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Abstract

Healthcare services are inseparable from clinical documentation, especially text
summarization, which poses a significant challenge to clinicians. This has propelled
the development of automated technologies aimed at streamlining this essential
yet burdensome task for clinicians. Large Language Models (LLMs) has emerged
as a promising solution, yet their application in clinical settings is hampered by
limitations related to proprietary models’ accessibility, costs, and reliance on in-
context learning. Addressing these challenges, this project introduces a novel
approach that leverages an open-source, lighter-weight LLM aligned through
Direct Preference Optimization (DPO) and Supervised Fine-Tuning (SFT). Our
method leverages clinician feedback to learn from their preferences to tailor the
model’s outputs, ensuring they are aligned with the needs of clinical practice. Our
experiments demonstrate that this approach improves upon the performance of the
model post-SFT. Furthermore, our approach also outperforms existing open-source
solutions on Open-i dataset, offering a viable alternative to proprietary models
by bridging the gap between technical capabilities and clinical expectations. Our
findings underscore the potential of integrating direct clinician input into LLM
training processes, paving the way for more accurate, relevant, and accessible tools
for clinical text summarization.

1 Introduction

Healthcare and documentation are inseparable from each other. Doctors often navigate through
extensive textual information to summarize radiology reports, write progress notes, or synthesize
patient histories across specializations (Golob Jr et al., 2016; Arndt et al., 2017). Reviewing and
summarizing extensive textual data from electronic health records poses a significant burden to
clinicians in terms of time and effort. Moreover, clinical text summarization, while critical, is an
intricate and error-prone task, with inaccuracies potentially leading to serious consequences (Bowman,
2013; Gershanik et al., 2011).

The advent of Large Language Models (LLMs) represents a frontier of innovation, achieving state-of-
the-art in a wide variety of natural language tasks (Vaswani et al., 2017; Devlin et al., 2019; Brown
et al., 2020; Touvron et al., 2023). Yet, investigating their effectiveness on a diverse range of clinical
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summarization tasks remains understudied, partly due to lack of evaluations on relevant clinical tasks
in existing benchmarks (Zheng et al., 2023; Wornow et al., 2023).

Proprietary models have recently showcased remarkable abilities in clinical text summarization tasks,
igniting optimism for their application in reducing the documentation workload for clinicians (Ma
et al., 2024; Van Veen et al., 2024). Despite their prowess, such models face practical limitations due
to their reliance on in-context learning, (Tang et al., 2023) and the significant barriers of cost and
accessibility (Burtsev et al., 2023). On the other hand, open-source models facilitate a collaborative
environment for development, allowing for extensive customization and experimentation by the
global NLP and healthcare community.

Despite the progress with open-source models through supervised fine-tuning (SFT) on existing
datasets (Cai et al., 2023; Hu et al., 2022b, 2021), there remains a significant gap: the integration of
direct clinician feedback into the model training process. This pivotal aspect of model development
has been largely unexplored, highlighting an opportunity for leveraging open-source flexibility to
truly align model outputs with the intricate needs of clinical practice.

In this project, we introduced Direct Preference Optimization (DPO) (Rafailov et al., 2023) into the
training of a Large Language Model (LLM) tailored for radiology report summarization. We first
perform SFT a sequence-to-sequence model on an open-source labeled dataset. Then, we harness
expert feedback to directly optimize based on their preferences, in contrast to existing SFT methods
that rely solely on fixed labeled datasets. This approach aims to bridge the gap between clinicians’
expectations and model outputs and paves the way for models that are more closely aligned with the
nuanced needs of clinical practice. Through experiments and analyses, we demonstrate that DPO
improves upon SFT model, and our technique surpasses the performance of existing open-source
solutions in radiology report summarization, providing an effective and accessible alternative to
proprietary systems.

2 Related Work

2.1 Text summarization: Early Efforts and Traditional Approaches

Clinical text summarization condenses medical documents like patient records and radiology reports
into concise summaries, highlighting essential diagnostic and treatment information to aid clinicians
in decision-making and enhance patient care efficiency. Initial attempts at automating general text
summarization in NLP relied on rule-based systems and simpler machine learning models. Among
the pioneering works, LEXRANK (Erkan and Radev, 2004) stands out as a notable example of an
unsupervised approach to text summarization based on graph-based centrality scoring of sentences.
Although it laid foundational principles for text summarization, its application to clinical texts showed
limitations in handling the domain’s complexity and variability.

2.2 Advancements with Deep Learning

Earlier studies exclusively focused on sequence-to-sequence (seq2seq) methods, characterized by
early use of bi-directional LSTMs, which, despite achieving some success, faced challenges in
maintaining factual accuracy, with studies like (Zhang et al., 2018) noting that 30% of generated
summaries contained factual errors. Innovations continued with efforts such as (MacAvaney et al.,
2019), which enhanced content selection by incorporating domain-specific ontology information, and
(Sotudeh Gharebagh et al., 2020), which integrated salient clinical terms using a separate encoder to
refine summaries further.

2.3 Transformers and Pretraining

The rise of pre-trained language models such as BERT (Devlin et al., 2019) and GPT (Brown et al.,
2020) has revolutionized medical text summarization, with approaches like TransABS (Liu and Lap-
ata, 2019) and BertSUM (Liu, 2019) utilizing two-stage fine-tuning to achieve unparalleled results
across various datasets, while CAVC method (Song et al., 2019) enhances performance through Mask
Language Modeling (MLM). Simultaneously, the innovation of graph-based models and contrastive
learning, as demonstrated by WGSUM and Jinpeng et al., introduces graph encoders and contrastive
techniques to improve key word extraction and summary accuracy. Recently, ChestXRayBERT’s
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domain-specific pre-training, utilizing a radiology-related corpus combined with a Transformer
decoder, signified a leap in diagnostic report summarization, showcasing the effectiveness of tailoring
NLP techniques to specific medical domains. Diverging from these existing open-source method-
ologies, our approach begins with a larger pre-trained and instruction-fine-tuned model, which we
first directly adapt to the task through SFT. Followingly, we achieve further refinement of the LLM
through preference learning, a novel strategy that directly integrates clinician feedback via DPO
algorithm.

2.4 Very Large Proprietary Language Models

The advent of Large Language Models (LLMs) like GPT-3.5 and -4 has significantly advanced the
performance automated summarization techniques. ImpressionGPT (Ma et al., 2024) attempted to
adapt these very large models by means of in-context learning (ICL (Lampinen et al., 2022)). ICL
embeds contextually relevant examples into the model’s prompt to dynamically adapt to specific
requirements, thus enhancing its understanding and summarization capabilities. Similarly, Van Veen
et al. (2024) employs ICL to fine-tune its response, utilizing a select number of in-context examples.
These approaches underscored the transformative potential of LLMs in clinical settings by achieving
impressive results, demonstrating the value of tailored, contextual information in generating precise
summaries. However, despite their advancements, these models face challenges related to their
proprietary nature, substantial data requirements, and limited domain-specific generalization. Our
solution seeks to address these limitations by introducing an open-source model that not only allows
for the actual tuning of its weights but is also lighter-weight and specifically designed to incorporate
clinician feedback through Direct Preference Optimization (DPO). Unlike the proprietary models,
our approach offers a more adaptable and flexible framework that can be finely tuned to meet the
intricate demands of clinical practice.

3 Approach

3.1 Large Sequence-to-Sequence Models

We focused on sequence-to-sequence (seq2seq) models due to their proven efficacy in tasks requiring
nuanced language generation, such as machine translation and summarization (Raffel et al., 2019).
These models, leveraging an encoder-decoder architecture, are particularly adept at mapping complex
input texts to coherent, concise outputs, a capability essential for summarizing detailed radiology
reports. Among the diverse collection of seq2seq models, the need for a robust and versatile
architecture leads us to prioritize models pre-trained on extensive corpora, ensuring they possess a
broad understanding of natural language. Consequently, we deployed the T5 (Text-to-Text Transfer
Transformer) architecture (Raffel et al., 2019), specifically the FLAN-T5-XL variant, renowned for
its comprehensive pretraining on the Colossal Clean Crawled Corpus (C4) (Dodge et al., 2021).

3.2 Quantized Low-Rank Adaptation Method

For efficient alignment of our pretrained LLM, we utilized the Low-Rank Adaptation (LoRA) method,
which enhances fine-tuning by inserting trainable matrices (adapters) into the model architecture,
thus preserving the entire sequence for downstream tasks and requiring only a minimal adjustment of
total parameters (Hu et al., 2022a). Further efficiency was achieved through Quantized Low-Rank
Adaptation (QLoRA), which employs 4-bit quantization to reduce memory demands significantly
while maintaining model performance, allowing for the fine-tuning of larger models under hardware
constraints (Dettmers et al., 2023). Throughout our subsequent alignment processes SFT and DPO,
we kept these adapters trainable, without inserting new ones between the two learning paradigms.

3.3 Supervised Fine-Tuning (SFT)

As the initial step in aligning our pretrained language model, we performed Supervised Fine-Tuning
(SFT). This process is pivotal for refining the model’s inherent linguistic capabilities, tailoring them to
produce concise and accurate clinical summaries. During SFT, we employed a standard cross-entropy
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loss function, which is widely utilized in sequence-to-sequence learning tasks:

L(θ) = −
N∑
i=1

M∑
j=1

yij log(p(yij |xi; θ)) (1)

Here, L(θ) represents the loss for parameters θ, with N denoting the number of samples and M
indicating the sequence length. Here, yij is the actual token in the generated summary, xi is the input
clinical report, and p(yij |xi; θ) signifies the predicted probability of the token yij given the input
report xi, parameterized by θ.

3.4 Alignment via Clinician Preference Learning

To further optimize our SFTed LLM in line with clinician preferences, we leveraged Direct Preference
Optimization (DPO) (Rafailov et al., 2023). This approach reformulates the traditional reinforcement
learning (RL) framework, focusing on a policy objective that aligns with clinician-chosen outcomes
over those less favored. Our objective is to directly maximize the likelihood of clinician-preferred
summaries using the optimal policy πθ instead of a separately learned reward model. This is
encapsulated in the DPO objective function as follows:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

where σ represents the sigmoid function, β is a scaling factor that adjusts the steepness of the
preference curve, (x, yw, yl) denotes the tuple of input text, winning summary, and losing summary
sampled from the dataset D, and πref stands for the reference policy which is calculated via a
frozen reference model that has the same parameters as the initial LLM. The predicted probabilities,
πθ(yw|x) and πθ(yl|x), reflect the model’s preference for generating the winning summary yw over
the losing summary yl given the input x. This loss function encourages the model to prefer clinician-
selected summaries, effectively tuning the model to generate outputs that reflect clinical expertise
and preferences.

4 Experiments

4.1 Data

4.1.1 SFT and evaluations

We utilized Open-i dataset’s (Demner-Fushman et al., 2012) training split for SFT, dev set for
hyperparameter and model tuning, and test split for evaluations. The dataset is sourced from the
Indiana Network for Patient Care and consists of de-identified narrative chest x-ray reports. Originally
containing 4K studies, Demner-Fushman et al. (2012) refined it to a subset of 3.4K report-summary
pairs, selected for the quality of imaging views and diagnostic content.

4.1.2 DPO dataset

To capture clinician preferences for summaries within a dataset suitable for DPO, we first processed
the results of an in vivo clinical reader study (Van Veen et al., 2024). To do this, we aggregated
individual scores for each summary to determine its overall favorability among clinicians. Summaries
were classified based on their aggregate scores, with those receiving positive scores deemed preferred
or ’winning’ and those with negative scores marked as less favored or ’losing’. We then structured
the dataset to align each summary with its corresponding clinician preference, creating pairs of
winning and losing responses for each unique input (For an example result from reader study and its
corresponding structured sample, please see Tables A1 and A2, respectively).

4.2 Evaluation method

In our evaluation methodology, we employed a comprehensive set of metrics to assess the quality
of the generated summaries. BLEU (Papineni et al., 2002) measures syntactic similarity through
n-gram overlap, while ROUGE-1 and ROUGE-2, and ROUGE-L (Lin, 2004) evaluates the unigram,
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bigram, and longest common subsequence overlap, respectively. To specifically address the factual
accuracy critical in the medical domain, we also incorporated F1Radgraph (Delbrouck et al., 2022)
and F1chexbert (Smit et al., 2020) metrics. These two metrics, based on pretrained models, focuses
on factual correctness by leveraging semantic rewards from annotated entities for accurate assessment
of radiology report summaries. In our vivo experiments in 4.4.1 and 4.4.3, we reported all of the
above-defined metrics, whereas in comparison 4.4.2 with other methods we only utilized ROUGE-1,
ROUGE-2, and ROUGE-L as commonly done in the respective studies.

4.3 Experimental details

PyTorch, Transformers1, TRL2, and PEFT3 libraries are used extensively in our implementations.
Table 1 summarizes the hyperparameters used, as well as training times for SFT and DPO training
procedures.

Table 1: Hyperparameters used in our experiments for QLoRA, SFT, and DPO
Task Type Quantization r (rank of adaptation) α (scale) Dropout

QLoRA seq2seq 4 bit 8 32 0.1

Learning Rate Batch Size Beta Loss Number of Steps Optimizer Training time

SFT 1e-3 6 - Cross-entropy 5 epochs AdamW 7710s
DPO 1e-5 4 0.1 Log-sigmoid 500 steps RMSProp 123s

4.4 Results

4.4.1 Benefits of Direct Preference Optimization (DPO)

To quantitatively assess the impact of DPO, we compared the performance of the models after
SFT (w/o DPO) and after DPO. Results of this experiment are displayed in Figure 1, which clearly
demonstrate the superior performance of our model in all metrics when augmented with DPO. Besides
tailoring the summarization process more closely to clinician needs, quantitative results are also
indicative of DPO’s capacity to elevate the overall quality and relevance of the generated summaries.
This alignment can be especially critical in clinical settings, where precision and conciseness in report
summarizations can significantly impact diagnostic and treatment decisions.

4.4.2 Comparison Against State-of-the-art

In this section, we present a quantitative comparison of our models against the state-of-the-art
proprietary and open-source baselines for radiology report summarization on the Open-i dataset,
as illustrated in Table 2. Here we reported ROUGE-1, ROUGE-2, and ROUGE-L metrics as done
in the previous studies, which are widely recognized for assessing performance in clinical text
summarization studies.

Proprietary models, particularly those developed on iterations of GPT, serve as the current gold
standard in the field. Particularly, the method by (Van Veen et al., 2024) based on in-context learning
(ICL) via GPT-4 represents the apex of performance among proprietary solutions, which is followed
by ImpressionGPT method based on a similar approach albeit leveraging GPT-3.5. Notably, our
approach impressively surpasses the performance of ImpressionGPT, a proprietary model with which
had been considered a benchmark. We would like to note that ImpressionGPT operates with a number
of parameters that is orders of magnitude larger than those employed in our approach.

Similarly, among open-source models, our proposed methods demonstrate notable superiority. The
variant incorporating the DPO framework significantly outperforms all other open-source competitors,
achieving the highest scores in all metrics. This not only showcases its efficacy in summarizing radio-
logical findings accurately but also renders it a promising and light-weight open-source alternative to
proprietary models.

1https://huggingface.co/docs/transformers/en/index
2https://huggingface.co/docs/trl/en/index
3https://huggingface.co/docs/transformers/main/en/peft

5



Figure 1: Improvements in model performance achieved via DPO). This bar plot compares the model’s
scores across various metrics, both with and without DPO, highlighting the effect of integrating
clinician feedback.

Table 2: Quantitative Comparison of Baseline Models for Radiology Report Summarization on the
Open-i Dataset. Proprietary models are regarded as the golden standard in the field, and the best
performing open-source model is highlighted in boldface. Note that the results reported in this table
are adopted from the respective papers.

Proprietary Baselines
Model ROUGE-1 ROUGE-2 ROUGE-L

GPT-4 ICL Van Veen et al. (2024) - - 68.2
GPT-3.5 ICL (ImpressionGPT) (Ma et al., 2024) 66.3 54.9 65.4

Open-Source Baselines
Ours 66.5 57.2 65.5
Ours w/o DPO 65.5 56.2 64.6
Jinpeng et al. (Hu et al., 2022b) 64.97 55.59 64.45
WGSUM (LSTM) (Hu et al., 2021) 64.32 55.48 63.97
WGSum (Trans) (Hu et al., 2021) 61.63 50.98 61.73
CAVC (Song et al., 2019) 53.18 39.59 52.86
Transabs (Song et al., 2019) 59.66 49.41 59.18
ChestXRayBERT (Cai et al., 2023) 41.3 28.6 41.5
LEXRANK (Erkan and Radev, 2004) 14.6 4.4 14.1

4.4.3 Effect of DPO losses

Throughout our experiments, we have used sigmoid loss on the normalized likelihood to fit a logistic
regression, based on the Bradley-Terry model (Bradley and Terry, 1952). To investigate how the
type of loss function used affects learning preferences, we conducted an ablation study. To this
end, we compared our vanilla log-sigmoid function with alternative approaches, such as RSO (Liu
et al., 2024) based on hinge loss; IPO (Azar et al., 2023) that averages over log-likelihoods of
completions through the beta parameter; KTO (Ethayarajh et al., 2024) that directly maximizes the
utility of generations instead of the log-likelihood of preferences. Note that variations among the
alternative loss functions—RSO, IPO, and KTO—highlight trade-offs between addressing overfitting
and optimizing performance, with each exhibiting strengths in different aspects of preference learning.
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Selected vanilla DPO loss function mostly outperforms alternative approaches (RSO, IPO, KTO)
across metrics, suggesting its superior capability in capturing preference over other alternatives (Table
3).

Table 3: Ablation Study on Loss Functions for Preference Learning
Loss Function BLEU ROUGE-1 ROUGE-2 ROUGE-L Radgraph CheXbert

Vanilla DPO 44.5 66.5 57.2 65.5 61.8 79.5
RSO(Liu et al., 2024) 44.2 66.4 57.0 65.5 61.9 79.0
IPO (Azar et al., 2023) 44.2 66.1 56.9 65.1 61.7 78.7
KTO (Ethayarajh et al., 2024) 43.6 65.5 56.6 64.6 61.3 78.5

5 Analysis

5.1 Radiology Report Summarization Outputs

To analyze and identify which model offers summaries with greater clinical relevance, we examined
the outputs of DPO and SFT models in two specific example scenarios. Summaries generated by
the two models for two scenarios, along with the input report and ground-truth target summaries are
provided in Table 4a and 4b.

Case 1: Right Upper Lobe Pneumonia The target summary highlighted the need for a follow-
up for "Right upper lobe pneumonia." The DPO model suggested opacities potentially indicative
of atelectasis but misplaced them to the left side. The SFT model, on the other hand, lacked
actionable insights for clinical follow-up, similarly misplacing the pathology. Despite the DPO
model’s mislocalization, its effort to interpret pathological findings offers slightly more clinical utility
by attempting a diagnosis.

Case 2: Streaky Left Basilar Airspace Opacities In this case, the target summary considered the
opacities as possibly indicative of atelectasis or infection. The DPO model specifically suggested
atelectasis as a cause, closely matching one part of the target summary but missing the broader
differential diagnosis. Conversely, the SFT model described the opacities as "stable," offering a less
informative summary that does not guide treatment or follow-up actions.

These qualitative analyses suggests that DPO can effectively align model outputs with the needs
of clinical practice, as evidenced by its tendency to generate summaries that not only describe
findings but also suggest potential diagnoses and follow-up actions. This characteristic is not trivially
observable in outputs from SFT model, which tend to provide less actionable information. DPO’s
training strategy, which hinges on clinician-selected preferences, inherently steers the model toward
a decision-oriented summarization style. This focus on actionable insights could be particularly
valuable in clinical settings where the quality of information synthesis directly influences medical
decision-making, underscoring DPO’s potential to enhance the utility of automated summarization
tools in healthcare.

6 Conclusion

By aligning LLMs with fine-tuning methods like Supervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO), our approach not only matches with but also surpasses current open-source
benchmarks. We used a sequence-to-sequence model, equipped efficient model adaptation techniques
such as QLoRA. Our introduction of Direct Preference Optimization (DPO) as an integral component
of the model training process has resulted in notable improvements in the generation of summaries
that are both precise and clinically relevant. Empirical results highlighted our model’s superior
performance across key metrics. Moreover, our findings emphasize the potential of open-source
models, which offer the healthcare community an opportunity for extensive customization and
collaboration, thereby accelerating innovation and reducing barriers to access.

Future work in enhancing clinical text summarization models will benefit from scaling up the
model architecture sizes to that of state-of-the-art, potentially increasing the model’s performance.
Complementing these advancements, the efficacy of DPO-tuned models should be rigorously validated
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Table 4: Comparison of Radiology Report Summaries Across Different Cases

(a) Case 1: Right Upper Lobe Pneumonia

Report The patient is rotated to left. The cardiomediastinal silhouette is
normal in size. XXXX lucency along the left ventricular XXXX
XXXX related to interface between the heart and aerated lung. Patchy
right perihilar/upper lobe opacities, which abut the XXXX fissure on
lateral projection. No pneumothorax or large pleural effusion.
Exaggerated thoracic kyphosis. No definite acute bone abnormality.

Target Summary Right upper lobe pneumonia. Consideration may be given for
followup chest x-XXXX, following appropriate therapy.

DPO Model
Output

1. Left basilar opacities, possibly related to atelectasis. 2. Patchy
right perihilar/upper lobe opacities, which abut the XXXX fissure on
lateral projection.

SFT Model
Output

1. XXXX lucency along the left ventricular XXXX related to
interface between the heart and aerated lung. 2. Patchy right
perihilar/upper lobe opacities, which abut the XXXX fissure on lateral
projection.

(b) Case 2: Streaky Left Basilar Airspace Opacities

Report Cardiomediastinal contour and pulmonary vascularity stable and
within normal limits. Lung volumes are slightly low. There are streaky
left basal opacities. No pleural effusion or pneumothorax. No acute
osseous findings. No free air is demonstrated.

Target Summary Streaky left basilar airspace opacities, which could reflect atelectasis
and/or infection.

DPO Model
Output

Streaky left basilar opacities, suggestive of atelectasis.

SFT Model
Output

1. Stable left basilar opacities.

through clinician-led reader studies, ensuring that model outputs align with the practical demands
of medical practice. Furthermore, data augmentation techniques such as leveraging seed models or
incorporating findings from advanced proprietary models could provide a broader and more enriched
dataset for training. Such strategies will be pivotal in refining the models to better assist healthcare
professionals and improve patient care.
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A Appendix

A.1 DPO dataset structure

Instruction Output Target Scores from Readers
q1 q2 q3

5=there is no intracra-
nial hemorrhage...

5=1. No acute
intracranial hemor-
rhage...

5=1. stable size of
ventricles...

1 1 1

1 0 1
-1 0 -2
2 1 0
2 2 2

Table A1: A sample from the reader study and corresponding clinician scores reflecting their
preference of output over target. For each unique report, scores reflect the evaluated dimensions of
completeness (q1), correctness (q2), and conciseness (q3) from five different readers. The instruction
column provides the input radiology report; the output is the model’s generated summary; and the
target is the reference summary provided by medical experts.
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Report Winning Summary Losing Summary
there is no intracranial hemor-
rhage...

1. No acute intracranial hem-
orrhage...

1. stable size of ventricles...

Table A2: A sample from the processed dataset used for training the reward model. The ’Instruction’
column contains the original clinical text that needs summarization. The ’Winning Summary’ column
represents the summary that aligns with clinician preferences, while the ’Losing Summary’ column
represents the alternative summary not preferred by the clinicians, based on the aggregate scores.
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