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Abstract

Small businesses and inventors often face significant challenges in securing patent
approvals for their inventions. This paper proposes the development of a Language
Model capable of predicting patent approval outcomes based on linguistic analysis.
The current SOTA model obtained 57.96% accuracy on their best model, while our
best achieved an accuracy of 64.37%. While our fine-tuned model has surpassed
the current SOTA model (Suzgun et al.| [2022), it has hit a performance plateau
fine-tuning a variant of the BERT (Devlin et al., [2019)) architecture. Subsequent
efforts have focused on fine-tuning more capable models like Mistral-7b (Jiang
et al.,[2023)), Gemma-7b, and Gemma-2b (Banks and Warkentin, [2024). After im-
plementing strategies like low-rank adaptation (Hu et al., 2021), model quantization
LoRA (Dettmers et al.,[2023)), and model quantization (Jacob et al.,[2017) during
inference, alongside optimizations in data loading and processing, we eliminated
various limitations, yet have encountered more. With current results surpassing
the SOTA we are pleased, yet not satisfied. We plan on continuing our work to
overcome recent hurdles once more.
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1 Introduction

In the realm of intellectual property management, small businesses and individual inventors often
encounter barriers in securing patent approvals for their innovations. The intricacies of patent
application processes, paired with the necessity for precise technical documentation, often pose
a considerable challenge, especially for people with limited resources and access to specialized
legal counsel. Recognizing this critical need, this paper introduces the development of an advanced
Language Model (LM) designed to predict the outcomes of patent approvals through a detailed
linguistic analysis of patent application texts.

By leveraging the latest advancements in natural language processing (NLP) and machine learning,
this tool aims to democratize the patent application process, offering small businesses and independent
inventors a valuable resource to assess the viability of their patent applications before going through
the lengthy and costly formal review process. The predictive capabilities of the proposed LM provide
actionable insights into the strengths and potential weaknesses of their applications, based on patterns
learned from datasets of historical patent applications and their outcomes.
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Such a tool not only eases the path to securing patent protections but also levels the playing field for
smaller entities in the innovation ecosystem. By affording a clearer understanding of the factors that
contribute to successful patent applications, businesses and inventors can make informed decisions on
how to refine their submissions, potentially increasing their chances of approval and reducing the risk
of costly rejections. Ultimately, this approach stands to create a more vibrant, inclusive environment
for innovation, where an idea, rather than the depth of one’s resources, dictate the likelihood of
securing patent protection.

Our proposed model outperformed baselines and state-of-the-art (SOTA) models detailed in |[Suzgun
et al.[(2022), achieving an accuracy of 64.37%. Experiments performed on various models and
configurations deemed a variation of the Bert (Devlin et al.||2019) LM to outperform the rest. While
these results are exciting, there is still work to be done on further enhancing performance.

2 Related Work

This section provides an exploration of various LMs and the implementation of specific tools aimed
at enhancing the development of a system for predicting patent approval outcomes. Through a
detailed examination of models like BERT, Gemma, and Mistral, alongside the introduction of
efficiency-enhancing techniques like QLoRA, the paper outlines an approach designed to utilize
linguistic analysis in aiding the development process, with a more particular focus on improving
accessibility and effectiveness for users.

2.1 HUPD

HUPD, or The Harvard USPTO Patent Dataset paper (Suzgun et al. [2022)), provides detailed
breakdowns of text based sections of patent documents, ranging from titles to detailed descriptions,
along with metadata about the average number of tokens in each section. This detail is valuable
for tasks such as long-sequence summarization and language modeling. The dataset also enhances
research capabilities by including continuation information for each patent application. This facilitates
studies on the progression and outcomes of patent filings. The authors also present various tasks
and evaluation metrics for the datasets use. These tasks range from patent acceptance prediction
and language modeling to abstractive summarization, among others. The corresponding evaluation
metrics include accuracy, perplexity, and ROUGE/BLEU scores. Additionally, benchmarks are
provided for future research utilization. Overall, it presents a rich repository of information for a
diverse spectrum of analytical applications, serving as the primary data source for our project.

2.2 Bert

The BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., [2019) architec-
ture represents a significant advancement in the field of NLP, introducing a method for pretraining
LM:s on large text corpora in a bidirectional manner. BERT is able to understand the context of words
based on their surrounding text, greatly enhancing its ability to interpret the complex and technical
language typical of patent applications. By leveraging BERT’s capabilities, our project can benefit
from deep contextual insights. This enables more accurate classification of patents based on the
nuanced information contained within their applications.

2.3 Gemma 2B and 7B

The Gemma models, developed by Banks and Warkentin| (2024)), offer lightweight, SOTA open
models that are built on the foundation of the Gemini technology (Team et al.l 2023). Comprising two
primary sizes, Gemma 2B and Gemma 7B, these models are designed to deliver great performance
for their scale, outperforming larger models. This achievement is attributed to their pretraining and
instruction tuning, which ensures that they excel in a wide variety of tasks. For focused on tasks like
patent acceptance prediction, the Gemma models offer an exceptional mixture of sophistication and
practicality.



2.4 Mistral 7B

Mistral 7B (Jiang et al.,2023)) is a 7-billion-parameter LM, distinguishable by its plentiful capabilities.
Mistral 7B outperforms the Llama 2 13B model (Touvron et al.| 2023) across a suite of benchmarks,
as well as surpassing the Llama 1 34B (Touvron et al.l |2023) in domains requiring reasoning,
mathematical abilities, and code generation. The core innovation behind Mistral 7B’s performance is
in grouped-query attention, a technique that greatly accelerates inference times. This is complemented
by the sliding window attention mechanism, which allows Mistral 7B to manage sequences of arbitrary
lengths, reducing the inference time without compromising the model’s effectiveness. The model’s
ability to excel in reasoning indicates a good understanding of complex, structured data, an essential
trait for analyzing the detailed, technical language found in patent applications.

2.5 LoRA and QLoRA

Low-Rank Adaptation (LoRA) (Hu et al.||2021)) and its extension, QLoRA (Dettmers et al.,2023)), sig-
nify great strides in the efficient fine-tuning of prerained LMs, for which they are known for enhancing
AT applications while reducing computational demands. LoRA is a technique that integrates trainable
low-rank matrices into each layer of the Transformer architecture, greatly reducing the number of
parameters that need to be trained during fine-tuning. This approach lessens the computational load
and aims to enhance the model’s performance on specific tasks. QLoRA builds upon the foundation
of LoRA, incorporating advanced quantization methods such as 4-bit NormalFloat quantization and
Double Quantization to further boost parameter efficiency during the fine-tuning process. QLoRA
is able achieve a remarkable reduction in GPU memory requirements, enabling the fine-tuning of
large models. Implementing QLoRA allows for the application of LLMs, for which possess a deeper
understanding of complex technical language and nuanced textual patterns, without the barrier of
extensive hardware resources.

3 Approach

This section dives deeper into the intricacies of the proposed approach, offering detailed insights and
establishing clear distinctions among the baselines utilized for this study.

3.1 Our Method

Our research aims to predict patent acceptance by employing the Harvard USPTO Patent Dataset
(HUPD) (Suzgun et al.| 2022), thus offering a novel application of advanced linguistic models in the
patent domain.

The HUPD paper utilized a series of LMs to conduct this classification task. Our methodology
extends the work initiated by the HUPD study, refining the models used (BERT and its variant
DistilBERT (Sanh et al., [2020)), incorporating new, more advanced, models (Mistral (Jiang et al.|
2023))) and investigating the adaptation of these models to enhance patent acceptance prediction. This
project distinguishes itself by implementing newer and more advanced models, as well as adapting
these LMs with methods such as linear probing (LP), fine-tuning, LoRA, and QLoRA. The latter two
techniques were not used for fine-tuning the models in the HUPD paper and the authors also did not
perform any LP studies. To the best of our knowledge, there has been no adaptation-centric paper
on the task of classifying the approval of a patent. The architectures used in our approach are the
base-non-instruct LLM’s described herein, with a 2-class classification head on top.

3.2 Baselines

We have two baselines we are working with. One is the base model without any adaptation and the
other is the current SOTA model published in |Suzgun et al.|(2022). These SOTA models are based
on the BERT (Devlin et al.,2019) architecture. The code provided in Suzgun et al.| (2022) was used
for determining the SOTA baselines. For later studies, we completely rewrote the codebase, added
additional models, LoRA, and QLoRA capabilities in addition to gradient clipping, loss weighting,
and masking options, among other features. In addition, we adapted the HUPD hugging dataset
scripts to serve our experimentation.



4 Experiments

We have developed a data loading and training framework to address the challenge of BERT em-
bedding dimension limits; specifically, the maximum dimension is 512, whereas the dimensions for
abstract and claims sections significantly exceed this, often reaching into the thousands. To navigate
this limitation, our approach involves tokenizing only those words that appear at least three times,
highlighting the necessity for models with larger capacity. Therefore, we created a new pipeline that
employs Google’s Deepmind Gemma 2B model (Banks and Warkentin, [2024)) and the Mistral7B
model (Jiang et al.,[2023)). We have fine-tuned the DistilBERT and Mistral7B models, as well as
performed sensitivity studies on, learning rate, batch size, dataset size, dataset sections, combining
dataset sections, epochs, and loss function weighting due to the skewed dataset. The tokenizer and
model max length for Mistral-7b was reduced from 4096 to 512, so we could have a one-to-one
comparison with our DistilBERT model.

4.1 Data

For this project, the HUPD dataset (Suzgun et al., [2022)) forms the backbone of our analysis. This is a
public dataset encompassing more than 4.5 million English-language utility patent applications filed
to the United States Patent and Trademark Office (USPTO) from January 2004 through December
2018. The data is divided into 34 fields, including filing date, fine-grained classification codes,
examiner information, and many others. The complete data set is 360gb. We have pre-processed the
data and changed all the accepted, pending, and rejected patents from their label to index mapping.
This aids us in producing hot-encodings of the outcome. We are focusing on the claims and abstract
sections for each patent application in the dataset as a starting point. Note that these sections contain
an average token length of 1271.5 and 132.0, respectively, which the claims surpass the Bert context
length.

4.2 Evaluation Method

To evaluate our models performance the metric of accuracy is used. We use confusion matrices to
help acquire the accuracy, which can be more formally described as:

TP+ TN
TP+TN+FP+ FN

Accuracy =

Where: TP = True Positives; TN = True Negatives; FP = False Positives; FN = False Negatives

We are also utilizing the area under the receiver operating characteristic curve (ROC AUC) metric
being that the nature of the data is unbalanced.

4.3 Experimental Details

All experiments were run on either a Nvidia RTX 3090 or 4090 GPU. We ran various experiments
to test out the best configurations. Our experiments found that best model had a configuration of
epoch 2, batch size 8, learning rate 2E-5, weight decay 0.01, dropout 0.1, dimension size 768, hidden
dimension count 3072, head count 12, and number of layers 6. It is important to note that the
maximum embedding size was 512, therefore, 512 was the number used.

The parameters highlighted in Table|l|do not represent all the experiments that we performed, but a
subset of the parameters used for most of the experiments. Batch sensitivities were done for batches
of size 8, 16, 32, 48, and 64. The best results obtained were with a batch size of 8. A Learning rates
sensitivity study was performed for values of 2e-5, 3e-5, 4e-5, Se-5, le-4, 8e-4, and Se-4. A learning
rate of 2e-5 was best for our model.



Run ID Model Batch Size | LR | LoRA Rank | LoRA Alpha | Trained Modules | Quantization | Train Timel[]
1 Distilbert 8 2e° N/A N/A N/A N/A 6 hr
2 Distilbert 48 2¢~° N/A N/A N/A N/A 6 hr
3 Mistral-7b 8 le™* 64 16 q_proj, v_proj 4bit 14 hr
4 Mistral-7b 8 le™* 64 16 All? 4bit 16 hr
5 Mistral-7b 8 le™* 64 128 All? 4bit 16 hr
6 Mistral-7b 8 le™* 64 128 AP 8bit 16 hr

Table 1: Hyper Parameters for Highlighted variants.

4.4 Results

We evaluated the current SOTA model against a test dataset specifically curated by our team, ensuring
this dataset had not been used in training either our model or the SOTA model. This process validated
the SOTA model at a 57.96% accuracy rate, while our model excelled, achieving a 64.37% accuracy.

Our experiments were conducted on a select portion of the full dataset, focusing exclusively on patent
applications from 2008 to 2014 for model fine-tuning, with a 2015 subset utilized for testing. This
strategic choice was informed by the desire to manage the dataset’s scope effectively.

In addressing data imbalance, particularly in our training data, we developed and calibrated specific
weights for the loss functions, ensuring the validation data remained balanced. This adjustment was
pivotal in enhancing model performance, which, when coupled with reduced batch sizes and optimal
settings identified through sensitivity analyses, led to a significant performance leap. Our preliminary
findings, highlighting a 60.16% accuracy by prioritizing claim data over abstract data for training, are
documented in Table[2l

Fine-tuning literature (Kumar et al., [2022)) dictates that Linear Probing followed by Fine-Tuning
yields the best results when adapting a model for out-of-distribution data. Our exploration into
fine-tuning methods, including traditional fine-tuning, linear probing, and their combination, revealed
traditional fine-tuning as the superior approach for our use case, as detailed in Table 3]

An innovative aspect of our methodology was the development of a specialized loss function. Com-
parative experiments showcased its effectiveness, outperforming the standard model’s loss function
by 3%, achieving a 63.06% accuracy, as shown in Table ] This is due to the class imbalance in the
data.

Our final experiment was a head-to-head comparison of high-performing models with advanced
models like fine-tuned DistilBERT and Mistral-7B. Other models, such as Gemma-2b and Gemma-
7B, were also experimented with, however, we dedicated most of our time to the DistilBERT and
Mistral7B models due to their well-known performance and the project’s condensed schedule. Yet,
Gemma-2b and Gemma-7b are still implemented in our codebase. Our DistilBERT model surpassed
the SOTA accuracy, setting a new benchmark at 64.37%, with detailed results presented in Table 3]
It’s crucial to underline that patent classification can leverage various data segments, not restricted to
claims data alone, broadening the applicability of our findings.

Model Name Abstract Accuracy | Claims Accuracy
distilbert-base-uncased (untrained) 48.05 48.05
HO1L (Abstract) 54.42 54.44
HO1L (Claims) (SOTA) 48.50 57.96
GOOF (Abstract) 54.64 54.24
GOGF (Claims) 48.05 52.56
Ours-Preliminary (Claims) 56.32 60.16

Table 2: Correct patent classification utilizing Abstract or Claims section. The dataset the model is
trained on is denoted by model name (data).

!One year worth of data
2All corresponds to the following modules "q_pro
"down_proj"
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Fine tuning method | Accuracy

Fine Tuning (FT) 62.64
Linear Probing (LP) 57.76
LP+FT 62.19

Table 3: Fine tuning method techniques comparison

Loss Method | Accuracy
Model Loss ‘ 57.02

Our Loss 63.06
Table 4: Loss method comparison

4.5 Analysis

The unexpected performance of the Mistral7B model, which did not surpass the DistilBERT model
despite its significantly higher capacity, took us by surprise. The training duration for the Mistral7B
was nearly triple that of the DistilBERT model, as detailed in Table [l We believe the sub-par
performance of Mistral-7b is due to our tokenizer configurations and future work should be focused
on overcoming these issues, as Mistral-7b is a highly capable model. Intriguingly, the less complex
and faster-trained DistilBERT model not only demonstrated commendable performance but also
exceeded the SOTA model. Looking at the mean train and validation loss of the DistilBERT model,
we saw the model hitting a performance limit was the performance hit a plateau. This suggested that
further improvements might be constrained by the model’s inherent limitations.

Curious to understand the areas of strength and weakness within the DistilBERT model’s predictions,
we analyzed its performance across various patent application features. Figure (1| contrasts the United
States Patent Classification (USPC) classes where the model shows proficiency against those it
finds challenging. The x-axis labels correspond to specific patent classifications, with the model
demonstrating superior prediction accuracy in categories such as Multiplex Communications, Data
Processing (including financial, business practice, management, or cost/price determination), and
Stock Material or Miscellaneous Articles. On the other hand, it struggles more with predictions in the
realms of Computer Graphics Processing and Selective Visual Display Systems, Land Vehicles, and
Flexible or Portable Closures, Partitions, or Panels, without showing a clear pattern of performance
across these categories. This nuanced performance distribution, was also observed in subclass
classifications. This likely reflects the limits of DistilBERT’s modeling capabilities.

Additionally, our analysis revealed a slight bias of the model towards predicting local over foreign
patent applications, as illustrated in Figure[2] Due to the fact that the difference is minimal we are
unable to conclude that we are completely certain there is bias and more testing must be done because
this could simply be due to an unbalanced training sample.

5 Conclusion

This study embarked on addressing the significant hurdles small businesses and inventors encounter
in obtaining patent approvals, through the lens of a language model tailored to predict patent approval
outcomes via linguistic analysis. Achieving a notable accuracy of 64.37%, our model outperformed
the existing SOTA benchmark of 57.96% accuracy, as established by (Suzgun et al.,2022)). Despite
this advancement, our model, built upon the BERT architecture (Devlin et al., 2019)), has reached
a performance ceiling, prompting us to explore the potential of more sophisticated models such as
Mistral-7b (Jiang et al.|[2023), Gemma-7b, and Gemma-2b (Banks and Warkentin, [2024).

Our journey involved the incorporation of cutting-edge strategies such as LoRA (Hu et al., [2021]),
model Quantization LoRA (QLoRa) (Dettmers et al., [2023)), and model Quantization (Jacob et al.,
2017) during the inference phase, coupled with enhancements in data handling and processing. These
efforts have substantially mitigated several constraints but have also unveiled new challenges.

As we surpass current SOTA performance milestones, we are not completely satisfied. We plan on
continuing this work, assessing our implementation of Mistral7B and further exploration with other
more capable models.



Model | Accuracy
HOIL (SOTA) 57.96
Ours-Preliminary 60.16
Ours-Final 64.37
Ours-Mistral7B 53.70
Table 5: Best performing models. Note all were fine-tuned on the claims section and the models not
named are based on Distilbert
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Figure 1: Left: Illustrates the classes that the model predominantly predicts with high accuracy.
Right: Depicts the classes where the model encounters challenges in achieving correct predictions,
relative to its successful predictions. Note: The numbers along the x-axis represent various classes deemed
by the United States Patent Classification (USPC). To search for the corresponding written class name see:
https://www.uspto.gov/web/patents/classification/
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Figure 2: Displays the slight bias in the Distilbert model to local patent applications compared to
foreign ones.
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