune for each task
	Multi Task BERT result

	Analysis
	Future works
	Conclusion

