
Beyond Fine-tuning: Iterative Ensemble Strategies for
Enhanced BERT Generalizability

Stanford CS224N Default Project

Shreya D’Souza
Department of Computer Science

Stanford University
shreya99@stanford.edu

Riya Dulepet
Department of Computer Science

Stanford University
riyadule@stanford.edu

Megan Dass
Department of Computer Science

Stanford University
mdass9@stanford.edu

Abstract

The Bidirectional Encoder Representations from Transformers (BERT) model
has revolutionized natural language processing (NLP) by providing a contextual
understanding of human language. Leveraging BERT’s capabilities, we pre-train
and fine-tune the model to specialize in generating sentence embeddings, enabling
efficient application in various downstream tasks such as sentiment analysis, para-
phrase detection, and semantic textual similarity. We experiment with different
fine-tuning strategies and advanced techniques, including multi-task classification,
gradient surgery, cosine similarity, and ensemble modeling. Our results demon-
strate significant improvements in performance across all tasks, with ensembling
emerging as a particularly effective technique. Notably, we introduce an iterative
ensembling approach, stacking layers of ensemble models to achieve an overall
test set performance of 71.6%.

1 Key Information

Mentor: Annabelle Tingke Wang; External Collaborators: None; Sharing project: No

2 Introduction

The Bidirectional Encoder Representations from Transformers (BERT) model (Devlin et al., 2019) has
revolutionized the field of natural language processing (NLP), setting a new standard for understanding
and interpreting human language. Its foremost advantage lies in its ability to contextually analyze
text from both directions, unlike previous models that processed text in a linear sequence. This
bidirectional understanding enables BERT to capture the nuances and complexities of language,
making it highly effective for a vast array of NLP tasks.

Leveraging BERT’s powerful baseline, we fine-tune and extend the model to specialize in generating
sentence embeddings. These embeddings are designed to encapsulate the semantic essence of
sentences, allowing for their application in a variety of downstream tasks with remarkable efficiency.
By fine-tuning BERT on specific datasets and employing advanced techniques, we enhance its
capability to excel in sentiment analysis, paraphrase detection, and measuring semantic textual
similarity.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

Multi-task learning (MTL) provides a way to use a single model for multiple downstream tasks,
removing the need to train separate models for each task. While BERT helped to make significant
strides in NLP by using pretrained word and paragraph embeddings, there is room for improvement
in BERT’s performance on downstream tasks (Sun et al., 2020).

Bi et al. (2022) propose a method of calculating loss for multi-task learning as the sum of the losses
for each of the individual tasks. We use this as our initial approach of incorporating all downstream
tasks in our fine-tuning. Yu et al. (2020) posit that this approach does not consider a key optimization
issue in multi-task learning - conflicting gradients from each of the downstream tasks, which can be
detrimental in the case of varying magnitudes and directions (Yu et al., 2020). Hence, we investigate
the efficacy of their method, gradient surgery, in improving MTL performance. When two tasks have
conflicting gradients (negative cosine similarity), gradient surgery can be used to project the gradient
of one task onto the normal plane of the gradient of another task. If they do not conflict, the gradients
are left unchanged so as to not create assumptions about the model (Yu et al., 2020).

In addition to optimizing overall MTL results, methods can enhance performance on individual
downstream tasks. We employ cosine similarity coupled with cosine embedding loss to enhance
performance on the paraphrase detection and semantic text similarity tasks, where sentence similarity
is crucial. Cosine similarity quantifies the angle between two vectors in a high-dimensional space,
determining the similarity of word embeddings. Cosine embedding loss promotes embeddings with
high similarity to encourage the model to accurately capture semantic relationships (Reimers and
Gurevych, 2019). This approach, demonstrated by Reimers et al., leads to improved performance in
downstream tasks, particularly semantic textual similarity.

4 Approach

4.1 MinBERT Model Architecture

Figure 1: Encoder Layer of Transformer used in BERT

The minBERT architecture closely resembles BERT (Devlin et al., 2019) in its tokenization process,
utilizing a WordPiece tokenizer to convert input sentences into word piece tokens and padding them
to a maximum length of 512 with [PAD] tokens. Unseen word pieces are represented by the [UNK]
token, and the [CLS] token is prepended to represent the entire sentence. Additionally, the [SEP] token
is used to separate input sentences. The embedding layer comprises token embeddings, segmentation
embeddings (not relevant in our case), and positional embeddings, each with a dimensionality of 768.
Token embeddings map input IDs to vector representations and positional embeddings encode word
positions within sentences.

The BERT Transformer Layer consists of 12 Encoder Transformer layers, incorporating multi-head
attention, position-wise feed-forward networks, and dropout. Multi-head attention allows the model
to attend to information from different representation subspaces at various positions by computing
dot products of queries and keys, followed by normalization. Position-wise feed-forward networks

2



include linear transformations with ReLU activation, followed by normalization. Dropout is applied
to the output of each sub-layer and the sums of embeddings and positional encodings.

The BERT model outputs contextualized embeddings for each word piece in the sentence from the
last BertLayer as the last hidden state, along with the embedding of the [CLS] token as pooler output.

4.2 Baseline

Our baseline BERT is pre-trained and fine-tuned on the SST and CFIMDB sets.

We employ the AdamW optimizer to efficiently optimize model parameters, a method that updates
exponential moving averages of the gradient and squared gradient at a particular timestep, using
parameters β1 and β2 to control the rate of exponential decay. We compute bias correction to
eliminate the bias of the averages towards 0 (Loshchilov and Hutter, 2019).

4.3 Multi-task Learning

Our first extension fine-tunes the model by summing the losses for each downstream task. Multi-task
fine-tuning involves training a single model on multiple tasks by sharing the model’s layers (except
for the task-specific output layers) across all tasks; the model learns a representation applicable to all
tasks. The multi-task classifier builds on the baseline model by similarly using the AdamW optimizer.

We use a round-robin approach to simultaneously train three batches (one for each downstream task)
and obtain three losses. The loss used to update model parameters is the sum of cross-entropy loss
for the sentiment analysis, binary cross-entropy loss for the paraphrase evaluation task, and mean
squared error loss for the semantic similarity task.

Sentiment analysis, a classification task aiming to predict the sentiment (positive, negative,
or neutral) of a given text, benefits from cross-entropy loss, particularly for multi-class classification,
as it penalizes confidently incorrect predictions effectively. In paraphrase detection, a binary
classification task, where sentences are labeled 0 for non-paraphrases and 1 for paraphrases, binary
cross entropy is the preferred loss function, aligning well with binary classification objectives by
measuring the disparity between predicted probabilities and actual binary labels. For the semantic
similarity task, which entails predicting continuous values representing similarity between input
entities like sentences or phrases, mean squared error (MSE) loss is a suitable choice, given its
sensitivity to large errors and common utilization in tasks involving continuous variable outputs.

4.4 Gradient Surgery

Instead of combining the losses to pass a single value into the AdamW optimizer, we use each of the
losses to implement gradient surgery. We achieve this using a PCGrad implementation (Tseng, 2020)
based on Yu et al.’s "Gradient surgery for multi-task learning". PCGrad wraps the AdamW class and
takes in a list of gradients to perform a step; it accesses the gradients within the Optimizer class to
rectify conflicting gradients (Tseng, 2020).

Figure 2: Yu et al. demonstrate how their method addresses conflicting gradients for example tasks i
and j. As described previously, task i’s gradient is projected onto the normal vector of j’s gradient
using the formula gj = gi − gi·gj

∥gj∥2gj

3



4.5 Cosine Similarity

Our third extension incorporates fine-tuning with cosine similarity for tasks related to paraphrase
detection and understanding semantic similarity, as both require assessing how similar sentences
are. Inspired by "Sentence-BERT: Sentence Embeddings using Siamese BERT Networks" (Reimers
and Gurevych, 2019), we adopt cosine similarity as an integral part of our approach. We calculate
the cosine similarity between the pooler outputs of sentence pairs and introduce this measurement
just before the classification stage of our model. We employ different loss functions as a metric
for optimization such as cross entropy and mean squared error. Cosine similarity is a means of
measuring the similarity between sentence embeddings, and values range from -1 (exactly opposite)
to 1 (exactly the same). BCE measures the performance of classification models by outputting a
probability between 0 and 1. MSE measures the average squared difference between the estimated
values and the actual value.

4.6 Combining Extensions - Ensembling

As a last extension, we explore the use of ensembling, a common machine learning technique that
combines the predictions of multiple individual models into one final model to improve overall
performance and robustness. By aggregating the outputs of diverse models, the ensemble can
achieve better generalization and accuracy than any single model on its own. As our final model, we
ensembled three other high-performing ensemble models using an averaging approach. We perform
the prediction task on each of the three models to retrieve the logits of the prediction and then average
the three sets of logits to get the final prediction of the ensemble model.

In the first layer of ensemble models (Figure 3), one of the models is an ensemble of three multitask
classifiers trained separately on only one of the downstream tasks, similar to the baseline model.
Because each of these models is designed to be specialized in one of the downstream tasks, the
ensemble model directly uses the prediction of the appropriate model designed for the downstream
tasks, rather than combining the predictions to make one final prediction. The other two ensemble
models in the first layer use the aforementioned averaging technique to produce a final prediction.

Figure 3: Our final model contains 3 model layers. The first layer comprises models we previously
created combined into the second layer of ensemble models. The final layer is one ensemble model
combining the layer 2 models by averaging the predictions of each.

5 Experiments

5.1 Data

We use four datasets for the three downstream tasks:

1. Stanford Sentiment Treebank, containing single sentences from movie reviews with
categorical labels 0 (negative), 1 (somewhat negative), 2 (neutral), 3 (somewhat positive),
and 4 (positive). (Socher et al., 2013)

4



2. CFIMDB, containing extremely positive or negative movie reviews. These have binary
labels of "1" for positive, and "0" for negative.

3. Quora, containing question pairs with labels indicating whether one is the paraphrase of the
other. These are binary labels of 0 being "no", and 1 being "yes" (Fernando and Stevenson,
2009).

4. SemEval, containing sentence pairs with labels indicating semantic similarity, from 0
(unrelated) to 5 (related) (Agirre et al., 2013).

Task Dataset # train # dev # test labels
Sentiment Analysis CFIMDB∗ 1701 245 488 0/1
Sentiment Analysis Stanford Sentiment Treebank 8544 1101 2210 0-4

Paraphrase Detection Quora 141506 20214 40431 1/0
Semantic Test Similarity SemEval 6040 863 1725 0-5

Table 1: Summary of datasets ∗only used for baseline BERT model pretrained and fine-tuned using
only SST task datasets

5.2 Evaluation method

We use accuracy for the sentiment analysis (SST) and paraphrase detection tasks, and Pearson
correlation of the true similarity values against the predicted similarity values for the semantic test
similarity (STS) task.

5.3 Experiments

Unless indicated, we fine-tune using a batch size of 8, learning rate of 1e-5, hidden dropout probability
of 0.3, and train for 10 epochs. We use the AdamW with a weight decay of 0.0.

5.3.1 Results

SST Test Accuracy Paraphrase Test Accuracy STS Test Correlation Overall Test Score
0.538 0.822 0.573 0.716

Table 2: Leaderboard test results from model Ensemble 7 (see Table 5)

Model type
Accuracies/Pearson Correlation

SST Paraphrase STS Overall

Baseline: Sentiment Fine-tuned, Mulitask-Classifier 0.517 0.414 -0.098 0.461
Sentiment Pretrained, Mulitask-Classifier 0.391 0.609 -0.111 *

Sum Losses (3 Task Trained, Multitask-Classifier) 0.518 0.757 0.444 0.666
Gradient Surgery1 0.513 0.748 0.475 0.666

Cosine Similarity + MSE Loss * 0.590 0.559 *
Cosine Similarity + CE loss * 0.732 * *

Table 3: Dev set accuracies for the SST and Paraphrase tasks, and Pearson correlation for the STS
task, for each of our models. 1batch size = 4 to address memory error *combination not suitable for
this downstream task.

5.4 Summing the Losses

Our initial MTL approach of summing losses for all three downstream tasks significantly improves
overall performance from 0.461 to 0.666. This improvement is reflective of the model optimizing for
each of the tasks instead of just SST. SST performs better than we expected; even though additional
tasks are being evaluated, accuracy is not sacrificed.

5



5.5 Gradient Surgery

Implementing gradient surgery results in a much longer runtime (6 hours) because it requires pairwise
comparison of loss gradients at each timestep during training. Using individual losses allows for
an improvement in STS. Despite this long training time, we still see the same overall accuracy
as the previous approaches. This indicates that our model architecture itself is suboptimal, and
we focus on hyperparameter fine-tuning in section 5.7. Even though this method improves STS
performance to reach a Pearson correlation of 0.475, cosine similarity, expanded upon below, is a
more computationally efficient method of improving performance in this task.

5.6 Cosine Similarity

We see that using cosine similarity optimized by cross entropy loss did 0.142 points in better in terms
of accuracy in the paraphrase detection task. We also see that compared to to other methods besides
ensembling, using cosine similarity optimized by MSE had the highest pearson correlation.

5.7 Learning Rate

Devlin et al. (2019) experiment with different learning rates in the original BERT paper, so we
experiment with different learning rates on the sum of losses model.

Figure 4: Performance of each of the downstream tasks as learning rate changes

STS surprisingly improves significantly as we increase the learning rate, reaching a maximum
accuracy with a learning rate of 5e-5. This improvement could be a result of a higher learning rate
preventing the model from getting stuck at local minima. Paraphrase accuracy remains unaffected by
learning rate changes. This could be explained by many factors, including the data being relatively
non-noisy or a flat loss plateau. SST performance worsens with an increase in learning rate, indicative
of poor generalization or skipping over optima.

Learning rate Accuracies/Pearson Correlation
SST Paraphrase STS Overall

4e-5 0.513 0.752 0.545 0.679
5e-5 0.490 0.751 0.557 0.673

Table 4: Significant learning rate results: our best overall performance was achieved with a learning
rate 4e-5, and our highest STS accuracy was achieved with a learning rate 5e-5. SST and paraphrase
did not outperform the 1e-5 model.

These findings prompted us to use ensembling to examine the efficacy of using different hyperparam-
eters for each of the tasks, even if the models are shared.

5.8 Ensembling

We see that ensembling significantly improves the overall prediction accuracy. The worst performing
average-based ensemble model, Ensemble Model #4 overall still performs better than any of the
non-ensemble models that we experiment with. While the best overall performing ensemble model

6



Models ensembled Dev Accuracies/Correlation

Ensemble
Method

Model #1 Model #2 Model #3 SST Para STS Overall

Ensemble 1 Task-
Based

Sentiment
Classifier

Paraphrase
Classifier

Similarity
Classifier

0.517 0.813 0.400 0.676

Ensemble 2 Task-
Based

Multitask
Classifier,
LR: 1e-5

Paraphrase
Classifier

Multitask
Classifier,
LR: 5e-5

0.518 0.813 0.557 0.703

Ensemble 3 Average Multitask
Classifier,
LR: 1e-5

Paraphrase
Classifier

Multitask
Classifier,
LR: 5e-5

0.517 0.821 0.55 0.704

Ensemble 4 Average Cosine
Similarity +

MSE

Multitask
Classifier,
LR: 3e-5

Average-
Based Loss

0.523 0.759 0.521 0.681

Ensemble 5 Average Multitask
Classifier,
LR: 3e-5

Multitask
Classifier,
LR: 4e-5

Multitask
Classifier,
LR: 5e-5

0.520 0.762 0.598 0.693

Ensemble 6 Average Ensemble 2 Ensemble 3 Ensemble 4 0.521 0.819 0.575 0.709
Ensemble

7∗
Average Ensemble 2 Ensemble 3 Ensemble 5 0.528 0.820 0.587 0.714

Table 5: Dev set accuracies on each of the downstream tasks for the experimented ensemble models.
∗Our final model reported in Section 5.3.1 and our final dev leaderboard accuracies

does not have the best accuracy for each downstream task, this is a tradeoff to improve the overall
accuracy. For example, Ensemble Model #3, a combination of the highest performing models for
each downstream task, ensembled by averaging the predictions, has a minimally higher accuracy
for the paraphrase task than Ensemble Model 6. Even for the STS task where we see that Ensemble
Model #5, a combination of the overall best-performing models that we experiment with, has a better
STS score than Ensemble Model #7, we see that the difference is fairly minimal (0.009 difference in
accuracy), yet the overall accuracy is significantly higher.

6 Analysis

6.1 Impact of Cosine Similarity and Loss Functions

In this section, we analyze the impact of cosine similarity and a binary cross entropy (BCE) loss
function compared to mean square error (MSE) loss function for the paraphrase task. We also reason
why cosine similarity for the semantic similarity task performs well, equally comparable to our
ensemble of ensembles technique.

6.1.1 Cosine Similarity with BCE vs. MSE on Paraphrase

BCE is inherently suited for binary classification tasks (like paraphrase detection), as it models
the probability that a given input belongs to a particular class. Paraphrase detection is a binary
classification problem, where the two classes are "is a paraphrase" and "is not a paraphrase." As a
result, BCE directly aligns with the nature of the task.

Furthermore, when combining cosine similarity with BCE for tasks like paraphrase detection, the
gradient behavior is particularly advantageous. BCE provides gradients that are more meaningful and
discriminative for binary classification, as it penalizes incorrect classifications proportionally to the
distance from the correct classification boundary. This results in gradients that effectively guide the
model towards better separation of paraphrases from non-paraphrases. In contrast, MSE focuses on
minimizing the variance from the actual value rather than optimizing for the classification boundary,
which can result in slower convergence and less optimal solutions for binary classification problems.

7



The gradient behavior of BCE with cosine similarity provides a more direct and effective pathway for
models to learn the nuances of paraphrase detection, contributing to better overall performance.

We must note the importance of incorporating cosine similarity into BCE compared to just applying
BCE directly. Since cosine similarity emphasizes the geometrical closeness of embedding vectors,
this ensures that the learning process is sensitive to the subtleties of semantic meaning. Therefore,
when used with BCE, this approach not only determines whether two sentences are paraphrases but
does so by assessing how semantically close or distant the sentences are.

6.1.2 Cosine Similarity on STS

BERT generates embeddings that are contextually informed; the same word can have different em-
beddings due to how it is being used within sentences. This is highly advantageous for the sentiment
similarity task as it can capture subtle context-dependent differences in sentiment. Furthermore,
cosine similarity is highly aligned with the nature of the STS task. Since cosine similarity focuses on
the orientation of the vectors in the embedding space, rather than their magnitude, it can effectively
measure how sentences are related in terms of directionality in the embedding space, which correlates
well with having similar sentiments, regardless of other linguistic features.

6.2 Ensembling

Ensembling offers a robust approach to harnessing the collective strengths of multiple models, thereby
enhancing overall predictive performance. Our experimentation reveals promising results, indicating
that ensembling consistently outperforms individual models across all evaluated metrics.

In our ensemble modeling approach, we craft each ensemble model with distinct rationales tailored
to optimize predictive accuracy for specific tasks. Ensemble #1 employs a task-based technique,
leveraging fine-tuned multitask classifiers uniquely trained for each task. This method ensures that
predictions are directly derived from models attuned to each individual task. Similarly, Ensemble #2
adopts a task-based strategy, selecting the most accurate model for each task from our previously
experimented models. Ensemble #3 experiments with an averaging approach, using the same
models from Ensemble #2 to explore potential accuracy improvements. While it slightly enhances
the accuracy of the paraphrase task, there is a marginal decrease in sentiment classification and
semantic similarity accuracies compared to individual task-based ensembles. Ensemble #4 utilizes an
averaging strategy to leverage the diverse strengths of different loss functions. Meanwhile, Ensemble
#5 combines our overall top-performing individual models, capitalizing on their collective predictive
power. Ensemble #6 and Ensemble #7, extend our ensembling approach by creating ensemble models
from already ensembled models. Ensemble #7 exhibits the highest overall accuracy among the
ensemble models tested.

While ensembling incurs additional training overhead due to the necessity of training separate models
for each downstream task, the process of combining the predictions of each of the models during
testing is relatively inexpensive since the combined ensemble model itself is not trained. This cost-
effectiveness, coupled with the observed improvements in predictive accuracy, highlights ensembling
as a valuable technique for enhancing multitask model performance.

7 Conclusion

Our study highlights the efficacy of leveraging BERT for specialized tasks through fine-tuning
and advanced techniques. We observe substantial improvements in performance across sentiment
analysis, paraphrase detection, and semantic textual similarity tasks. Ensembling emerges as a
key strategy for enhancing model accuracy, with our iterative ensembling approach showcasing the
technique’s potential and significant improvements in overall and task-individual accuracy. Our
findings contribute to the ongoing exploration of ensembling techniques in NLP and underscore the
importance of leveraging BERT’s contextual understanding for specialized NLP tasks.

Our next steps would be to explore data preprocessing methods to improve SST accuracy, which
remained relatively unchanged across experiments. We would also conduct further pre-training or
use a more optimized pre-trained model like RoBERTa.

8



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task
learning over bert for news recommendation. In Findings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Samuel Fernando and Mark Stevenson. 2009. A semantic similarity approach to paraphrase detection.
Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Conference on Empirical Methods in Natural Language Processing.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, A. Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in Natural Language Processing.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2020. How to fine-tune bert for text classifica-
tion?

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

A Appendix

A.1 Summing vs averaging losses

Part of our initial exploration involved looking into how to combine the losses for the three downstream
tasks. One comparison we carried out was summing the losses versus averaging the losses

Learning rate Accruacies/Pearson Correlation
SST Paraphrase STS Overall

sum losses 0.518 0.757 0..444 0.666
average losses 0.514 0.753 0.444 0.664

sum losses, 0.4 dropout 0.505 0.752 0.456 0.665
average losses, 0.4 dropout 0.509 0.753 0.473 0.666
Table 6: Learning rate parameter tuning for model summing all losses

Our two methods of combining losses achieve similar overall performances. For both, we see that the
model was overfitting for the SST and STS tasks, with much higher training accuracies/correlations
than dev set accuracies/correlations.

Adjusting the dropout helps reconcile the difference slightly, but the average losses with 0.4 dropout
model still sees a final train correlation of 0.914 for STS compared to a dev set correlation of 0.473.

We choose to use sum over average for two reasons. Firstly, our research shows that summing
the losses was the most common way of combining losses for MTL tasks. Secondly, the dev set
accuracies also jump around across epochs for averaging, suggesting the model was not as stable.
Thus, we use the summing method to carry out hyperparameter tuning and prepare the ensemble
model.

9

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://api.semanticscholar.org/CorpusID:248779874
https://api.semanticscholar.org/CorpusID:248779874
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:990233
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2001.06782


A.2 Hyperparameter tuning

These are the numerical values for the graph shown in section 5.7.

Learning rate Accuracies/Pearson Correlation
SST Paraphrase STS Overall

2e-5 0.515 0.756 0.490 0.672
3e-5 0.515 0.749 0.516 0.674
4e-5 0.513 0.752 0.545 0.679
5e-5 0.490 0.751 0.557 0.673
6e-5 0.463 0.755 0.550 0.665

Table 7: Learning rate parameter tuning for model summing all losses

A.3 Task-dependent trained multitask classifiers

In terms of fine-tuning individual classifiers on the three downstream tasks, we see that consistently,
the accuracy of the downstream task improves significantly compared to baseline, since the individual
classifiers are trained solely on the dataset related to the downstream task. When combined into
the ensemble model, we see that the accuracy for each task is the same as the individual classifier’s
accuracy for that task. Since the classifier is directly using the prediction from the individual fine-
tuned classifier, it makes sense that the accuracy is the same as the individual classifier’s accuracy for
each task.

Model Accuracies/Pearson Correlation
SST Paraphrase STS

Sentiment Pretrain 0.391 0.609 -0.011
Sentiment Finetune 0.517 0.144 -0.098
Paraphrase Pretrain 0.144 0.657 -0.011
Paraphrase Finetune 0.224 0.813 -0.056

Semantic Similarity Pretrain 0.144 0.609 0.267
Semantic Similarity Finetune 0.120 0.593 0.400

10


	Key Information
	Introduction
	Related Work
	Approach
	MinBERT Model Architecture
	Baseline
	Multi-task Learning
	Gradient Surgery
	Cosine Similarity
	Combining Extensions - Ensembling

	Experiments
	Data
	Evaluation method
	Experiments
	Results

	Summing the Losses
	Gradient Surgery
	Cosine Similarity
	Learning Rate
	Ensembling

	Analysis
	Impact of Cosine Similarity and Loss Functions
	Cosine Similarity with BCE vs. MSE on Paraphrase
	Cosine Similarity on STS

	Ensembling

	Conclusion
	Appendix
	Summing vs averaging losses
	Hyperparameter tuning
	Task-dependent trained multitask classifiers


