
Improving minBERT and Its Downstream Tasks
Stanford CS224N Default Project

Kevin Yang
Department of Computer Science

Stanford University
keviny23@stanford.edu

Madhumita Dange
Department of Computer Science

Stanford University
madhumid@stanford.edu

Abstract

We re-implemented the minBERT model with multi-head self-attention and trans-
former layers. Using pre-trained parameters loaded, we performed evaluation on
both sentiment analysis only and multi-task pipeline. We also optimized various
aspects of the BERT model targeting at higher computational performance on
multiple tasks. Targeting for robustness and generalization, our particular approach
mainly focused in these three aspects: hyperparameter tuning, multi-task setting,
and model size and layers. We also conducted comprehensive numerical experi-
ments to compare the performance of the model before and after each optimization
step by step. While a lot of more study is needed in this area, the BERT mechanism
has the potential to achieve both efficiency, performance, and generality in the
future.
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2 Introduction

Pre-training on language models has been proven to be one of the most effective way to improve
various natural language processing tasks (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder,
2018). In 2019, BERT (Bidirectional Encoder Representations from Transformers) were proposed to
further pre-train deeper bidirectional representations from unlabeled text. Unlike other language
representation models, BERT has been designed to fine-tune for various natural language tasks such
as language inference, question answering and so on without substantial task-specific architecture
modifications other than an additional output layer. BERT has been showed by numerical examples
to achieve empirically powerful performance with conceptually simplicity (Devlin et al., 2019).

While BERT proposed a brand new pre-training mechanism that has been adopted and extended later
on to many task and applications as one of the many big milestones of nature language processing, it
also has its limitations. For example, it only evaluated the performance based on GLUE datasets,
SQuAD v1.1 datasets, SQuAD 2.0 datasets, and SWAG dataset. The overall mechanism can be
further improved, generalized, and/or adopted to many other datasets and applications.

In this paper, we aims at optimizing and extending BERT model. Our work aims to propose and test
potential improvements to the model, thereby contributing to the ongoing advancements in the field
of nature language programming.
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3 Related Work

There have been many existing work on improving BERT machanism and/or adopting BERT to
more broadly applicable tasks. Among these, several work looked at fine-tuning the BERT model on
different datasets such as SMART (Jiang et al., 2020) and Sentence-BERT (Reimers and Gurevych,
2019), and additional pre-training to get richer and more robust embeddings such as the Stanford
Natural Language Inference corpus (Bowman et al., 2015) and the Multi-Genre Natural Language
Inference (MultiNLI) corpus (Williams et al., 2018). Another natural way to improve BERT model
was to further pre-train with target-domain data, for example, Sun et. al. conduced comprehensive
numerical examples to looks at fine-tuning BERT on on text classification task and then provided a
general solution on BERT fine-tuning (Sun et al., 2019). In Sentence-BERT (SBERT), the similarity
between two embeddings was also computed using their cosine similarity to further improve the
BERT model by reducing the effort for finding the most similar pair from 65 hours with BERT to
about 5 seconds while maintaining the accuracy (Reimers and Gurevych, 2019). Henderson et. al.
applied a different loss function such as Multiple Negatives Ranking Loss for natural language
response suggestion (Henderson et al., 2017). To address the over-fitting cased by aggressive
fine-tuning and improve BERT on unseen data, Jiang et. al. proposed a learning mechanism for robust
and efficient to attain better generalization performance through Principled Regularized Optimization
and also proposed a class of Bregman proximal point optimization methods (Jiang et al., 2020).
Many other work have studied the BERT model by adding multi-task settings (Stickland and Murray,
2019; Bi et al., 2022; Yu et al., 2020). Gao et. al. proposed SimCSE as a contrastive learning
framework to work with both labeled and unlabeled and data (Gao et al., 2021).

4 Approach

In order to optimize the BERT model, We started with re-implementing it. We leveraged the starter
code and a minimalist implementation of the BERT model (minBERT) in the given project GitHub
repository with the following command:

git clone https://github.com/timothydai/minbert-default-final-project.git

Particularly, we completed the implementation of the minBERT Model containing Multi-head
Self-attention, the Transformer Layer, and the Adam Optimizer. We also implemented Sentiment
Classification with BERT embeddings. After successfully re-implemented the above models, we are
delving deeper into the minBERT model to identify areas for potential improvement. Our eventual
goal was on enhancing the model’s robustness and generalization capabilities, thereby improving its
applicability across a wider range of tasks and datasets. We will discuss various approaches that we
applied in details below.

4.1 Hyperparameter tuning

While some defaults for various hyperparameters were provided in the repo, these do not necessarily
lead to the best results. Therefore, the first approach we have taken was to perform a hyperparameter
search to find the best hyperparameters for the minBERT model we implemented. With our
completed model using both pretrained and finetuned embeddings, we conducted comprehensive
numerical experiments on selected datasets with different hyperparameters. The model was then
evaluated based on Accuracy metric on different dataset. We summarize the numerical result in the
Section 5.1.

4.2 Multi-task setting

We also embarked on enhancing computational performance across multiple tasks. We started
this with the implementation of a classifier pipeline that trains the minBERT implementation to
simultaneously perform the sentiment analysis, the paraphrase detection, and the semantic textual
task. After evaluate the original pipeline, it is then further optimized by leveraging multi-task
setting. Specifically, rather than fine-tuning minBERT on the loss function of individual tasks, we
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alternatively make use of multi-task learning to update BERT simultaneously.

As suggested by (Bi et al., 2022), one way of doing this is by adding together the loss functions on
the tasks of sentiment analysis, paraphrase detection, and semantic textual together, instead of just
using the loss function of sentiment analysis loss function as shown in Equation 1:

LTotal = LSentimentAnalysis + LParaphraseDetection + LDemanticTextual (1)

However, using multi-task learning is not always effective depending on how the model would be
fine-tuned. One challenge we faced was that gradient directions of different tasks might have conflict
with each another. To further improve the multi-task setting, we re-implemented the Gradient Surgery
method proposed by Yu et. al. (Yu et al., 2020). Specifically, we project the gradient of one particular
task gi onto the normal plane of the gradient of another conflicting task, gj following equation 2:

gi = gi −
gi · gj

∥gj∥2
· gj (2)

The Gradient Surgery method provided a simple and general approach to avoid conflict interference
between task gradients and thus leads to substantial gains in efficiency and performance.

The end-to-end multitask fine-tuning model is later evaluated and compared based on the original
setting. The result are present in the Section 5.1.

4.3 Optimization on model size and layers

After completing the hyperparameter optimization and multi-task setting, we still identify rooms of
improvement. Therefore, we looked at the structure of the model to see if we can try increasing layer
size or the number of layers.

We did this in three aspects. First, we added a bi-LSTM layer after minBERT model as a common
layer to improve the performance of the model on all tasks. Additionally, we also added linear layers
for each tasks as additional task specific layer. These two optimization did improve the overall score
on the multi-task pipeline, but we also start to see some over-fitting when compares to the dev set and
test set. Therefore, we added additional dropout layers for each tasks to improved score on validation
and test set.

After these optimization of bi-LSTM, task specific linear layers and the dropout layers, we conduct
numerical experiment and the result is present in Section 5.1.

5 Experiments

In this section we discuss the experiments in details from the following four aspects.

5.1 Data

We leveraged these datasets:

Stanford Sentiment Treebank (SST) dataset: The Stanford Sentiment Treebank dataset are extracted
from movie reviews that contains 11,855 single sentences. The dataset was parsed with the Stanford
parser and includes a total of 215,154 unique phrases. The dataset is annotated by 3 human judges.
For each phrase, a label of negative, somewhat negative, neutral, somewhat positive, or positive is
provided. We will utilize BERT embeddings to predict these sentiment classification labels. For the
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SST dataset we have the following splits:
• train (8,544 examples)
• dev (1,101 examples)
• test (2,210 examples)

CFIMDB dataset: The CFIMDB dataset consists of 2,434 highly polar movie reviews in which review
a binary label of negative or positive has been provided. We will also utilize BERT embeddings to
predict these sentiment classifications. For the CFIMDB dataset we have the following splits:
• train (1,701 examples)
• dev (245 examples)
• test (488 examples)

For Sentiment analysis task, since the label of SST is from 0 to 4, we thus relabeled CFIMDB so that
the original positive (y = 1) are now marked as 4.

5.2 Evaluation method

The different versions of the minBERT model we implemented and optimized were being evaluated
against the baseline methods with the default hyperparameters and setting. This evaluation utilized
the metrics derived from our experimental results and compare them with the scores for the original
BERT model. The evaluation has been performed in terms by averaging accuracy across the three
downstream tasks using methods such as similarity, accuracy, and/or GLUE score.

5.3 Experimental details

After re-implementing the BERT model, we conducted numerical experiments on our primary
task, sentiment analysis, with the original default hyper-parameters as baseline. We then aimed
at optimizing the model with various different hyper-parameters that were shown in the Results
following method in Section 4.1.

Using both pre-trained and fine-tuned embedding on the SST and the CFIMDB datasets, we also
evaluated the original classifier pipeline that trains the BERT implementation to simultaneously per-
form sentiment analysis, paraphrase detection, and semantic textual similarity that we implemented.
As described in Section 4.2 as part of the extension, we also optimized the multi-classifier leveraging
multi-task setting and combined the loss function on all three tasks during the training process of
both pretraining and finetuning on all three datasets. We also implemented the Gradient Surgery
method to address the problem of conflicting interference between task gradients for substantial gains
in efficiency and performance. The comparison before and after this optimization were shown in the
next section.

Lastly, we also followed the method in Section 4.3 to add additional optimization on model structure.
Specifically, we added a general bi-LSTM layer, task specific linear layers and the dropout layers.
The performance of the model before and after these optimizations are present in the next section.

All the experiments in the paper are conducted on Google Cloud Platform using Compute Engine API
Service on 1 x NVIDIA T4 GPU VM in Zone us-west3-b with Image pytorch-2-0-gpu-v20231105-
debian-11-py310. We thank Google for providing the $300 credits and the course operator for
providing the additional $50 credits.

5.4 Results

As discussed in the Section 4.1, the first optimization we conducted was hyperparameter tuning.
Table 1 illustrates the accuracy of the BERT model with the default setting, along with the new

4



hyperparameters being evaluated sequentially and one at a time. The accuracy on the dev set were
given for each experiment when only one hyperparameter was changed. As we could see from the
table, our current approaches of parameter tuning does not change that much when it compares
to the original setting. One interesting findings we observed is that by flipping the learning rate
of pretraining and finetuning, the accuracy dropped significantly. This indicates the hypothesis
that for this particular case the learning rate in pretraining needs to be larger then the one in finetuning.

Dev Accuracy Pretrain-SST Finetune-SST Pretrain-CFIMDB Finetune-CFIMDB
Default 0.402 0.525 0.784 0.971
lr=1.00E-05,1.00E-03 0.316 0.262 0.576 0.502
P dropout=0.1 NA 0.52 NA 0.976
P dropout=0.5 NA 0.523 NA 0.967
batch=16 NA 0.52 NA 0.971
batch=64 NA 0.515 NA 0.959
seed=21111 NA 0.517 NA 0.955
seed=100 NA 0.528 NA 0.963

Table 1: Sentiment Analysis on default and different hyper-parameters

As discussed in Section 4.2, we also optimized the multi-classifier with a multi-task setting by
implementing Combined Loss and Gradient Surgery. Table 2 compares the performance of the model
before and after the optimization. Particularly, when the multi-classifier was only trained on sentiment
analysis (SST) loss and its dataset, the model performance was way worse for paraphrase detection
task (PD), semantic textual similarity (STS) task, and overall. On one hand, with the Combined Loss
function and training on all three datasets, though the performance on sentiment analysis dropped
only slightly, the performance for the other two tasks and overall increased significantly. This
indicates that the Combined Loss method enabled the minBERT model to learn on top of all three
tasks, so the model is trained towards the better performance of the three tasks overall, instead of just
the single task of sentiment analysis. Furthermore on the other hand, after the Gradient Surgery is
implemented, the model improved further an all three tasks, especially on paraphrase detection task
and semantic textual similarity task. By alleviating the potential problem of conflicting interference
between task gradients, the model achieved significantly towards the performance in multi-task setting.

Model Original Combined Loss Combined Loss w. Gradient Surgery
SST dev Acc. 0.532 0.520 0.571
PD dev Acc. 0.385 0.625 0.826
STS dev Cor. 0.130 0.557 0.871
Overall dev Score 0.494 0.641 0.759

Table 2: Multi-classifier before and after the multi-task optimization

Lastly as described in Section 4.3, we also added additional optimization on model structure by
adding a general bi-LSTM layer after the minBert model, after than we also added task specific linear
layers and the dropout layers. The performance of the model before and after each optimization steps
are shown in Table 3. As illustrated below, the improvement from bi-LSTM on the Overall dev score
is very minimum, and even with the task specific linear layer and dropout later the improvement was
also very small and it looks like only sentiment analysis was improved and the overall score even
dropped. This indicates that he beneficial impact from both a more complicated learning mechanism
led by the bi-LSTM and task specific linear layers, and also the regularization induced by the dropout
layer to address overfitting was not that helpful. This proves the already near-optimal performance of
BERT mechanism as claimed in the original paper (Devlin et al., 2019).
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Model Original With bi-LSTM With bi-LSTM and task specific
SST dev Acc. 0.517 0.507 0.521
PD dev Acc. 0.826 0.827 0.817
STS dev Cor. 0.871 0.872 0.871
Overall dev Score 0.759 0.757 0.758

Table 3: minBERT performance before and after the model structure optimization

In the next section we will continue to discuss the result and provide some insights and intuition
behind the model performance, and the limitation and potential future work.

6 Analysis

As indicated in the previous section, we aimed at improving minBERT and our focus was mainly in
three aspects: hyperparameter tuning, optimization on multi-task setting, and optimization on model
size and layers.

While hyperparameter tuning does not help that much, the original hyperparameters seem to be
already optimized by early studies on BERT. //

Our exciting findings appeared to be mostly in multi-task setting. As illustrated in Section 5.4 and
particularly in Table 2, the performance on paraphrase detection task and semantic textual similarity
task improved significantly just by adding combined loss function. Particularly, the dev accuracy on
paraphrase detection task almost doubled and the dev correlation on semantic textual similarity is now
four times compared to the original setting. Though the model is training slightly less towards the
optimal model on sentiment analysis task only, the overall dev score increased by about 30 percent.
Additionally with Gradient Surgery method, the overall dev score and all other matrices improved
even more significantly, indicating the problem of conflicting interface of task gradients was one of
the main challenge to be solved. With Gradient Surgery taking projections of gradient on one with
each other, the overall score increased from 0.641 to 0.759, with a 18.41 percentage improvement.
Moreover, the performance on paraphrase detection and semantic textual similarity improves
even more obvious. These interesting results calls for even more studies in the multi-task setting
on BERT in the future and particularly we would like to see the extension of BERT on even more tasks.

Though the improvement on optimization on model structure are very slight, the additional bi-LSTM
layer, and task specific linear layers and dropout layers proves the already near-optimal and efficiency
of the original BERT model. Furthermore, this approaches also makes the model even more
complicated and thus more computational expense was required. One interesting findings we
observed during the process is when we training the model with default hyperparameter settings, our
GPC instance returned low memory errors. The training process can only be done when we change
our batch size from 8 to 4 and even after that, training in the optimized model takes more time than
before. This is not a good sign to us seems the original goal of BERT model is to provide a general
yet efficient mechanism and making the model more complicated and adding more task specific layer
seems to be defeating the purpose. This really brings the interesting and open-ended question on
how to trade-off the model performance with efficiency, and yet more studies are expected in this
particular topics.

On relating to the model efficiency, one limitations on our study is that we only considered the model
performance on its final outputs as the only evaluation method. Future research can potentially add
running time as another key indicator when compares to overall performance of the model in terms
of both solution quality and computational expense.
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7 Conclusion

In this paper, we re-implemented the minBERT model with multi-head self-attention and trans-
former layers. Using pre-trained parameters loaded, we performed evaluation on both sentiment
analysis only and multi-task pipeline. We also optimized various aspects of the BERT model
targeting at higher computational performance on multiple tasks. Aiming at improving the model
robustness and generalization, we looked at the improvement of minBERT model specifically on
hyperparameter tuning, optimization on multi-task setting, and optimization on model size and layers.
Though our contribution to the model improvement was mainly achieved with adding combined
loss function and the application of Gradient Surgery, we also discussed the corresponding problem
on computational expenses and efficiency. Though more research could be done particularly at the
direction of multi-task setting and the trade off between solution quality and running time, the BERT
mechanism has the potential to achieve both powerful performance, efficiency and generality on even
more tasks in nature language processing.
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