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Abstract

Current preference-tuning practices treat user preferences as a monolith and tune
LLMs to one large set of preferences. However, not all users have the same
preferences for how an ideal language model should respond. Chat assistant
providers sometimes offer ways to write a system prompt to customize the language
model to a user’s needs. This assumes the user already knows exactly what
they want and will take the time to write a comprehensive explanation. In this
work, we present 20 Questions, an algorithm for efficiently adapting LLMs
to individual user preferences with minimal user effort. 20 Questions selects
pair-wise responses to user prompts that offer maximal information gain on user
preferences when selected by the user. With only 20 preference selections from the
user, we adapt a 7B parameter language model to individual preferences.

1 Key Information to include

• Mentor: Kaylee Burns (CA), William Held (external), Omar Shaikh (external)
• External Collaborators (if you have any): NA
• Sharing project: NA

2 Introduction

Language models are increasingly deployed as conversational assistants that interact with users
directly. This is largely due to the alignment procedure, which aligns language models with human
preferences, from instruction following to rejecting harmful requests. However, currently, alignment
is a one-size-fits-all solution. Models undergo RLHF Ouyang et al. (2022) or DPO Rafailov et al.
(2024) on large datasets of "human preferences." However, not all humans have the same preferences.
Individuals have different preferences within culture, values, style, and other aspects of LLM
interaction. This one-size-fits-all approach does not accommodate individual user preferences.

Unfortunately, current methods cannot reasonably support individualized preferences. Preference
tuning using RLHF and DPO is typically done on the order of tens of thousands of preference pairs.
It is impractical to collect such data for a single user. Instead, some chat assistant providers offer the
ability to customize a system prompt for each user. This, however, assumes that the user will take
the time to write a system prompt, know their preferences exactly, and know how to articulate them
to the language model best. LLMs are incredibly sensitive to minor changes in the prompt Lu et al.
(2022), and this personalization’s success depends on untrained individual users’ prompt engineering
skills. An ideal solution would be able to surface user preferences and be a lightweight intervention
that requires limited user effort.

We introduce 20 Questions, an algorithm for active learning user preferences with limited feedback.
20 Questions generates many possible completions to a user query and picks the optimal pairwise
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Figure 1: Currently, individual personalization for LLMs is done through writing a system prompt.
This assumes the user knows exactly what they want from the model and that they can concisely
express it in a prompt. 20 Questions instead offers pairwise completions to elicit user preferences
and design a customized model.

comparison to query the user to maximize information gain about the user’s preferences. In just
20 pairwise comparisons, we can generalize to future user preferences with 86.8% accuracy.
Training a preference-tuned model on an individualized reward model produced with 20 Questions,
we find that the personalized model wins over the default model up to 97.7% of the time when
measured on individual preferences. Although our current evaluation focuses on heuristic preferences,
the methodology holds promising potential for application to real, individual user preferences, setting
a new standard for personalizing language model interactions with minimal user effort.

3 Related Work

Language Model Alignment/Personalization The current approaches for language model person-
alization stem from alignment through RLHF Ouyang et al. (2022) and DPO Rafailov et al. (2024).
Alignment is the process of taking a language model and "aligning" it to user preferences Tunstall
et al. (2023a). Typically alignment is done on large datasets of collective "human" preferences Bai
et al. (2022); Cui et al. (2023); Zhu et al. (2023), however, the current approach makes it unclear
whose preferences the language models are being adapted to Blodgett et al. (2020); Ryan et al. (2024).
Ideally, LLMs would adapt to individual users. The dominant paradigm for personalization is to
provide a system prompt which the user can edit 1. Our method provides sample completions to
the user and allows them to choose between them. For inspiration on how to do this, we turn to the
literature on Active Learning.

Active Learning Human Preferences Several prior works have explored adapting RL agents based
on human-preferred trajectories Biyik and Sadigh (2018); Bıyık et al. (2019); Ren et al. (2022). Two
main prior methods of query selection in active learning involve reducing the volume of the remaining
search space Sadigh et al. (2017); Palan et al. (2019); Ren et al. (2022). Bıyık et al. (2019) propose
using information gain for query selection to learn from human preferences. We adapt the RL active
learning algorithm from Bıyık et al. (2019) to LLMs in this paper. Muldrew et al. (2024) implement
active learning for LLMs to select optimal pairs for direct preference optimization. However, they
don’t apply this method to individual personalization of LLMs. To our knowledge, this is the first
work on individual preference optimization for LLMs using efficient pairwise proposal selection.

4 Approach

We introduce 20 Questions, a method for efficiently adapting LLMs to individual user preferences.
We provide an overview of the approach in Figure 2. Given an arbitrary set of user prompts P , an
oracle preference function Ω, a budget of K oracle queries, and a preference sampling budget M ,
20-Questions produces a preference embedding w. For each step k in K 20-Questions takes an

1https://openai.com/blog/custom-instructions-for-chatgpt
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1. User Generated Prompt

Write me a story about 
penguins!

2. Completion Generation

There once was a 
penguin named Tony…

Once upon a time in 
Antarctica…

... 

The March of the 
Penguins. Chapter 1…

3. Informative 
Completion 
Selection

4. User Feedback

Once upon… The March…

Which do you prefer?

5. Update Preference Belief

Preference History

Once upon… The March…

I can’t help… Sure! Here…
... 

6. Sample Preference Embedding
w = [0.01, -0.06, ..., 0.04] 

Repeat n times

Figure 2: 20-Questions overview. First, the user generates an arbitrary prompt to which they want
an answer. The LLM generates several completions filtered based on an information maximization
objective down to two pairs. The user is asked for feedback on the pairs, and their feedback is
combined with all previous feedback to sample a preference embedding, which can be fed to a reward
model to customize it to fit the user’s preferences best. The process is repeated n = 5, 10, or 20 times.

arbitrary user prompt pk, generates C, a set of N completions c(1..N)
k , and selects which completions

to ask an oracle preference function Ω about. For all experiments we use N = 128. Section 4.2
will discuss this candidate selection process. Ω is a function (pk, c

(1)
k , c

(2)
k )→ {−1, 0, 1} where −1

indicates a preference for completion c
(1)
i , 0 indicates no preference, and 1 indicates a preference

for c(2)i . We denote a preference for c(1)i over c(2)i as
〈
c
(1)
k ≻ c

(2)
k

〉
. Given the oracle preference

feedback, we update a query set Qk to be the union of all previous preference ratings and this new
preference. We use Qk to inform our preference embedding sampling using Metropolis-Hastings
Sampling. Following Metropolis-Hastings, we generate and reject new samples using our preference
history Qk. We only accept preference embeddings that score highly on this historical preference set.
Finally we return a preference embedding zfinal which scores highly on the historical preferences
QK . We provide pseudocode for 20 Questions in Algorithm 1.

Algorithm 1 20 Questions Algorithm for Quickly Learning User Preferences
Input: An oracle preference function Ω, a budget of oracle queries K,
a prior preference distribution q(z), the size of preferences to consider M
Q0 ← ∅ ▷ Past preference history is empty
for k = 1 to K do

Ẑ ← {zj ∼ q(z|Qk−1)}Mj=1 ▷ Sample M preference embeddings with Metropolis-Hastings

C ← {c(n)k ∼ LLM(·|pk)}Nn=1 ▷ Generate N LLM completions conditioned on prompt pk
c
(1)
k , c

(2)
k ← Select two informative completions from C ▷ Candidate Selection (See 4.2)〈

c
(u)
k ≻ c

(v)
k

〉
← Ω(c

(1)
k , c

(2)
k ) where u, v ∈ {1, 2} ▷ Request oracle feedback

Qk ← Qk−1 ∪ {
〈
c
(u)
k ≻ c

(v)
k

〉
} ▷ Update preference history context

end for
zfinal ∼ q(z|QK) ▷ Sample final preference embedding based on all prior feedback
return zfinal

4.1 Reward Feature Extraction

The algorithm’s success hinges directly on having a rich representation of preferences for the
preference embedding space. To create a rich preference embedding, we create two types of preference
embeddings, which serve as weights for the last layer of a reward model. In the first method, we
cut off the head of a production reward model, a D1 × 1 matrix. This allows us to learn this D1

dimensional weight vector as the preference embedding.

We pre-train a multi-reward model on H heuristic preferences for our second reward feature. This
reward model has a D2 ×H dimensional output layer, which we removed after training. We then
use 20-Questions to learn a D2 × 1 dimensional preference embedding to serve as the head for
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this reward model. This multi-reward model ensures the weights of the reward model are already
adaptable to several pre-trained preferences.

4.2 Candidate Selection

Candidate selection is a key component of 20 Questions as it determines the efficiency of the active
learning process. Good candidate selection means showing users two completions, which diverge
on some preference axis. We use three candidate selection methods explored for RL by Bıyık et al.
(2019). These derivations come from their excellent work.

Random For Random selection we randomly select c(1)k and c
(2)
k from C. This is a good baseline

for our candidate selection step.

Volume We are looking for the optimal embedding over our query set z. We have a query Q
and response q. So we want to find z which maximizes P (z|Q, q). By Bayes rule P (z|Q, q) ∝
P (q|Q, z)P (z). In the volume removal solution, we look for the query Qn, which maximizes the
expected difference between the prior P (z|Q, q) and the unnormalized posterior P (q|Q, z). Thus,

Q∗
n = argmax

Qn={Λ1,...,ΛK}
EqnEz [1− P (qn | Qn, z)] (1)

However, due to the massive space of z this is intractable to compute. Instead, we sample M

embeddings from P (z) and define the set of these samples to be M̂ and rewrite the optimization as

Q∗
n

.
= argmin

Qn={Λ1,...,ΛK}

∑
qn∈Qn

∑
z∈M̂

P (qn | Qn, z)

2

(2)

Information Gain For information gain, we want to find the query that maximizes the expected
information gain about z. We use Shannon’s information entropy H and mutual information I .

Q∗
n = argmax

Qn={Λ1,...,ΛK}
I (z; qn | Qn) = argmax

Qn={Λ1,...,ΛK}
H (z | Qn)− EqnH (z | qn, Qn) (3)

We again approximate by taking M samples from P (z) and denoting the set of samples M̂ to obtain
our final optimization problem

Q∗
n

.
= argmax

Qn={Λ1,...,ΛK}

1

M

∑
qn∈Qn

∑
ω∈Ω

P (qn | Qn, ω) log2

(
M · P (qn | Qn, ω)∑
ω′∈Ω P (qn | Qn, ω′)

)
(4)

Bıyık et al. (2019) find that maximizing information gain of queries leads to selections that are easier
to notice the differences in, which suits them well for human preference selections.

5 Experiments

We experiment in two settings. First, we evaluate our 20 Questions method to learn an adaptive
reward model for individualized heuristic user preferences. Second, we use Direct Preference
Optimization Rafailov et al. (2024) using preferences selected by the reward model produced by
20 Questions, and compare to the model generations prior to DPO. Both settings demonstrate the
promise of 20 Questions for individual user personalization.

Data I use the Ultrafeedback Binarized Tunstall et al. (2023b) dataset from HuggingFace, created
to train the Zephyr-7B-Beta LLM. Ultrafeedback is a collection of 61,135 training and 2000 testing
pairwise preferences on model-generated outputs. The data contains prompts, chosen completions,
and rejected completions. We sample 3,056 (5%) as a dev set and remove them from the training set.
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Heuristic Preferences Training the Multi Reward Model requires training preferences to model.
Further, we need individual test preferences to measure the adaptation of the reward model and final
language model.

Training Preferences We define 8 training preferences for training the multi-reward model. No
punctuation prefers the output with the lower ratio of punctuation to text, Readability prefers the
output with the higher flesch reading ease Flesch (1979)2, New Lines prefers the output with more
newlines and Anti New Lines prefers the output with fewer newlines, Short Words prefers the
output with the lower average word length, Shallow Dependency Tree prefers the output with the
lowest depth of the dependency parse3, Prompt Similarity prefers the output with higher Levenstein
similarity Levenshtein et al. (1966) to the prompt, Simple words prefers the output with more
common words as ranked by Facebook’s FastText embeddings Bojanowski et al. (2016).

Test Preferences We define 3 test preferences for evaluation. Shorter Length prefers the shorter
length completion, Lowercase prefers the completion with a higher ratio of lowercase letters,
Adjectives prefers the completion with the higher ratio of adjectives and adverbs4.

5.1 Reward Features

Default Reward Model We use the Deberta v3 Large v2 Reward Model5 from OpenAssistant in
all RM experiments. As a baseline we use the Deberta v3 Large v2 RM rewards.

Base Reward Model Features For the Base Reward Model, we remove the final layer of the fully
trained Deberta Reward Model. This leaves us with a 1,024-dimensional head. For our preference
embeddings, we set D = 1024 and learn a preference weight that can serve as the head for the
Deberta Reward Model. Due to the large size of the embeddings, we must set the number of samples
M to 100 due to computational limitations.

Multi Reward Model For the Multi Reward Model, we remove the head of the Deberta Reward
Model and add a 1024 × 128 hidden layer. Then we add a 128 × 8 layer to predict the 8 training
preferences. Thus, we set D = 128 for our preference embeddings. We run the preference heuristics
on the training set for Ultrafeedback and record the preferences for training the Multi Reward Model.
Then we train using the binary cross entropy loss with logits:

loss(θ) = −E(x,yw,yl)∼D [log (σ (rθ (x, yw)− rθ (x, yl)))] , (5)

where yw is the preferred completion, yl is the dispreferred completion, sigma is the sigmoid
function, and rθ is the parameterized reward function. We train for 1 epoch with a learning rate of
1e− 6 and a dropout of 0.5 on the new hidden layer using 1 A6000 GPU. We obtained a dev accuracy
of 71.5%, improved from 50% before training, suggesting good multi-reward learning.

5.2 Experiment 1: Active Learning Reward Model

To assess the robustness of 20 Questions to unseen rewards, we test adapting in just n = 5, 10, 20
queries to the preference oracle. We test using all candidate selection strategies. Table 1 reports
accuracy in predicting test rewards for each method. We find that 20 Questions with the Multi
Reward Model performs quite well at adapting to individual preferences, scoring as high as 86.8%
on length preferences, 60.8% on Lowercase preferences, and 57.5% on Adjectives preferences. The
Base RM features also work to an extend for Length preferences, but not well for lowercase and
adjectives. This showcases the importance of pretraining the multi RM to obtain adaptive features.
Information gain appears to be the most effective candidate generation method. We explore this
further in section 6.

2Flesch reading ease computed with textstat https://github.com/textstat/textstat
3Dependency parsing done using SpaCy Honnibal and Montani (2017)
4I use nltk for POS tagging Bird et al. (2009)
5https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
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Shorter Length Preference Lowercase Preference Adjectives Preference

Queries Rand Vol Info Rand Vol Info Rand Vol Info

Default Reward Model – 39.5% 39.5% 39.5% 48.9% 48.9% 48.9% 49.0% 49.0% 49.0%

20 Questions Base RM
5 58.2% 41.1% 51.5% 51.8% 48.7% 51.0% 49.6% 47.7% 49.7%

10 38.2% 46.9% 48.1% 49.5% 49.5% 50.1% 50.4% 48.5% 49.2%
20 46.6% 61.1% 60.8% 51.1% 51.0% 50.5% 50.0% 47.7% 48.7%

20 Questions Multi RM
5 79.8% 86.2% 86.8% 52.2% 58.2% 61.0% 45.9% 53.2% 55.9%

10 53.2% 86.8% 82.5% 57.8% 59.7% 61.7% 50.4% 57.5% 55.3%
20 78.7% 86.7% 85.2% 58.3% 60.7% 60.8% 46.4% 55.7% 55.0%

Table 1: Reward Model Accuracies for Default Deberta Reward Model, versus Reward Models with
20-Questions active learning for user preferences. Queries refers to the number of feedback pairs
provided by the preference oracle. The Meta Reward Model adapts far more efficiently and effectively
than the Base Reward Model even using the active learning for preference embeddings. Typically
Information Gain is the best query strategy, though Volume performs similarly. Random consistently
performs worse. The number of queries required varies based on the difficulty of the task.

Queries Shorter Length Preference Lowercase Preference Adjectives Preference

Baseline (DPO)
5 54.7% 50.2% 51.3%

10 53.7% 48.2% 51.5%
20 52.3% 48.0% 51.5%

System Prompt NA 58.8% 66.5% 61.1%

20 Questions 20 97.7% 71.4% 82.7%

Table 2: Winrate versus default Mistral SFT 7B model for 20 Questions, System Prompt, and
Basline DPO on just n preference pairs. DPO on just 5, 10, or 20 randomly sampled completions
with oracle feedback is not enough to learn the preference function. System prompting marginally
improves. 20 Questions consistently outperforms the baseline across all preferences, beating
system prompting by 38.9%, 4.9% and 21.6% on length, lowercase, and adjective preferences
respectfully.

5.3 Experiment 2: DPO on Learned Preferences

For experiment 2 we aim to see if the learned reward model can be used to preference tune an actual
production-grade LLM. For this we experiment with Mistral SFT 7B Tunstall et al. (2023b). We used
DPO with β = 0.01 and a learning rate of 5.0e−6. We train using a train batch size of 4 on 2 A6000
GPUs. We adapt the Q, K, V, up, and down projection layers in the Mistral SFT model and use 16-bit
quantization for performance. For all models we generate 20 completions on 20 test prompts for a
total of 400 completions to compare.

DPO Baseline For a baseline we sample 2 random completions by the untuned Mistral SFT model
on n = 5, 10, 20 different prompts and DPO on just the oracle preferences for those n examples. We
run DPO for 5 epochs. This takes a few minutes.

System Prompt We generate completions using a system prompt approach akin to how current
LLMs are personalized. We use the following system prompts. Length: "You are a helpful assistant.
Respond with concise answers." Lowercase: "You are a helpful assistant. Respond in all lowercase
letters." Adjectives: "You are a helpful assistant. Respond with many adjectives."

20 Questions LLM We use the information gain reward models with n = 20 queries and label
all examples in the ultrafeedback dataset for training. We train on 1000 preference pairs from
Ultrafeedback re-scored by the 20 Questions reward model. Training takes about 10 hours.

Results Table 2 shows the win rate over the default Mistral SFT 7B model. Models trained with 20
Questions score far higher when using the oracle preference as the judge than any other baseline.
The most competitive baseline, System Prompt, performs 38.9%, 4.9%, and 21.6% worse on Length,
Lowercase, and Adjectives respectfully. This showcases the strength of 20 Questions! In just 20
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Figure 3: Length Difference between the proposed pairwise comparisons by the Random sampling,
Volume Optimization, and Information Gain completion sampling approaches when optimizing for
length preference. Query 1 is the first query shown to the preference oracle, and Query 20 is the last.
Volume and Information Gain propose pairwise comparisons of much larger divergence in length
than random sampling. Information Gain proposes outputs with slightly greater difference in length
than Volume.

optimally selected queries the reward model can effectively learn the personalized user preferences
and adapt an LLM to those preferences!

6 Analysis

Which Completion Selection Method is Best? In Figure 3 we explore the length difference over
queries for the Random, Volume, and Information Gain selection strategies. We find that both Volume
and Information Gain lead to much more variation in the length of the completions presented to the
user for feedback. This suggests these two methods do a much better job of exploring the preference
space than random sampling. Furthermore, Information Gain has slightly higher differences than
Volume suggesting it may be the preferred of the two approaches, however more experimentation is
necessary.

Examining An Information Gain Query We present an Information Gain query from the length
optimization 20 Questions active learning process at step 2 in Table 3. The information gain query
has chosen two vastly different completions to present to the user. One is a really long code sample
with an explanation. In the other, the model doesn’t provide any details on the code but suggests the
methods the user could use to write the code themself. Depending on the user one could prefer either
output. Here, we are optimizing for length, so the second is chosen as the preferred response. The
diversity of the completions shown to the user showcases the strength of 20 Questions at surfacing
interesting completions.

Qualitative Analysis on Length Tuned Model We provide example completions in Table 4 from
the length tuned Mistral 7B model after undergoing preference tuning on the 20 Questions Length
Reward Mode. The completions by the model are exceedingly short, only spanning a few words
each. This is in stark contrast to the style of most language models which tend to output long and
verbose outputs. In just 20 queries to the preference oracle 20 Questions was able to learn to write
extremely brief completions to any arbitrary user prompt! It is worth noting that this adaptation came
at the cost of the helpfulness and harmlessness of the LLM since these were no longer encoded in
the preference function. Next steps will involve finding the appropriate tradeoff between an ordinary
"helpfulness" reward model and the personalized reward model.

7 Conclusion

In this work, we propose 20 Questions an algorithm for the efficient adaptation of reward models
to individual user preferences. In just 20 queries to the user, we are able to learn their individual
preferences with high accuracy, achieving as high as 86.8% accuracy on test preferences. We show
that a large language model preference tuned on a reward model adapted with 20 Questions also
adapts extremely effectively to the user preferences with a win-rate of 97.7% over the non-preference
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Prompt: how can I transform the getPosition method of antv/g’s group in zrender?

COMPLETION A: To transform the ‘getPosition‘ method of AntV/G’s group in ZRender, you can follow these steps:

1. Define the ‘getPosition‘ method in your ZRender component:

“‘

import { ZRender } from ’zrender’;

export default class MyComponent extends ZRender {
constructor(props) {
super(props);

... 120 lines of code omitted ...
2. Define a ‘handleClick‘ method to handle the click event on the circle:
... 15 lines of code omitted ...
3. Define a ‘handleZoom‘ method to handle the zoom event:
... 9 lines of code omitted ...
4. Define a ‘updateGroup‘ method to update the position and transform of the circle:
... 12 lines of code omitted ...

COMPLETION B: I do not have access to the specific implementation details of antv/g’s group in zrender.
However, in general, the ‘getPosition‘ method can be transformed by modifying the logic that calculates
the position of the group. This could involve changing the coordinates or using a different formula
for calculating the position.

to transform the ‘getPosition‘ method, you could use a tool like visual studio code’s debugger
to step through the code and identify the line or lines where the position is being calculated.
You could then modify those lines to achieve the desired result.

alternatively, you could try creating a new method that overrides the ‘getPosition‘ method
and provides a different formula for calculating the position. You would need to ensure that
this new method is properly implemented and integrated with the rest of the code.

Table 3: Two completions proposed by the information gain proposer for the second user query in
the active preference learning of length. The first completion is 1803 characters longer than the
second and vastly different demonstrating the ability of 20-Questions to surface interesting cases
of divergent preferences.

PROMPT: help me design an end user api for 3d camera animation in typescript.
COMPLETION: Sure, I can help. Let me know.
COMPLETION: I can’t. You have to.
COMPLETION: I can’t, but you can.

PROMPT: Write an investigative report on the state of homelessness in America.
COMPLETION: It’s sad.
COMPLETION: It’s bad. Very bad.
COMPLETION: It’s not good.

PROMPT: Definition: In this task, you are given an abstract of article. Your task is to
generate label "True" if abstract is structured, otherwise generate "False". A structured
abstract is composed of a topic sentence (or key sentence), relevant supporting sentences,
and a closing (or transition) sentence. This structure is key to keeping your abstract
focused on the main idea and creating a clear and concise image.
Input: [2036 Character Abstract Omitted]
Output:
COMPLETION: "True, it’s structured."
COMPLETION: "True."
COMPLETION: "True, yes."

Table 4: Completions from the Mistral 7B model after DPO using the learned preference reward
model from 20 Questions. In just 20 preference pairs, 20 Questions learned a reward model for
length that when used in preference tuning drastically reduces the length of the LLM outputs.

tuned model. This algorithm presents a new vision for LLM personalization, which can elicit and
adapt to diverse user preferences.

The work does present a few limitations. First of all, pretraining the Multi Reward Model requires
large amounts of preference data. With real-use preferences, this will be costly and time-consuming
to collect. We trained on about 60,000 examples of each preference. Furthermore, generating the
N = 128 completions to show the user is extremely time-consuming. A future adaptation of this
work will be to just generate 2 completions which optimize information gain in the generation process.
I am excited about the future potential of this work!
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A Appendix

B Training Multi Reward Model

We provide a loss curve for the Multi Reward Model to show the learning over time of all eight
training preferences in Figure 4

C Search over the preference space

Interestingly the search of both the length and lowercase preferences demonstrate similar divergence
in lengths as shown in figure 5. This suggests that both may be doing similar searches over the
preference space, but finding different weights to use for the preference embedding.
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Figure 5: Comparison of the length of the selected comparisons by the Information Gain completion
selector when actively learning both the length and the lowercase preference. The lengths are similarly
divergent between both suggesting a similar search over the preference space in both optimizations.
The X axis is query number and the Y axis the the difference in Lengths.
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