
Learning with PALs: Enhancing BERT for Multi-Task
Learning

Stanford CS224N Default Project

Michael Hoang
Department of Computer Science

Stanford University
hoangm@stanford.edu

Abstract

Exploration in a single large base model to work on multiple tasks, natural
language understanding or otherwise, is an effort known as multi-task learning.
Creating a large model with many shared weights to perform many tasks prevents
the need to have separately fine-tuned models for each task, reducing total memory
requirements.

A method to enable multi-task learning is by adding projected attention layers
(PALs) to enable multi-task learning for a modified BERT model, allowing for
weight sharing in one model rather than updating all pre-trained weights during
fine-tuning for each individual downstream task. In this project, we modify a BERT
model to add PALs throughout the model, discussing trade odds of of model size
against performance.
This work also discusses various sampling techniques that yield better results, and
conclude that adding PALs to the upper half of a BERT model with non-round-robin
sampling methods achieve the best results.

1 Key Information

• Mentor: Annabelle Tingke Wang

2 Introduction

With the recent attention of LLMs in academia and in the media, many large corporations and startups
alike have trained their own models with increasing parameter count. Models with modest parameter
counts less than a decade ago now have billions of parameters, with trillion parameter models now
being trained (Dash et al., 2023). As scaling laws have continued to prove that larger parameter
count improves performance, the expenses required to train and fine-tune such models have become
astronomical. There is a growing body of work that attempts to train models that achieve the same
amount of performance as their counterparts (Hoffmann et al., 2022) at a fraction of the parameter
count, leading to an entire field of machine learning model creation known as efficiency (Wan et al.,
2023), with many sub-fields that focus on a variety of tasks such as quantization, parameter-efficient
fine-tuning, and sparsity, to name a few.

Reducing parameter count and saving memory is an incredibly important task, especially in memory
constrained environments such as mobile devices or IoT-enabled micro-controller applications, in
addition to training large models on servers. By reducing model size without sacrificing significant
accuracy, smaller and cheaper memory can be purchased, making hardware solutions more affordable
and thus more attractive. More memory can be allocated to learned parameters in other layers or parts
of the model, allowing for exploration of other architectures. Computation and cost is also saved

Stanford CS224N Natural Language Processing with Deep Learning

by reducing parameter count. According to Belevich et al. (2022), training a 300B model with 512
NVIDIA A100s costs more than $4 million dollars.

In addition to reducing parameter count using the methods mentioned above, having the same model
perform multiple tasks, removing the need to fine-tune a model for each individual task, is another
active method for reducing total parameter count and memory requirements. This is called multi-task
learning. In this work we implement Projected Attention Layers (PALs), first introduced in Stickland
and Murray (2019) as an architectural means to learn multiple objectives in a model. Alternatives to
round-robin sampling are also introduced that improve performance by enabling dataset-count aware
sampling methodologies called square root sampling and annealed sampling.

3 Related Work

3.1 Multi-task Learning

In addition to Projected Attention Layers in multi-task learning, other related works explore multi-
tasking in models using various methodologies. While PAL explores adding projected attention layers
to various points in the model, methods such as gradient surgery (Yu et al., 2020) exist to improve
accuracy during loss calculation. Instead of an architectural change, gradient surgery projects a task’s
gradient onto the normal plane of another task’s gradient that is "in conflict" or causing interference.
This operation in the training algorithm ensures that model updates during training for one task don’t
hinder performance of another.

In addition to LLMs, there have been many publications exploring methods of enabling models
to multi-task in various modalities. Wang et al. (2021) explores creating a unified convolution-
based vision model using a single representation across multiple vision tasks. It explores "explicit"
and "implicit" knowledge representation in brain anatomy to reconcile learning on multiple tasks,
such as object recognition and segmentation. Tang et al. (2020) employs multi-task learning in a
recommendation system using a mechanism called progressive layered extraction (PLE). Sharing all
weights and parameters for all tasks, PLE extracts and passes relevant information between specific
shared and task-specific layers in an attempt to be a hybrid between an architecture like PALs and
fully fine-tuned models.

3.2 Baseline

This work’s implementation of PALs builds on top of established work involving the BERT model
(Devlin et al., 2018). The BERT model uses 12 layers of encoders consisting of Transformers
introduced in Vaswani et al. (2017).

4 Approach

As the baseline section introduced, the BERT model was used as the inspiration for a minimalist
BERT model implementation that was modified to include the additional Projected Attention Layers.
A skeleton of the minBERT model was provided and portions of the model were implemented in the
work. The base BERT model has 12 hidden layers, 12 attention heads, and a hidden dimension size
of 768.

4.1 Multi-headed Attention

The multi-head attention layer (Vaswani et al., 2017) is the component of the transformer architecture
that projects the input sequence to each head as a projected hidden state. The attention mechanism
computes a scaled-dot product by computing the dot product of a query with all keys, dividing by the
square root of the dimension of the keys, and applying a softmax to obtain attention values, which are
a weighted sum of the values.

Attentioni(hj) =
∑
t

softmax

(
W q

i hj ·W k
i ht√

d/n

)
W v

i ht (1)

2

As seen in Equation 1, the self attention performed on each head hj is dependent on the number of
heads n. The number of heads determines the scaling factor

√
d/n as well as the dimensions of W q

i ,
W k

i , and W v
i as size d/n ∗ d. The notation of ht denotes every sequence element.

The multi-head portion of multi-head attention allows the model to simultaneously attend to different
features in different dimensional-sub-spaces to obtain richer informational representation. Afterwards,
each individual head is concatenated together before being applied to a dxd linear transformation
with WO, as seen in Equation 2 (we drop the j in hj).

MultiHead(h) = Concat(head1, ..., headj)W
O (2)

For completeness, in addition to the multi-headed attention layer, other components of a full BERT
layers also consist of a feed-forward layer (FFN) and layer normalization (LN):

SelfAttention(h) = FFN(LN(h+MultiHead(h))) (3)

With the complete BERT layer being:

BertLayer(h) = LN(h+ SelfAttention(h))) (4)

4.2 PAL Implementation

Figure 1: Projected Attention Lay-
ers between BERT layers

Our approach for implementing PALs will follow a similar
approach as in Stickland and Murray (2019).

Instead of adding parameters "at the top" or after the final layers
of the BERT base model, our work introduces and modifies
parameters within the BERT layers themselves. In order to
capture the different downstream tasks in a separate dimen-
sional subspace, multi-headed attention layers are introduced
within each BERT layer. In order to reduce parameter count,
a linear layer is introduced that transforms the BERT hidden
dimension to a lower PAL hidden dimension before computing
multi-headed attention:

PAL(h) = W dhiddenMultiHead(W dPALh) (5)

The original BERT hidden dimension of dhidden = 768 is
used, whereas a PAL hidden dimension dPAL = 204 is used.
Where the original Stickland and Murray (2019) paper uses
a shared linear transformation for all of the PALs, our work
deviates by adding a transformation layer in every PAL, adding
some parameters for performance. Originally, all 12 BERT
layers were fitted with PALs but we found that using fewer
PAL-enhanced BERT layers such as 6 did not hurt performance,
while also reducing model size.

Similar to the reference work, inspiration is also taken from
He et al. (2015) to introduce PALs "in parallel" to each of the
BERT layers, much like residual connections, shown in Figure
2. The goal is to introduce task-specific parameters to each
layer, l, of the BERT model in addition to improving gradient
flow from training on the each task.

hl+1 = LN(h+ SelfAttention(h) + PAL(h)) (6)

To reduce parameter count from the addition of PALs, the final d ∗ d linear transformation with WO

described in Section 4.1 is also removed, without affecting performance.

3

4.3 Sampling Methods

Figure 2: Residual Adapter from He et al.
(2015).

An important consideration in multi-task learning is the
introduction of different sampling methods for datasets
during training. As BERT with PALs requires training data
from all downstream tasks in order to improve the accu-
racy of each task, a method for fairly sampling data where
disproportionate data exists between the downstream tasks
must be addressed in order to avoid interference of a par-
ticular task being trained on for many steps to the detri-
ment of other tasks. Different sampling techniques are
described.

Round robin sampling is the simplest form of sampling
from each dataset, cycling through each dataset in a deter-
ministic fashion. However, due to training sample avail-
ability, this means that if a given task has a smaller dataset
than another’s, all training examples will have been cy-

cled through, resulting in either an imbalanced training schedule or looping through the smaller
dataset’s training examples again. This disproportionate size imbalance of datasets could lead to
either overfitting on tasks with smaller datasets or under-training of tasks with larger datasets.

Square root sampling is introduced to prevent disparity between the probabilities of choosing tasks.
It does this by setting the probability of selecting data from a task as proportional to the fractional
root of the number of training examples of the task:

pi ∝ Nα
i

This solves the imbalance of dataset size if round robin were used. However, it also introduces under-
training of tasks with smaller datasets as problematically, training data from that task’s particular
dataset will be extremely low if dataset size imbalances are large.

Annealed sampling is introduced to alleviate under-training of tasks with smaller datasets. It changes
α above to train tasks more equally towards the end of training where interference has the greatest
risk and ensures smaller tasks are adequately trained (E is total number of epochs):

α = 1− 0.8
e− 1

E − 1

5 Experiments

5.1 Data

We use three datasets to evaluate our BERT model. One dataset exists for each of the downstream
tasks, each with differing training, evaluation, and test dataset sizes.

• Sentiment analysis: the Stanford Sentiment Treebank containing 215,154 unique phrases
will be used, which contains a possible sentiment out of 5 sentiments. The training set
contains 8,544 examples. The dev set contains 1,101. The test set contains 2,210 examples.

• Paraphrase detection: a dataset with labeled question pairs is provided by Quora is used to
indicate whether different questions are paraphrases of each other. The training set contains
141,506 examples. The dev set contains 20,215 examples. The test set contains 40,431
examples.

• Semantic textual similarity: the SemEval STS Benchmark dataset is used consisting
of different sentence pairs of varying similarity on a scale from 0 to 5, with the former
having no semantic similarity and the latter having semantic. The training set contains 6,041
examples. The dev set contains 864 examples. The training set contains 1,726 examples.

5.2 Evaluation method

For each downstream task, a test set is used to determine the accuracy of of predictions for our
PAL-enhanced model. However, given our objective is to produce a single model that’s able to

4

complete inference on the test set with comparable accuracy to the fine-tuned models, we use the
accuracy of the fine-tuned models as our baseline metric.

The baseline fine-tuned models were trained using naive task-specific classification at the output layer
and does not optimize for higher accuracy using cosine similarity or other performant methods.

In addition to comparison to baseline performance, model size comparison to the summation of the
fine-tuned models for each downstream task is included.

5.3 Experimental details

For all our experiments, 12 encoder layers were used. A mixture of 12 vanilla BERT layers, 12
PAL-enhanced BERT layers, and 6 PAL-enhanced BERT layers out of a 12 layer BERT model were
all trained. The Adam optimizer (Kingma and Ba, 2014) was implemented and used during training,
with a learning rate of 1E − 5 A dropout probability of 0.3 was used.

Fine-tuned models for our baseline were trained using parameters of 10 epochs a batch size of 8.
Training the STS fine-tuned model took approximately 30 minutes. Training the paraphrase fine-
tuned model took approximately 8 hours. Training the SST fine-tunred model took approximately 25
minutes.

All PAL-enhanced models trained in batch sizes of 16.Total training time using our annealed method
for all downstream tasks took approximately 30 minutes. Given the dataset size differences between
the Quora dataset and the SST and SemEval STS, we trained on 6000 epochs using square root
sampling, with the last 1000 epochs using annealed sampling.

Open source implementation of PALs and square root and annealed sampling methods were not used
or inspected during implementation.

5.4 Results

Given different configurations of PAL-enhanced BERT, Table 1 compares different prediction perfor-
mance against each of the fine-tuned models trained purely on each downstream task. We found that
our most performant model was 6 PAL, 6 BERT and No Pooling Layer Model and normalize it to the
fine-tuned models.

Table 1: Performance Comparison on Downstream Tasks

Model Configuration STS Acc. Paraphrase Acc. SST Pearson Corr.
Fine-tuned BERT Models 0.527 0.787 0.361
12 PAL Model 0.496 0.760 0.285
6 PAL, 6 BERT Model 0.503 0.762 0.246
6 PAL, 6 BERT, No Pooling Layer 0.520 0.758 0.321
6 PAL, 6 BERT, No Pooling Layer + Shared 0.400 0.759 0.329
==================================
6 PAL, 6 BERT, No Pooling Layer (Normalized) 0.987 0.963 0.892

In addition to the different model configuration sizes given in Table 2, the fine-tuned BERT model
size of 417.MB can also be multiplied by 3 for a total memory requirement of 1253.01MB. If we
create a ratio of 1253.01MB to the size of our most performant model of 6 PAL, 6 BERT, with No
Pooling Layer, then the ratio is 0.34, an expected 1/3 of the memory requirement from summation of
each of the fine-tuned models.

Finally, a comparison of our most performant PAL model of 6 PAL, 6 BERT and No Pooling Layer
using square root sampling and annealed sampling is compared against the round robin sampling
method. The round robin method used a batch of 2 to prevent re-using data for the STS and SST task
datasets.

Our

5

Table 2: Model Size with Varying PAL Configurations

Model Configuration Size (MB) # Ratio compared to Base
Fine-tuned BERT Model (Base) 417.67 1.0
12 PAL Model 437.8 1.048
6 PAL, 6 BERT Model 427.8 1.024
6 PAL, 6 BERT and No Pooling Layer Model 425.48 1.019
6 PAL, 6 BERT and No Pooling Layer + Shared PAL Transform 419.49 1.004

Table 3: Model Performance under Different Sampling Configurations

Sampling Configuration STS Acc. Paraphrase Acc. SST Pearson Corr.
Square Root and Annealed Sampling 0.520 0.758 0.321
Round Robin Sampling 0.503 0.707 0.327

6 Analysis

Our original model was the most performant model with a PAL transformation layer within each PAL
instead of a shared transform between layers that was used in the original PAL paper.

This model may have outperformed the one with the shared transform layer in that it was able to
capture the downstream tasks in each layer with its increased parameter count. One issue with PALs
that is addressed in other publications is that of gradient interference, suggesting that the additional
linear transforms within each PAL allows for less interference than with a shared transform.

In Table 3, round robin sampling performed best with the SST Pearson Correlation score, which
had the fewest training samples, confirming problems with imbalanced datasets. However, this did
not apply to STS, suggesting that the naive method of cycling through the other downstream tasks
interfered with the gradients associated with STS accuracy. Our lower paraphase accuracy is expected
given how large the dataset is for that particular task.

7 Conclusion

PALs were added to a base BERT model to enable multi-task learning and to examine performance
and compare resultant model sizes. We found that our most performant model involved using a
PAL-enhanced BERT model of 6 layers out of the 12, and also involved removal of the final linear
transformation pooling layer after concatenating multi-head attention. Depending on the application
and it’s dependence on accurate predictions, the final normalized accuracy results may not be accurate
enough for critical applications; however, for applications involving memory and battery constrained
on-device ML, the reduced accuracy may be sufficient given the 1/3 lower memory requirement.

We also found that using different sampling methods that was dataset-size aware allowed for more
performant models in each of the downstream tasks.

References
Pavel Belevich, Yanli Zhao, Shen Li, Jessica Choi, Rohan Varma, Pritam Damania, Geeta Chauhan,

Mahesh Yadav, Pierre-Yves Aquilanti, and Sundar Ranganathan. 2022. Training a 1 trillion
parameter model with pytorch fully sharded data parallel on aws. Medium. Accessed: March 17,
2024.

Sajal Dash, Isaac Lyngaas, Junqi Yin, Xiao Wang, Romain Egele, Guojing Cong, Feiyi Wang, and
Prasanna Balaprakash. 2023. Optimizing distributed training on frontier for large language models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image
recognition.

6

https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
http://arxiv.org/abs/2312.12705
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
2022. Training compute-optimal large language models.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive layered extraction
(ple): A novel multi-task learning (mtl) model for personalized recommendations. RecSys ’20,
page 269–278, New York, NY, USA. Association for Computing Machinery.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. 2023. Efficient large language
models: A survey.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. 2021. You only learn one representation:
Unified network for multiple tasks.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

7

http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
https://doi.org/10.1145/3383313.3412236
https://doi.org/10.1145/3383313.3412236
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2312.03863
http://arxiv.org/abs/2312.03863
http://arxiv.org/abs/2105.04206
http://arxiv.org/abs/2105.04206
http://arxiv.org/abs/2001.06782

	Key Information
	Introduction
	Related Work
	Multi-task Learning
	Baseline

	Approach
	Multi-headed Attention
	PAL Implementation
	Sampling Methods

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

