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Abstract

With the advent of BERT, the capacity for NLP models to understand human
language has significantly improved, yet challenges remain in fine-tuning these
models for specific tasks without falling victim to issues such as catastrophic
forgetting. This research contributes to the ongoing exploration of how large
pre-trained language models like BERT can be effectively fine-tuned and adapted
for a range of NLP tasks, offering insights into multitask learning, data sharing
strategies, and the optimization of sentence representation methods for enhanced
model performance. My project investigates various extensions to maximize the
utilization of BERT on sentiment classification, paraphrase detection, and semantic
textual similarity. Notably, round-robin multi-task learning, cosine similarity fine-
tuning, shared relational layer for similar tasks, and the appropriate pooling method
enhance BERT’s performance when combined.

1 Introduction

Since the incipience of NLP as a field, computers have struggled to understand human language,
particularly language context. The advent of pre-trained language models like Bidirectional Encoder
Representations from Transformers (BERT) revolutionized the field of NLP by solving for numerous
tasks with state-of-the-art accuracy. Unlike prior language representation models, BERT can pre-train
deep bidirectional representations from unlabeled text to achieve a deeper sense of language context
and understanding. The goal of my project is to utilize BERT to classify sentence sentiment, predict
paraphrase pairs, and detect semantic textual similarity while sharing BERT word embeddings.

The state-of-the-art approach solves for multiple tasks via transfer learning, in which large language
models gain general semantic and syntactic knowledge from pre-training before being fine-tuned
on downstream tasks (Liu et al., 2019). However, this approach can be susceptible to catastrophic
forgetting (Mccloskey and Cohen, 1989) when fine-tuning on multiple tasks one after the other causes
the model to forget the weights learned from a previous task. Thus, this project implements multi-task
learning (MTL), which allows models to aggregate training samples over multiple tasks and share
knowledge together. Therefore, models can avoid catastrophic forgetting and tasks with smaller
dataset sizes can benefit from the linguistic knowledge gained in richer data environments.

In this project, I investigate how the BERT’s performance on three downstream tasks are impacted
by multi-task learning with task-specific data, cosine similarity fine-tuning, shared relational layers
between similar tasks, and [CLS] vs. MEAN pooling.

2 Related Work

Since the 1990s, multitask learning (MTL) (Caruana 1997) has been training paradigm in machine
learning research for improving a model’s generalization across related tasks. In recent years,
researchers have been utilizing multitask learning (Crenshaw 2020) to help alleviate some of the
most notorious obstacles in deep learning: large-scale data requirements and computation demand.
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Multitask learning leverages shared representations, which can improve data efficiency, reduce
overfitting through shared representations, and increase learning speed. Motivated by prior work on
multitask learning (Stickland et al., 2020), this project aims to experiment with multi-task models
that learn features general enough to enhance performance on tasks simultaneously. However, during
multitask learning, gradients from different tasks can conflict with one another that can lead to
detrimental results. BERT researchers have adopted MTL frameworks (Liu et al., 2019) to improve a
model’s encoding capabilities and tackled some optimization challenges through gradient surgery
(Yu et al., 2020). Gradient surgery employs projecting conflicting gradients (PCGrad), which projects
each conflicting gradient onto the normal plane of the other, preventing the interfering components
from being applied to the network.

In Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, Reimers and Gurevych
(2019) modify a pretrained BERT network by using siamese and triplet network structures to derive
semantically meaningful sentence embeddings, which are compared by their cosine similarity. To
generate sentence embeddings, Reimers and Gureych use MEAN pooling rather than using the [CLS]
token embeddings. They also utilize cosine similarity fine-tuning, which helps compare sentence
embeddings and determine their similarity. Their SBERT model outperforms other sentence=level
models on STS and other transfer learning tasks, and I'll be taking after some of their approach in
this project.

3 Approach

My project first evaluates upon the pre-trained minBERT and its SST-fine-tuned model. Then, in
the spirit of transfer learning, I evaluate the model for paraphrase detection and semantic textual
similarity (STS). The bulk of this research focuses on fine-tuning the model for paraphrase detection
and semantic textual similarity by implementing round-robin multitask learning, shared relational
layer for similar tasks, MEAN pooling, and cosine similarity fine-tuning.

3.1 Single-Tasking Approach

In this single-tasking approach, I used the pre-trained SST-fine-tuned minBERT model and tested
how it generalized to the three tasks individually. For sentiment classification, I generated BERT
embeddings, applied a dropout layer, and used a linear layer to output logits for the five sentiment
classes. For the paraphrase detection and semantic textual similarity tasks, I generated BERT
embeddings for both inputs, applied dropout to them, concatenated their embeddings, and used a
linear layer to output a singular logit. For loss functions, I used cross entropy loss for sentiment
classification, binary cross entropy loss for paraphrase detection, and mean squared error loss for
semantic textual similarity. Since this is a single tasking approach, I computed gradients of each of
the tasks’ losses individually.

3.2 Round-Robin Multitask Fine-tuning

To generalize better across tasks, I decided to experiment with a round-robin multitask learning
approach. Following in the footsteps of Bi et al, I create a multitask loss function that is the sum of
the losses from each of the three tasks.

Ltotal = Lsent + Lpara + Lsts (1)

In each training epoch, I utilized the pre-trained BERT weights, cycled through a batch of SST,
paraphrase, and STS at a time, calculated losses for each task, summed the losses, and computed the
gradient of the total loss. Overall, this round-robin procedure ensures that the model gets exposure to
datasets from all tasks.

3.3 Shared Relational Layer for Similar Tasks

Since paraphrase detection and semantic textual similarity are both tasks evaluating the similarity of
sentence pairs, it’s possible that using a shared relational layer between them could improve their
overall learning. Especially since semantic textual similarity’s STS dataset is much smaller than that
of paraphrase detection, sharing a relational layer could STS learn from the other rich data source. I



shared a nonlinear Leaky ReL.U layer between them, with hopes that exposure to the richer Quora
dataset would improve semantic textual similarity learning.

3.4 Weighted Multitask Fine-tuning

In my experiments integrating the shared relational layer into the round-robin multi-task learning
model, results for paraphrase detection and semantic textual similarity improved, at the cost of
sentiment classification. In attempt to allow the features learned from sentiment classification to
feature more prominently alongside those from the shared relational layer, I decided to experiment
with weighted multi-task learning with a few variations on the multitask loss function:

Ltotal =112 Lsent + Lpara + Lsts (2)
Ltotal =1.25% Lsent + Lpara + Lsts (3)

3.5 Cosine Similarity Fine-Tuning

One of my enhancements to minBERT is introducing cosine similarity to my fine-tune on the
paraphrase detection and STS tasks. Cosine similarity measures the cosine of the angle between
two vectors in inner product space, and it is a commonly used similarity metric in machine learning.
Cosine similarity returns values from -1 (completely different) to 1 (the same).
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For each pair of embeddings, I calculated the cosine similarity between them. Then, I concatenated
the cosine similarity value with the sentence embeddings to form a combined feature vector. I applied
dropout to this feature vector and then passed it through a linear layer to produce a single logit for
paraphrase detection and semantic textual similarity.

3.6 Pooling Methods

A common approach for BERT is to use the special classification token [CLS] embedding; however,
this is often not a good summary of the semantic content of the input. Thus, to form a more
representative sentence-level embedding, I experiment with MEAN pooling, which takes the average
of the word embedding in the sequence.

4 Experiments

4.1 Data

* For sentiment analysis classification, I use movie review data from the Stanford Sentiment
Treebank (SST) dataset and CFIMDB dataset. The SST dataset consists of 11,855 sentences
extracted from movie reviews that were parsed with the Stanford parser. The dataset includes
215,154 unique phrases, with each phrase labeled as negative, somewhat negative, neutral,
somewhat positive, or positive. The CFIMDB dataset consists of 2,434 highly polar movie
reviews. Each review has a binary label of negative or positive.

* For the paraphrase detection task, I utilize the Quora dataset, which has 400,000 question
pairs with binary labels of whether particular pairs are paraphrases of one another.

 Lastly, I use The SemEval Benchmark dataset for semantic textual similarity, which has
8,028 different sentence pairs of varying similarity on a scale of 0 (unrelated) to 5 (equivalent
meaning).

4.2 Evaluation method

Paraphrase detection and sentiment classification are evaluated based on accuracy using the number
of correct predictions. Since the STS label is continuous, I evaluate the semantic textual similarity
task using the Pearson Correlation coefficient, a value between -1 and 1 that measures the linear
correlation between true and predicted labels.



4.3 Experimental details

All experiments are implemented in Pytorch v2.2.1 and conducted on a workstation with one A100
or V100 Nvidia GPU. Unless otherwise specified, each experiment is run in 5 epochs with a fine-tune
learning rate of le-5 and a hidden-layer dropout probability of 0.3. All models use the AdamW
optimizer. Due to limited computing resources, I performed hyperparameter tuning on my models
sporadically. See results below for more experimental details.

4.4 Results

4.4.1 Baseline Results

Table 1: Dev accuracies of baseline BERT model (pretrain and fine-tune) vs. Benchmarks

Model type Sentiment (SST) Sentiment (CFIMDB)
Accuracy | Benchmark | Accuracy | Benchmark
Pretrain default 0.416 0.390 0.788 0.780
Fine-tune default 0.522 0.515 0.963 0.966

Above is the dev set performance on the baseline minBERT model fine-tuned for sentiment class-
fication, alongside the benchmarks from the project handout. My results are very similar to the
benchmarks, suggesting the likely "correctness" of this implementation.

4.4.2 Single-task Learning Results

Table 2: Dev accuracies from single-tasking approach

SST Acc | Para Acc | STS Corr
0.316 0.640 0.067

The single-task BERT model performs sub-optimally. However, the accuracy for paraphrase detection
was higher than I had anticipated, likely due to the larger size of the Quora dataset.

4.4.3 Multitask Learning Results

Table 3: Dev accuracies from multitask learning

Pooling | SST Acc | Para Acc | STS Corr
CLS 0.514 0.706 0.381
MEAN 0.511 0.728 0.383

As expected, multitask learning results are much better than the single-tasking results across all
tasks. Since the SST and STS datasets are smaller, the model likely benefited from exposure to
more data and more diverse data, enhancing its capacity to generalize to new, unseen data. Overall,
this improved multi-task model performance over the single-task model shows the transfer learning
potential among these three tasks.

Between the pooling methods, the differences are mostly trivial except for paraphrase detection —
MEAN pooling outperforms [CLS] pooling. This is expected since paraphrase detection is the most
complex of the tasks and likely benefits from the more comprehensive representation of a sentence
that MEAN pooling provides.

4.4.4 Cosine Similarity Fine-tuning + Multitask Learning Results

Table 4: Dev accuracies from multi-task learning and cosine similarity fine-tuning

Pooling | SST Acc | Para Acc | STS Corr
CLS 0.513 0.724 0.348
MEAN 0.525 0.727 0.365




Next, I experimented with multi-task models by fine-tuning them with cosine-similarity and changing
their pooling methods. Cosine similarity fine-tuning improves paraphrase detection dev accuracy
across both pooling methods. Across all three tasks, mean pooling outperforms CLS pooling as
expected. This suggests that averaging over all the BERT word embeddings is more effective than
using the [CLS] token. One hypothesis is that MEAN pooling better encapsulates the essence of
longer sentences where semantic meaning is more spread out across the sequence.

4.4.5 Shared Relational Layer + Cosine Similarity Fine-tuning + Multitask Learning Results

Table 5: Dev accuracies MTL, shared relational layer and cosine similarity fine-tuning

MTL Pooling | Learning Rate | Epochs | SST Acc | Para Acc | STS Corr
Round-Robin MEAN le-5 5 0.508 0.720 0.473
Round-Robin MEAN 2e-5 10 0.503 0.754 0.493
Weighted (1.12) | MEAN le-5 5 0.516 0.709 0.408
Weighted (1.25) | MEAN le-5 5 0.513 0.712 0.419

The integration of a shared relational layer between the paraphrase detection and STS tasks brought
dramatic improvements in the STS task, which was previously suffering from a scarcer dataset. This
confirms my hypothesis that bringing correlations together from the Quora and STS data into a
shared layer would boost performance. However, as expected, the model did prioritize these two
similarity tasks at the slight expense of sentiment classification performance. The optimal feature
representations gained from this shared layer of similarity detection was likely sub-optimal for
sentiment classification, which is a different type of task that focuses on detecting the sentiment or
emotion in a text.

To address the decrease in SST dev accuracy from integrating a shared relational layer, I decided to
run two experiments with a weighted multi-task learning approach in which I scaled the SST loss by
a factor of 1.12 and 1.25 before adding it to my multi-task loss (See Section 4.4). While this weighted
multi-task approach did increase the SST accuracy score, it did so at a larger expense of both of the
other tasks. Interestingly, the weighted multi-task approach in which SST loss was scaled by a factor
of 1.12 worsened the accuracies of paraphrase detection and STS more than a factor of 1.25 did.

Since the round-robin multi-task model with a shared relational layer and cosine similarity fine-tuning

generated the best results thus far, I decided to tune its hyperparameters in another experiment.

Increasing the learning from le-5 to 2e-5 and the number of epochs from 5 to 10 caused a slight
decrease in SST accuracy but notably increased in paraphrase detection (+0.34) and STS (+0.20)
dev accuracies. I was slightly concerned that increasing the number of epochs would lead to more
overfitting, but that didn’t seem to happen. I suspect that the combination of a higher learning rate
and more training epochs likely helped the shared relational layer mature. The higher learning rate
could have also benefited cosine similarity fine-tuning by helping the model more efficiently adjust
the direction of embedding vectors.

5 Analysis

Table 6: SST Sample of Erroneous Predictions

Sentence True | Predicted
It’s a lovely film with lovely performances by Buy and Accorsi. 4 3
Uses sharp humor and insight into human nature to examine class conflict, adolescent 3 4
yearning, the roots of friendship and sexual identity.

Nothing’s at stake, just a twisty double-cross you can smell a mile away — still, the derivative 2 3
nine queens is lots of fun.

Entertains by providing good, lively company. 4 3

No one goes unindicted here, which is probably for the best. 1 2

Table 6 showcases a sample of some of my model’s erroneous predictions. For the sentiment
classification task (scale from O (negative) to 4 (positive)), many of the incorrect predictions are off
by 1 class. It seems the model hasn’t completely learned the nuances of the extent of a positive or




negative sentiment. For instance, positive reviews with a label of 4 such as "It’s a lovely film with
lovely performances..." and "Entertains by providing good, lively company" receive a prediction of 3
(somewhat positive). However, in other examples such as "Uses sharp humor and insight into human
nature to examine class conflict, adolescent yearning, the roots of friendship and sexual identity"
where the label is 3 (somewhat positive) and the model predicted it to be a 4 (positive), some people
might even agree more with the model’s prediction. Sentences that are labeled as 2 (neutral), however,
seem to be more ambiguous though, which perhaps is not necessarily at fault of the model but rather
the ambiguous design of the task’s labeling system from a scale of 0 to 4. In the example, "Nothing’s
at stake, just a twisty double-cross you can smell a mile away — still, the derivative nine queens is
lots of fun", the former half indicates neutral indifference while the latter half is a more positive
addition. This receives a label of 2 (neutral), perhaps because a combination of indifference and slight
positive still balances out to a neutral ranking. However, the model likely interprets the phrase "lots
of fun" as somewhat positive, which explains its prediction of 3. The last example in Table 6, "No
one goes unindicted here, which is probably for the best" is a more difficult sentence to understand
the sentiment of. The sentence contains a double negative and expresses negative sentiment in a
rather ironic manner; it suggests that everyone being indicted would be a positive outcome. The
model predicted this sentence to be a 2 (neutral), which is definitely too generous of a ranking, but
not surprising since irony is difficult to learn.

Table 7: Paraphrase Detection Sample of False Positives

Sentence 1 Sentence 2 Is Paraphrase | Predicted
What can you get as a customer of Star | What are some ways to register with Star 0 1
Alliance? Alliance?
"Which is correct grammar: I graduated | "Grammar: What are the most common 0 1
from university of xxxx or I graduated | English language and grammatical errors
from the University of xxxx? Do I need | made by people from India?"
"the" here?"
Why do I fall asleep when sitting? Why do I keep falling asleep? 0 1
Table 7 exhibits a sample of false positives from the paraphrase detection task. A common theme
among the false positives is interpreting similar sentence structure as an indication of a paraphrase.
The first and last example are both questions, and each of their sentence pairs share similar syntax
and topics with one another. The first question is about Star Alliance and the other question is about
falling asleep. However, the model seems to miss out on important details that determine the sentence
pairs to not be paraphrases. In the sentence pairs about grammar, the similarities in punctuation such
as the colon seem to lead the model to think these questions are paraphrases when they are not.
Table 8: Paraphrase Detection Sample of False Negatives
Sentence 1 Sentence 2 Is Paraphrase | Predicted
Where can I find statistics for a certain | I'm looking for disease stats, where 1 0
disease? should I search?
What are some signs that you’re in a | How do I know if my relationship is 1 0
toxic relationship? harmful?
Can you recommend a good productivity | What’s a productivity app you would 1 0
tool? suggest using?

Table 8 exhibits a sample of false negatives from the paraphrase detection task. It seems that some of
the same reasons for the model’s false positives are also responsible for its false negatives. Overall,
the model seems to be conflating syntax for semantics. In Table 8, it appears the model interprets
different sentence structure or different question words as indications of not being paraphrases. It’s
also possible that the model is not picking up on synonyms as well, which is also being used in these

non

sentence pairs (i.e. "statistics" and "stats", "toxic" and "harmful", "tool" and "app").




6 Conclusion

In this project, I investigated how multi-task learning and fine-tuning techniques can improve the
efficacy of BERT on sentiment classification, paraphrase detection, and semantic textual similarity.
My results showed that the round-robin multi-task model generalizes better to new, unseen data than
the single-task model. Cosine similarity proved to be a useful for fine-tuning model capacity to
detect sentence similarity. The improved results that MEAN pooling brought over the [CLS] token
embedding for a more complex task like paraphrase detection showed the importance of choosing
the appropriate sentence representation. Notably, implementing a shared relational layer between
paraphrase detection and semantic textual similarity allowed the model to better learn from the richer,
shared data environment. Overall, my best model, with an overall score of 0.668 on the dev and test
set, utilizes round-robin multitask learning, cosine similarity fine-tuning, and shared relational layer
for similar tasks. One of the primary limitations in my process was limited computing resources,
which prevented me from further experimenting with different dropout rates, learning rates, epochs,
and batch sizes. In future work, I am interested in exploring the effects of additional domain-adaptive
pre-training on my model.
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