
minBERT: Contrastive Learning Method
Stanford CS224N Default Project

Long Pham
Department of Computer Science

Stanford University
Ldpham00@stanford.edu

Abstract

This project is split into two components: the first part is to implement a contrastive
learning framework to minBERT, and the second part is to further fine-tune the
model in an attempt to improve its accuracy. Our hopes in doing so is to im-
prove the performance of the model on three mainstream tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. Our method includes using
pre-existing training data that contains positive and negative pairs to train our
data and use their cosine similarity as a determinant for the magnitude to which
we should "pull in" or "push away" the feature embeddings of the pairs of sen-
tences. We then compare the performance of this new model with our implemented
minBERT model in order to evaluate its effectiveness. Our results show that the
integration of contrastive learning improve our accuracies for all three downstream
tasks. This study demonstrates the effectiveness of the contrastive learning method
in the domain of natural language processing and shows promising avenues for
future unsupervised implementation in NLP models but also for other domains
including computer vision.

1 Key Information to include

• Mentor: Timothy Dai

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

Contrastive learning is a machine learning technique in which the model is trained to be able to
distinguish between similar and dissimilar pairs of input data. The model does so by "pulling in" pairs
of features that are similarly related and "pushing away" pairs of features which are not by comparing
their cosine similarity and augments it by a "temperature" value. An exciting implication of this is
that this method allows for the model to be trained on a smaller set of data. This is useful in applica-
tions where there is not a lot of training data and can also be utilized in unsupervised machine learning.

Contrastive learning has found many uses in a wide range of domains of machine learning including
natural language processing and computer vision. However, one difficulty that arises with the
implementation of contrastive learning in an NLP model is that language processing is inherently
discrete, and so it is more difficult to create positive and negative pairs. Whereas with an image, it
can be flipped or grayscaled to produce a new positive pair, it is much more difficult with a sentence.
While we can randomly omit a word or replace it with its synonym, doing so does not always
guarantee a coherent new sentence nor does it always even guarantee that the new sentence will even
have a contextually similar meaning.

Stanford CS224N Natural Language Processing with Deep Learning



The goal of this project is to adapt this idea of contrastive learning into our architecture in hopes of
improving the original performance. We aim to use pre-existing labels that already include labels
as to whether two sentences are similar, and then applying the contrastive learning loss function to
each network architecture. To do so, we will incorporate a cosine similarity function along with
cross entropy loss into our original model. We will then continue to finetune the model in hopes of
improving its performance.

3 Related Work

Our study was largely inspired by the paper SimCSE: Simple Contrastive Learning of Sentece
Embeddings, in which the authors aimed to further improve on current sentence embedding methods
and to show the effectiveness of contrastive learning when it is coupled with pre-trained language
models including BERT and RoBERTA (Gao et al., 2021). Our experiment adapted the suggestions
from this study and applied it to our model for minBERT.

In the study, the authors addressed the limitations of existing approach and are motivated by the
potential of contrastive learning. Furthermore, they hope to discover methods that can lead to better
sentence embeddings generation and its application to improve the performance of NLP systems in
tasks such as semantic textual similarity analysis and natural language inference.

In essence, contrastive learning pulling semantically related neighbors close together and push non-
semantically related neighbors apart. In training the model, the authors encoded the input sentences
using a pre-trained language model and then fine-tuning all of the parameters using the contrastive
learning equation:

ℓi = −log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

where hi and h+
i denote the representation of two semantically related examples, τ is a temperature

hyperparameter, and sim(h1, h2) is the cosine similarity between the two representations (Gao et al.,
2021). By using the same loss function as described above into our minBERT model, we hope to
achieve a similar result.

4 Approach

For the baseline, we used the performance of the minBERT model with the Adam Optimizer
as outlined in the CS 224N Default Final Project handout (CS224N, 2024). As stated in
Section 5.2 of the handout, for multitask_classifier.MultitaskBERT.predict_sentiment,
as a baseline, we will call the forward() method followed by a dropout and linear layer.
Similarly, as a baseline for multitask_classifier.MultitaskBERT.predict_paraphrase and
multitask_classifier.MultitaskBERT.predict_similarity, we will call the forward() method
followed by a dropout layer on both input sentences. We will then sum the two outputs and apply a
linear layer. All of the linear layers take in inputs of size in_features=config.hidden_size. The linear
layer used for sentiment analysis have outputs of size out_features=N_SENTIMENT_CLASSES,
which is 5 for our dataset, whereas the linear layers used for paraphrase detection and textual
similarity have outputs of size out_features=1. We will compare the Pearson correlation coefficients
of all three downstream tasks of our finalized model to the scores from this model in order to
determine our improvements. A better Pearson correlation coefficient will show us that the techniques
we implemented are beneficial to the model.

To improve this, one thing we did was to augment our neural network architecture. The most notable
changes are made to the architecture of predict_paraphrase() and predict_similarity() in which
rather than summing the two layers and pipelining the tensor into a linear layer, the two embeddings
are each processed into their own separate linear layer and then a cosine similarity layer is applied to

2



these two layers and then divided by the temperature value self.temp as described in the paper for
SimCSE (Gao et al., 2021)

def predict_sentiment(self, input_ids, attention_mask):
x = self.forward(input_ids, attention_mask)
x = self.dropout(x)
return self.classifier(x)

def predict_paraphrase(self,
input_ids_1, attention_mask_1,
input_ids_2, attention_mask_2):

x_1 = self.forward(input_ids_1, attention_mask_1)
x_1 = self.dropout(x_1)
x_1 = self.paraphrase_1(x_1)
x_2 = self.forward(input_ids_2, attention_mask_2)
x_2 = self.dropout(x_2)
x_2 = self.paraphrase_2(x_2)
return self.cos_sim(x_1, x_2)/self.temp

def predict_similarity(self,
input_ids_1, attention_mask_1,
input_ids_2, attention_mask_2):

x_1 = self.forward(input_ids_1, attention_mask_1)
x_1 = self.dropout(x_1)
x_1 = self.sts_1(x_1)
x_2 = self.forward(input_ids_2, attention_mask_2)
x_2 = self.dropout(x_2)
x_2 = self.sts_2(x_2)
return self.cos_sim(x_1, x_2)/self.temp

Further changes were also performed to optimize the training function mostly in the form of
altering the loss function in order to fit the contrastive learning loss. For all three tasks, we utilized
cross-entropy loss in order to fit the contrastive learning model. The equation for the loss function is
given as:

We can see that by using the cosine similarity of the two sentences as the input and using the truth
labels as the target, we have achieved the loss function as described in the SimCSE study (Gao et al.,
2021).

5 Experiments

5.1 Data

We will use the Quora and SemEval STS Benchmark datasets and their respective splits given in the
CS 224N Default Final Project handout (CS224N, 2024). For the Quora dataset, this consists 400,000
string pairs and labels for whether they are paraphrases of each other – 141,506 train examples,
20,214 dev examples, and 40,431 test examples. For the SemEval STS Benchmark dataset, this
consists of 8,628 string pairs of varying levels of similarity and its scoring from 0 to 5 denoting their
similarity (0 denoting no relation, and 5 denoting an equivalent meaning) – 6,041 train examples, 864
dev examples, and 1,726 test examples.

3



5.2 Evaluation method

When testing the model, we will utilize the Pearson correlation coefficient between the true values
and predicted values in order to assess its performance as was used in original SemEval paper. Since
our goal was to improve our original minBERT model, we compared our results of the Pearson
correlation coefficient of our new contrastive learning model to our old model, rather than make
any comparisons to the results outlined by the SimCSE study (CS224N, 2024). To prove our work
successful, we would hope to see a notable increase in the scores for all three downstream tasks from
our minBERT model.

5.3 Experimental details

With the exception of using a GPU for training, all of the training parameters have been left as default
from the provided code for multitask_classifier.py.

Variable Name Default Value

sst_train data/ids-sst-train.csv
sst_dev data/ids-sst-dev.csv
sst_test data/ids-sst-test-student.csv

para_train data/quora-train.csv
para_dev data/quora-dev.csv
para_test data/quora-test-student.csv
sts_train data/sts-train.csv
sts_dev data/sts-dev.csv
sts_test data/sts-test-student.csv

seed 11711
epochs 10

sst_dev_out predictions/sst-dev-output.csv
sst_test_out predictions/sst-test-output.csv

para_dev_out predictions/para-dev-output.csv
para_test_out predictions/para-test-output.csv
sts_dev_out predictions/sts-dev-output.csv
sts_test_out predictions/sts-test-output.csv
batch_size 8

hidden_dropout_prob 0.3

The model was pretrained with a learning rate of 1e-3 and finetuned with a learning rate of 1e-5. We
also use a hidden size of 768. Additionally, in the research about SimCSE, it is determined that a
temperature value of τ = 0.05 yielded the most accurate results, and so that was the value that was
used in training our model. The model was trained locally on an NVIDIA RTX 3070Ti FE using
CUDA 11.8.

5.4 Results

The scores attained by both minBERT and the Contrastive Learning Method BERT model are shown
below for the DEV set are shown below. Both scores are recorded after pretraining and finetuning
using the parameters given in the Experiment details section above.

Downstream Task minBERT Contrastive Learning Method ∆ Accuracy

SST 0.520 0.532 +0.012
Paraphrase 0.550 0.805 +0.255

STS 0.053 0.529 +0.477

Below is the performance of the Contrastive Learning Method BERT model on the TEST set after
pretraining and finetuning. The same parameters were used as described above.

4



Downstream Task Contrastive Learning Method Accuracy

SST 0.524
Paraphrase 0.807

STS 0.495

Overall Score 0.693

As expected, we see substantial increases in performance in paraphrase detection and semantic
textual similarity, as this was largely where changes in the neural network architecture were made.
Specifically, we see the greatest improvement in semantic textual similarity predictions, and we
believe that this occurs due to the weighting of the sentence pairs. While positive and negative pairs
were given for paraphrase detection, we believe that the weighting of the sentence pairs for semantic
textual similiarity yielded in greater changes when similar feature embeddings are pulled together
and greater changes when dissimilar feature embeddings are pushed apart. Thus, we believe that this
gives the model greater nuance when determining the magnitude to which a pair of sentences are
related.

Surprisingly, we also see an increase in accuracy for sentiment analysis. We believe that this occurs
due to the fact that the model attributes semantically similar sentences to have a similar sentiment
score, leading to a slight bump in performance for this downstream task. The increase in performance
for this specific task shows that the ability for contrastive learning to generalize input data for other
potential downstream tasks as well when it comes to natural language processing.

6 Analysis

We believe that the large increase in accuracy when contrastive learning was implemented was due to
the fact that the labels were already provided for us, and we did not need to generate our own positive
and negative pairs. If we were to generate our own dataset, it might disagree with the pre-existing
datasets regarding whether we believe two sentences are paraphrases of each other or how similarly
we believe two senteces are to each other. Furthermore, if we were to arbitrarily create our own
positive and negative pairs, we can accidentally change the coherence of a sentence or alter its
meaning outright. For instance, if we were to have a sentence containing a negating word such as
"not," if by change we were to remove this through random sentence augmentation, we would create
a new sentence with the complete opposite meaning.

This project speaks largely to the ability of contrastive learning to generalize representations of data
and proves its effectiveness more so than its ability to be trained on a smaller set of data. Since
we used the same datasets for both the minBERT model and our new contrastive learning BERT
model, we were unable to test if a smaller set of data can provide a similar accuracy when contrastive
learning is implemented. However, because of the large increase in performance, it can be deduced
that our new contrastive learning model can attain similar performances to the old minBERT model
with significantly less training data.

While we had hope to implement certain input data augmentation techniques such as randomly
removing words from a sentence or randomly replacing words with their synonyms, these techniques
proved largely unfruitful and consistently resulted in significantly poorer accuracy. As mentioned in
the SimCSE study, standard dropout yielded the most accurate result and we found this to be true
in our own study, as well. Thus, there naturally exist limitations in the creation and delegation of
positive and negative pairs. This is notably true for unsupervised learning.

7 Conclusion

Our findings demonstrate a significant increase in the accuracy of the model in all three downstream
tasks. Notably, we see the greatest increases in accuracy semantic textual similarity and a
substantial increase in paraphrase detection, which we expect from our change in architecture to the
predict_paraphrase() function and the predict_similarity() function. The changes as described

5



above in the Methods section were made to give the model a better and more nuanced understanding
of the textual relationship between the input data. Interestingly, these architectural changes yielded
benefits beyond its intended scope and increased our accuracy for sentiment analysis, as well.
However, it should be noted that the increase in score for sentiment analysis is not as substantial as
the other two tasks, and can perhaps be worse with a different seed.

Due to the limited time for this project, we were unable to test further data augmentation techniques,
but we have hope that such techniques exist that will yield better results than standard dropout, and
we plan to continue further explorations in this avenue in future projects. Moving forward, we also
hope to perform more testings to see whether other various loss functions can produce even better
results when coupled with contrastive learning.

References
CS224N. 2024. Cs 224n default final project: minbert and downstream tasks.

Tianyu Gao, Xincheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, page 6894–6910, Online and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

6

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

