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Abstract

With the rapid expansion of LLLM service providers and the growing number of
open-source models, each with unique costs and resource demands, optimizing
their utilization has become increasingly critical. In this study, we present a
method to enhance resource efficiency—both in terms of cost and computational
requirements—by aligning queries with the most cost-efficient model capable of
adequately answering them. Our approach entails predicting the likelihood that
each model from a set of models will effectively handle a given query. Subse-
quently, we route the query to the model that minimizes a predefined cost function,
which can encompass various factors such as cost, computational requirements,
environmental footprint, and more. Consequently, we facilitate substantial cost
reduction by leveraging more economical models whenever possible while still
achieving satisfactory task performance. We showcase the efficacy of our approach
on two datasets and demonstrate its superiority in terms of computational savings
compared to a recently proposed method that sequentially queries a set of models.
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2 Introduction

The rapid expansion of Large Language Models (LLMs) across various applications has led to an
increase in the availability of LLM service providers, including OpenAl, Google, and AI21, among
others. Additionally, there has been an explosion of open-source pre-trained models that are publicly
available for use. The prevailing practice involves selecting a single model somewhat arbitrarily and
using it consistently. However, this approach results in considerable inefficiencies, squandering cost
and computing resources |Cos| (2023)); Bender et al.[(2021); |Wu et al.| (2022), especially considering
the diverse nature of queries, many of which could be adequately addressed by smaller, less resource-
intensive, and cheaper models. Moreover, this approach engenders a significant environmental
footprint due to the suboptimal allocation of compute resources |Wu et al.[|(2021). Additionally, the
high cost of accessing state-of-the-art models limits the widespread adaptation of these techniques
to many individuals and businesses who cannot afford to use expensive APIs, although, in practice,
many use cases can be effectively managed by more affordable models, with only a limited subset of
queries requiring the usage of more expensive models.
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This situation indicates the need for an efficient approach to leverage multiple LLMs, routing queries
to the most appropriate model that minimizes resource usage and cost while ensuring high quality
responses. In this work, we address this challenge by developing an efficient model router capable of
accurately estimating which models can satisfactorily answer a given query and selecting the one that
minimizes a cost function defined by a user.

The financial cost of accessing an LLM from a provider is typically related to factors such as the
length of the query, the length of the response, or a fixed price per query. Our project primarily
focuses on resource usage optimization. Still, there are many ways to use LLMs more efficiently.
Broadly, LLM usage cost reduction strategies can be categorized into three main approaches:

1. Model Size Reduction: Techniques like knowledge distillation (Gu et al.| (2024) can be used
to train a model with fewer parameters, requiring less compute power while maintaining
similar performance. However, this method often entails a resource-intensive training phase,
and the resulting model may be outperformed by the original model.

2. Prompt-related Optimization: This approach involves fine-tuning the prompt to optimize
usage. Prompt engineering White et al.| (2023) alters the prompt to improve model output
performance, while other methods focus on concatenating multiple prompts to make calls
to the model more efficient. However, this can be challenging, especially when faced with
diverse queries.

3. Model Selection: This approach aims at designing sophisticated systems to optimize the
selection of a model to use for a given query. For example, Chen et al.|(2023) introduced
the concept of LLM cascade, where models are sequentially queried, returning the response
of the first model that adequately responds to the query.

In this work, we focus on approach (3) since (1) may compromise the accuracy of powerful models
when downscaled, while approach (2) requires intricate prompt manipulation.

We consider a scenario where we have access to IV different trained models, each with an associated
cost reflecting the computation required and environmental impact. Our proposed approach aims
to minimize resource usage while ensuring satisfactory responses. An additional advantage to our
method is that it disentangles users from specific models, improving service efficiency. For instance,
if a particular model is unavailable due to network issues or high demand, our method can seamlessly
route the request to another model without user intervention. Furthermore, our method can inform
users when none of the models can provide a good answer, prompting them to explore alternative
solutions and avoiding unnecessary computational resource usage.

Suppose we can accurately estimate which model can answer a given query and select the one with
the least cost. In that case, it becomes evident that this approach will yield the highest accuracy with
the least resource usage. Therefore, in theory, this approach is the only one capable of producing
optimal results in minimizing computation while maintaining accuracy. By assuming access to the
models for an initial training phase, we show that it is possible to train a predictor that can estimate a
model’s likelihood of satisfactorily answering a given query. Then, we show that using such predictor
and routing queries to models with minimal cost has the potential for significant computational
savings with minimal impact on accuracy.

For instance, on the challenging Tweet eval dataset, the proposed predictor achieves up to 72%
accuracy on test data. When used to route queries, it reduces the average cost per query by a factor
of 5, while achieving accuracy that is 2% higher than the best single model, demonstrating its high
potential for practical use.

3 Related Work

Much of the existing prior work focuses on enhancing the utilization of a single model. For example,
Jia et al.| (2018)); IDao et al.|(2022); |Dao| (2023)) concentrate on utilizing hardware accelerators more
efficiently. Other works, such as|Bai et al.|(2021); Xiao et al.| (2023), propose quantization methods
to expedite inference and training, thus enabling more efficient execution.

Another line of work aims to improve accuracy, thereby enhancing efficiency. Prompt engineering is
a notable example, with approaches like chain of thought Wei et al.| (2023)) and few-shot prompting
Brown et al.|(2020) focusing on improving accuracy through prompt manipulation.
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Figure 1: General system overview. Given a prompt, the system estimates the probability that each of
the models will answer it correctly. Based on the cost associated with each model and the estimated
scores, the system selects a model likely to provide a satisfactory response with minimal cost to the
user.

However, our work primarily focuses on efficiently utilizing a set of models without altering prompts.
This approach maintains a clean interface with the user, requiring no changes in interaction with the
model. Theoretically, this approach could achieve better performance than individual models, as
combining different models could cover a broader range of queries.

In|Chen et al.|(2023), the authors proposed an approach called LLM cascade, which sequentially calls
a series of increasingly powerful and expensive models to respond to a query. The system returns the
first adequate response based on a pre-trained scoring function that assesses the quality of an answer
given a prompt. The results indicate significant savings, with up to a 98% reduction in inference
cost compared to the best individual API. Alternatively, it demonstrates potential performance
improvement by up to 4% while maintaining the same cost. However, this method may be inefficient
for some queries, as it generates unnecessary calls to some models in the set. This inefficiency
motivates us to develop a more efficient approach, where we first estimate which models can answer
the query and then query the cheapest one.

4 Approach

We propose a model router that, given a query, routes it to a specific model and returns the model’s
reply. To select which model to send the query to, the router uses a prediction neural network pg,
which takes the query ¢ as input and estimates the likelihood that each model, out of a given set of N
models, can reply correctly. Specifically, [pg(g)]; estimates the probability that the i-th model will
answer the query correctly. Given py(q), the router selects a model index ¢ that minimizes a cost
function:

i* = argming;
3

s.t. [pa(q)]i > 7

In this formulation, ¢; represents the cost associated with using the i-th model, and 7 is a threshold
determining the minimum confidence level required for a model to be selected. We chose the cost
function to be linear in the number of model parameters, i.e., ¢; = an;, where n; is the number of
parameters in the i-th model. We set a such that the cost of the largest model is equal to 1. The
method is summarized in Figure[T]

For the predictor py(q), we first encode the input query using the sentence encoder proposed in
Ni et al.|(2021). This results in a 768-dimensional vector summarizing the query. We then use a
classification neural network comprising two hidden layers of sizes 256 and 128, and an output layer
of size N (the number of models in our set). ReLLU activations are applied at the output of each
hidden layer. During training, we observed that freezing most of the encoder layers and training only
the last two layers and the classifier reduced overfitting and provided optimal results.

For training, we assume access to the /N different models, which we can query to train pg. The
training procedure for py is summarized in Algorithm 1| We iterate over a dataset and send each



query to all available models, recording which model answered correctly (f in the algorithm). We
then pass the query to py, which estimates which of the N models will respond correctly. We employ
binary cross-entropy loss between the model estimates and the actual vector, indicating which models
responded correctly. Finally, we backpropagate and update the weights of the predictor 6. At the end
of this process, the model py can estimate, given a query, which models from the list can answer
the query correctly. It’s important to note that we utilize datasets with unique labels as output (e.g.,
sentiment analysis), where the expected output of each model is one word converted to an index.

Algorithm 1 Model Training Algorithm

Require: N models {m;}i=V, Predictor Neural Net py
Require: Dataset containing queries and labels
1: for all batch in dataset do

22 £4=0
3:  for all (query, label) in batch do
4: fori =1to N do
~ _ [1 if m;(query) == label
> 16) = {0 otherwise

6 end for

7 ¢+ = BinaryCrossEntropyLoss(pg(query), f)
8: end for

9 Backpropagate and update 6

0:

10: end for

S Experiments

We conducted several experiments to evaluate the proposed method and compared it with various
baseline approaches. We selected datasets representing tasks where the model is expected to produce
a single output corresponding to a label. This selection facilitated precise metric computation and
method comparison. We evaluated the following approaches:

1. Our proposed approach: The proposed model router routes the query to the model with
minimal cost.

2. Single model: Employing a single model for all queries.

3. Cascade: The method proposed in|Chen et al.|(2023)), which trains a scoring neural network
to determine if an output is the correct answer to a query. For the scoring function, we used
the same architecture as our predictor. Instead of inputting only the query, we input the
concatenated query and model response. The model was trained to estimate if the response
is correct (see Appendix). Then, the router sequentially queries the models, starting from
the smallest, and returns the output of the first good response as determined by the scoring
function.

For the set of available models, we set N = 3 and utilized the flan-T5 family Chung|(2022)): small,
base, and large, all accessible on Hugging Face at https://huggingface.co/collections/
google/flan-t5-release-65005c39e3201ff£885e22fb. We opted not to employ the llama-2
Hugo Touvron! (2023) family of models due to the significant compute resources it required, which
were unavailable to us.

5.1 Data

As discussed in Section [5] for evaluation, we are utilizing labeled datasets. For the following datasets,
before querying the models we added the prefix: "Please determine the sentiment (choose output
from: positive, negative or neutral) in the following: ", and the suffix:". Sentiment:". We tested our
results on two datasets:

1. SST2 dataset from Hugging Face, available at https://huggingface.co/datasets/
sst2/. This is a corpus with fully labeled parse trees that allows for a complete analysis
of the compositional effects of sentiment in language. It was parsed with the Stanford
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Figure 2: Training convergence of the prediction model utilizing a set of N = 3 flan-T5 models on
the Tweet eval dataset.

parser and includes a total of 215,154 unique phrases from those parse trees, each annotated
by 3 human judges. It has 67.3K, 872, 1.82K samples for training, validation and testing
(respectively).

2. Tweet eval dataset from Hugging Face, available at https://huggingface.co/
datasets/tweet_eval/| This dataset encompasses seven heterogeneous tasks, all framed
as multi-class tweet classification. All tasks have been unified into the same benchmark,
with each dataset presented in the same format and with fixed training, validation, and
test splits. We utilized the sentiment analysis task for our model. It has 45.6K, 2K, 12.3K
samples for training, validation and testing (respectively).

5.2 Evaluation method

We are primarily interested in the tradeoff between compute and performance, aiming to minimize
compute while maintaining a satisfactory level of accuracy. To analyze this, we generate a plot where
the z-axis represents the cost, and the y-axis represents the accuracy. We position each method on
this plot based on its computed average accuracy and cost per prompt, as calculated on the test set of
each dataset.

5.3 Experimental details

We followed the approach described in SectionE], utilizing N1 et al.[(2021) base model as an encoder
to encode the query. On top of this encoder, we added a two-hidden-layers classification model.
During training, we freeze all the encoder layers except for the last two. Therefore, we trained only
the last two layers of the encoder and the classifier. We used the AdamW optimizer Loshchilov and
Hutter| (2019) with a learning rate set to 5 x 1073, A batch size of 64 was used, and training was
conducted for 20 epochs. All models were trained on a single A5S000 GPU.

Figure[2]illustrates the training process when training the predictor on the Tweet eval dataset. The
final prediction accuracy observed is approximately 72%. Figure [3| depicts the evolution of the
confusion matrix of the predictor throughout the training process illustrating the improvement in its
estimation capabilities.

In Figure fi] a comparison of different methods on the cost vs. accuracy graph is presented. It is
evident that both the proposed approach and the cascade approach outperform any single model.
While the cascade approach slightly outperforms our method in terms of accuracy, its associated cost
is significantly higher. This outcome was anticipated due to the unnecessary calls to models that
cannot answer the query. Additionally, our approach is the only one that can inform the user when it
believes no model can respond to the query satisfactorily. For the cascade approach to confirm the
absence of a valid response, it must call and access the models, resulting in unnecessary calls.

6 Analysis

As depicted in Figures [d and [5] our proposed model achieves improved accuracy while requiring
significantly less computation. For example, on the Tweet eval dataset, we achieved a fivefold
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Figure 3: Evolution of the confusion matrix for the predictor on the validation set of Tweet eval during
training. 1 indicates correct model predictions for a query, while 0 indicates incorrect predictions.
Predictions from multiple models are aggregated.

Cost vs Accuracy on tweet_eval dataset

0.54+

0.52 1

Cascade

@urs

o
U
=)

Jflan-th-large
¢

o
>
(o]

‘\an-ts-base

Accuracy

o
>
(o)}

glan-t5-small

©
>
~

0.42+

0.40-

0.2 0.4 0.6 0.8 1.0
Cost

Figure 4: Comparison of Cost vs. Accuracy on the Tweet eval test set. The x-axis represents the
average cost per query, while the y-axis indicates accuracy.
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Figure 5: Comparison of Cost vs. Accuracy on the SST2 test set. The x-axis represents the average
cost per query, while the y-axis indicates accuracy.



reduction in computing while improving the accuracy of the best model by 2%. It is noteworthy that
our approach enhances the performance of the best model.

Upon closer examination of some outputs, we observed cases where smaller models provided correct
answers while larger models failed to do so. Our estimator successfully predicted this scenario (or at
least predicted that the less expensive models would likely provide correct answers), allowing the
router to select these smaller, less expensive models. For instance, the tweet "RT @user Can I politely
suggest that we all stop using the term ’alt-right’ and use other, more precise words." is classified as
neutral, with both the small and base models reaching this classification. However, the larger model
classified it as negative, possibly due to overcomplicating the sentence’s meaning.

Interestingly, we encountered instances where dataset labels appeared to be incorrect, negatively
affecting the performance of larger models despite them providing the correct answers. For example,
the tweet "Grayson Allen just gave dude such a sick move" is labeled as negative, though we think the
label should be positive (in slang usage). While the larger model correctly classified it as positive, the
other models classified it as negative. Our predictor indicated that all models could respond correctly,
leading us to query the first model, which provided the correct result (based on the given labels, but
not correct in general).

On the easier SST2 dataset, our model did not outperform the best-performing model in terms of
accuracy. Upon closer examination, we found no instances where smaller models were correct while
larger ones were wrong, limiting the potential for increased accuracy. Nevertheless, our proposed
approach achieved similar accuracy with a fivefold reduction in compute, demonstrating significant
computational savings.

7 Conclusion

In this project, we tackled the challenge of efficiently utilizing a diverse set of open-source models,
each with distinct costs and resource requirements. Our proposed approach introduces a novel method
for efficiently leveraging a set of LLMs. By employing a prediction model to estimate the likelihood
of each model in the set responding accurately to a query, we route the query to the model that
minimizes a cost function.

We conducted thorough analyses on two datasets, demonstrating significant compute savings and
improved performance. For instance, on the Tweet eval dataset, our approach reduced compute
requirements by 80% compared to running Flan-T5-large alone while achieving a 2% increase in
accuracy through the utilization of multiple models. When comparing our method with the cascade
approach, we observed that although cascading can yield higher accuracy, it also incurs substantially
higher compute demands, making our approach more practical in real-world scenarios.

Exploring more intricate cost functions that incorporate factors such as service provider fees could be
interesting for future endeavors. Extending this approach to incorporate API calls beyond open-source
models presents another important and interesting extension. Moreover, developing advanced routers
capable of aggregating responses from multiple models to enhance accuracy and dynamically altering
prompts for greater efficiency could further enrich this line of research.

Another potentially interesting future work would be to combine this approach with the approach
presented in (Chen et al.[(2023). In this case, we will first estimate which models can answer the
query; then, if multiple models can, we will sequentially query them and return the first one that
receives a high score based on a pre-trained scoring function.
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A Appendix

A.1 Score Function Training

To train the score function from |Chen et al.| (2023), we used the same architecture as our model.
The input is the answer concatenated to the query and the output is a single number estimating the
probability that the response is correct. In Figure [f] we demonstrate the training process of this
function.
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Figure 6: Training convergence of the scoring model for the cascade approach on the tweet eval
dataset.
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