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Abstract

In the realm of natural language processing, Large Language Models (LLMs) like
GPT-4 have set benchmarks for generating coherent responses across a diverse
range of user queries. Yet, the propensity of these models to fabricate information
or "hallucinate" poses a significant challenge, undermining the reliability of their
outputs. This paper introduces a novel approach to uncertainty estimation tailored
to claims within long-form text generations without assumptions of any resource
retrieval or model internal access, aiming to fortify trust in LLM outputs. Unlike
traditional methods that apply uncertainty estimation at a broader claim level, our
methodology utilize more information through graph structure. Through com-
parative analysis against standard baselines, our approach demonstrates superior
performance in identifying hallucinated content, with marked improvements in
handling obscure or "long-tail" knowledge domains. Furthermore, we pointed out a
prototype of uncertainty-aware decoding that effectively diminish the incidence of
hallucinations. This advancement not only contributes to the enhancement of LLM
reliability but also paves the way for future research in the domain of trustworthy
AL
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2 Introduction

In the rapidly evolving landscape of artificial intelligence, Large Language Models (LLMs) have
demonstrated remarkable capabilities in generating human-like text (OpenAl et al.| [2024; Team
et al., 2023} [Touvron et al., |2023)) , which has profound implications for a myriad of applications
ranging from automated content creation (Agossah et al.| [2023)) to real-time decision support systems
(Umerenkov et al., [2023). However, LLM is not trusted in many application areas like medical
since it often generates ungrounded or hallucinated output (Bang et al., 2023} |Guerreiro et al., 2023)).
Instances of hallucination and unreliability in model outputs not only compromise the integrity
of the generated content but also pose substantial risks in high-stakes scenarios such as medical
diagnostics, legal advice, and safety-critical systems. Thus, improving the mechanisms for estimating
and communicating the uncertainty of LLM generations becomes not just an academic pursuit but a
crucial step towards mitigating the risks associated with their deployment.

The scholarly exploration into methods of uncertainty estimation unveils promising avenues to tackle
these challenges, advocating for a shift towards more accountable and reliable artificial intelligence
applications. Traditional uncertainty quantification, predominantly focused on classification tasks,
has recently garnered interest in the context of Natural Language Generation (NLG), highlighting
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the necessity for innovative approaches. Prevailing methods (Kuhn et al.| 2023; [Tian et al., 2023}
Lin et al., 2023)) often provide a singular uncertainty score for an entire text output, which proves
uninformative for longer generations and lacks the granularity needed for effective manipulation
and enhancement of the decoded text. This highlights a pressing need for more refined uncertainty
estimation techniques, such as claim-wise uncertainty, which offer a more detailed understanding and
improvement scope for generated text.

In this study, we introduce a novel approach to uncertainty estimation and further improve decoding
in Large Language Models (LLMs) that offers significant advancements over traditional methods.
Our contributions include:

* We present a novel graph-based framework that constructs a bipartite graph from LLM
outputs to analyze the relationships between various outputs and their claims. This approach
leverages closeness centrality to assess the credibility of claims, providing a comprehensive
tool for hallucination detection in NLG.

* Alongside our methodology, we pointed out a prototype of uncertainty-aware decoding that
explicitly demonstrates the effectiveness of integrating claims from multiple generations
alongside our graph-based uncertainty estimation method.

3 Related Work

3.1 Uncertainty Estimation of LLM

The exploration of uncertainty quantification has established itself as a pivotal field of inquiry within
various machine learning disciplines, including natural language processing (NLP). Prior studies have
predominantly been classified into three methodologies: likelihood-based approaches (Kadavath et al.|
2022; Kuhn et al.,|2023), consistency-based approaches (Xiong et al., 2023)), and verbalization-based
strategies (Lin et al.} 2022; [Tian et al.| 2023). Notably, consistency-based methods are often regarded
as a form of Monte Carlo estimator for likelihood-based approaches, typically operating under a
black-box assumption.

Nonetheless, a significant portion of the extant literature focuses on quantifying the uncertainty of
entire generative outputs, which inherently restricts these analyses to relatively brief and unidimen-
sional narratives. Aiming for a more refined analysis, Manakul et al.|(2023)) advances the concept
of self-consistency (Wang et al.,[2023)) to assess uncertainty at the sentence level within extended
textual outputs, presupposing a black-box large language model (LLM) framework. Building upon
this, Mohri and Hashimoto| (2024) further elaborates this approach to the level of individual claims,
with a particular emphasis on conformal prediction techniques.

4 Approach

Task. Given an prompt x and its output y from an Language Model, we want to break the output y
into a set of claims C' that are included in y. Meanwhile, for each claim ¢ € C, it is associated with a
score s, such that the score is positively correlated to the correctness of c. It is crucial to highlight
that our approach treats the language model as a black-box entity, meaning that we operate without
access to the model’s internal details or requiring any additional resources.

The high level idea of our method is: given a prompt input x, we can sample several generations
from our LLM from using the same input, and the relationship between generations and all claims
within them could be represented as a bipartite graph. We propose an method using some graph-based
metrics like closeness centrality as a good uncertainty indicator, and show it is highly correlated to its
correctness. In the subsequent sections, we will detail the construction of the consistency graph, the
derivation of the uncertainty score, and an prototype of uncertainty-aware decoding.

4.1 Graph Construction

This section outlines our methodology for constructing a bipartite graph G = ((N1, Na), E) from
a given input z, using a large language model (LLM). The constructed graph G captures the rela-
tionships between the LLM’s outputs and the claims contained within these outputs. Specifically,



N7 denotes the set of outputs generated from the input =, N» represents the set of claims identified
within those outputs, and an edge e € E indicates the association between an output o € N; and a
claim ¢ € N,. We detail the construction process for the output nodes (1), claim nodes (/V2), and
the edges (£) below.

Output Nodes: Upon receiving an input prompt x, such as “Tell me a bio of Billy Snedden,” we
generate an initial output answer go using an LLM with the temperature parameter set to ¢ = 0.
Subsequently, we generate P — 1 alternative outputs with the temperature parameter adjusted to
t = 1, resulting in a series of generations g, ..., gp—1. This process produces a set of generations
Ny ={g0,...,9p—1}, where the size of N is equal to P.

Claim Nodes: With the set /Ny constructed, we employ a method analogous to those described
in [Mohri and Hashimoto| (2024); Min et al.| (2023)), prompting the same LLM to decompose its
long-form output into discrete claims for each g; € Ny, denoted by BD(g;) = C;, where C; is a set
of claims contained within g;. The prompt is detailed further in appendix.

To amalgamate all distinct claims from C; based on semantic similarity, we prompt the LLM to merge
C; into a comprehensive set of claims. Formally, we define a comprehensive union of all unique,
semantically distinct claims as C, with the power set of C represented by P(C).

We introduce a union function M : P(C) x P(C) — P(C), where s € M(S1,53) < s €
S1 or s € Sy. This function is approximated by sequentially prompting the LLM to merge two sets
of claims, formally, Hy = Cy, H; = M(H;_1,C;),V1 > ¢ > n. This will result in a cumulative set
H,, that encompasses all claims across all generations, thus forming our set of claim nodes Ns.

Edge Construction: The bipartite graph is constructed by linking output generations in /V; to
the claims in N5, where an edge between a generation g and a claim c is established if g directly
mentions c¢. The methodology for determining the existence of an edge is aligned with practices
outlined in previous studies, leveraging LLM prompts for accurate determination. We adopt the same
prompt from Manakul et al.[(2023).

4.2 Uncertainty Estimation from Graph

Drawing on the premise that claims enjoying broader support tend to be more proximate to all nodes
within a graph, we leverage the principle of closeness centrality for a claim within such a graph as a
metric to gauge uncertainty. Specifically, the uncertainty U (v) associated with a fact v is quantified
by its closeness centrality, mathematically expressed as:
N -1
Uv) = — ey
s )

where N represents the aggregate count of nodes in the graph, and d(u,v) denotes the distance
between nodes u and v. Closeness centrality thus serves to mirror a claim’s capacity for dissemination
throughout the network, indicative of its potential for broad recognition and corroboration across
generations.

To further refine this model, we introduce three heuristic distance measures: the shortest path length
distance (dyanina), the verbalized confidence distance (d,.), which cumulates the LLM’s verbalized
confidence deficits along a given path, and the combined distance (d¢ombinea) that synthesizes both
elements. For any two nodes u, v within a graph, let the shortest path between them be denoted as
p = (p1, P2, -, Pn) With p; = w and p,, = v. To adjust the indentation of the following list, we use
the ‘enumitem* package:

* Shortest path length distance: dyanina(u, v) = Length(p) = n
* Verbalized confidence distance: dyc(u,v) =Y i, (1 — ve(p;))
* Combined distance: deombined (%, V) = dyanitla (6, V) + dye(u, v)
Notably, the conceptualization of distance is predicated on the shortest path between two nodes.

While our exposition presumes a singular shortest path for simplicity, in instances of multiple shortest
paths, an average of the distances as defined by each path is computed.



These metrics are designed not only to elucidate the structural attributes of the graph but also to
integrate the LLM’s confidence levels, thus offering a nuanced perspective on uncertainty. Contrary
to the principle of self-consistency, exemplified in prior works such as|Manakul et al.| (2023) and
Wang et al.|(2023)), which is limited to data from immediate neighbors (with a distance of 1), our
approach exploits the graph’s extensive architecture to consider interactions with multi-hop neighbors.
This enables a more holistic exploration of uncertainty by leveraging the graph’s wider connections.

4.3 Decoding with Uncertainty Aware

In our preceding exploration, we unveiled a technique for meticulously estimating uncertainty on
an individual claim basis. The current section unfolds a comprehensive framework designed for
uncertainty-aware decoding, which is instrumental in refining the generation of coherent long-form
text. This refinement is achieved by judiciously selecting claims that exhibit lower uncertainty levels
from a wide-ranging candidate pool. Here, we elucidate the operational mechanics of this framework
by integrating the introduction of its four fundamental components with their formal definitions.

The proposed framework for uncertainty-aware decoding seeks to optimize the generation of coherent
long-form content by prioritizing claims with lower uncertainty from a diverse array of candidates.
The decoding process within this framework is structured around four pivotal components: the
uncertainty estimation method, the claim selection pool, the threshold criteria for claim selection, and
the algorithm for integrating the selected claims into a cohesive narrative output.

Formally, we denote the uncertainty estimation function as U : C — R, where C symbolizes the
entire set of potential claims. The subset of these claims considered for selection is represented by
P C C, with ¢ serving as the threshold for determining claim selection. The integration function,
M : P(C) — X*, then maps the chosen subset of claims into a seamless textual output. The
operational subset of claims, P° = {c € P|U(c) < d}, forms the basis from which the Language
Model constructs its final output, denoted as M (P?).

Within this framework, the approach presented in Mohri and Hashimoto| (2024) can be interpreted as
follows: the uncertainty estimation method, U (-), is implemented via the claim-level SelfCheckGPT
technique; the claim pool, P, is derived from BD(gy); and the merging function, M, prompts the LM
to amalgamate the claims. We propose an innovative claim-wise uncertainty quantification approach
as a viable alternative for U(-). Additionally, we expand the claim pool, P, to incorporate claims
sourced from multiple generation cycles, denoted as H,, in Section4.1] thereby enhancing the model’s
capacity to generate nuanced and contextually rich outputs. We engage the same Language Model to
reconstitute Hy into a novel output, employing the methodology delineated in[Mohri and Hashimoto
(2024) as the merging function M (-). This process underscores the flexibility and adaptability of our
approach in generating content that is both relevant and contextually comprehensive.

5 Experiments

5.1 Data

Data This study harnesses subsets from two distinct datasets, FactScore and PopQA, to examine
the effectiveness of uncertainty estimation.

¢ FactScore Dataset Our research utilizes a subset from FactScore (Min et al., [2023)), which
includes 183 entities linked to Wikidata and Wikipedia, focusing on a subset of 40 entities
with around 1000 claims each, annotated as True, False, or Subjective. The annotation lever-
ages GPT-4-turbo, chosen for its low error rate, as outlined in the FactScore methodology
(Min et al.l 2023), ensuring accurate claim classification.

* PopQA Dataset Additionally, we incorporate the PopQA dataset (Mallen et al., [2023)),
containing 14,000 questions on a diverse range of subjects. We also focus on a subset of 40
entities, convert the data to input prompt like ‘Provide me with a paragraph detailing some
facts related to {subject}’.



5.2 Uncertainty Quantification Experiments

Baseline methods Current literature lacks works specifically focused on uncertainty estimation
at the claim level, presenting a challenge in identifying directly comparable baselines. We plan to
modify existing approaches for our purpose of claim-level uncertainty estimation. We will consider
two methods for adaptation:

¢ SelfCheckGPT (Manakul et al.l 2023, which utilizes a method of generating multiple outputs
from the same prompt and selecting the most frequent response for each sentence, focuses on
sentence-level analysis. We propose adapting this technique to assess uncertainty at the claim
level by tailoring it to the specific needs of evaluating individual claims.

 The approach of verbalized confidence, as introduced by Lin et al.|(2022)), involves the model
explicitly stating its confidence in its assertions.

Evaluation methods In evaluating our model, we utilize the Area Under the Receiver Operating
Characteristic (AUROC) curve and the Area Under the Precision-Recall Curve (AUPRC) as our
primary metrics. The AUROC serves as a fundamental measure of binary classification, indicating
the model’s proficiency in distinguishing between two classes. A higher AUROC score suggests a
stronger ability to correlate uncertainty with hallucination rates. Similarly, the AUPRC is crucial for
assessing performance in imbalanced class distributions, focusing on the precision-recall balance
and the model’s effectiveness in identifying positive instances amidst numerous negatives. A higher
AUPRC signifies better precision and recall performance, complementing the AUROC in evaluating
classification accuracy comprehensively.

Experimental details The LLM that we are using for paragraph generation are GPT-3.5-turbo and
GPT-4. To construct the set of claims N2, we use a greedy decoded generation (temperature ¢ = 0)
and NV = 4 generations with temperature ¢ = 1. As for the set of generations G, we are using M = 5
or M = 10 generations where 5 of the generations are those obtaining the claims, and the others are
also generated with temperature t = 1.

We collect all the claims in the data we used, label them using the method provided inMin et al.|(2023)).
Then, we filter out those claims annotated as ‘subjective’, thus, all the others can be determined as
True or False. This will results in a subset of claims C° C C. We calculate their uncertainty and
compute AUROC and AUPRC, where the results are shown in Tablem

Results and Analysis Table [T] we find that our proposed method consistently higher than the
baseline methods, even a near 10% gain in GPT-3.5-turbo case, and the gain is relatively robust for
different sizes of generation set, M. This suggests that our method excels in identifying correctness-
correlated uncertainty within these datasets, thereby enhancing the detection of hallucinations.

Setup GPT-3.5,M =5 | GPT-3.5, M =10 GPT-4, M =5 GPT-4, M =10

Metric AUROC AUPRC | AUROC AUPRC | AUROC AUPRC | AUROC AUPRC
o | SelfCheckGPT | 0.831 0.81 0.852 0.836 0.811 0.821 0.823 0.852
1) Verbalized 0.781 0.71 0.781 0.7 0.723 0.727 0.711 0.731
:Z: CC (dvanitia) 0.902 0.89 0.904 0.894 0.85 0.851 0.858 0.873
3 CC (dvo) 0.884 0.866 0.882 0.857 0.8 0.827 0.792 0.83
B CC (deombinea) 0.92 0.907 0.922 0.911 0.862 0.873 0.863 0.882
SelfCheckGPT | 0.677 0.519 0.704 0.577 0.693 0.577 0.698 0.58
< Verbalized 0.578 0.455 0.614 0.495 0.517 0.486 0.515 0.484
%_ CC (dvanilia) 0.717 0.631 0.74 0.662 0.755 0.725 0.751 0.713
£ CC (dvo) 0.621 0.493 0.684 0.633 0.505 0.53 0.511 0.534
CC (dcombined) 0.704 0.608 0.753 0.687 0.601 0.594 0.613 0.607

Table 1: AUROC obtained from different methods using GPT-series models with number of genera-
tions M € {5,10}. CC stands for closeness centrality we proposed using different distance metric
d. Results are presented separately for two different datasets, with a vertical column indicating the
dataset.



5.3 Experiments on Uncertainty-Aware Decoding

Dataset For our experiments, we utilized the same dataset as described in Section[5.2] ensuring
consistency across our analyses.

Baseline Methods Our study benchmarks the performance of uncertainty-aware decoding against
zero-resource decoding methods. We delineate the decoding configurations as follows:

1. Greedy Decoding: For a given input prompt x, this method generates a response with a
temperature setting of ¢ = 0. This approach is widely acknowledged for producing outputs
with high likelihood and serves as a fundamental baseline.

2. Conformal Factuality Decoding (Mohri and Hashimoto), 2024): This method, referred to
as ‘SelfCheckGPT + Greedy Generation’, utilizes the self-consistency uncertainty estimation
method (SelfCheckGPT, as detailed in Section[5.2) to exclude claims of high uncertainty
from the output generated through greedy decoding.

3. SelfCheckGPT + Multiple Generations: Implements the SelfCheckGPT method for
uncertainty estimation (U (-)) across multiple generations, aggregating claims from P =
U:L:o BD(g:).

4. CC + Multiple Generations: Applies our proposed closeness centrality (CC) method with
dcombined TOr uncertainty estimation (U (+)), utilizing a claim pool aggregated from multiple
generations, P = (J!__, BD(g;).

Evaluation Metrics To assess the efficacy of long-form text generation, we report on two critical
dimensions: the accuracy of the generated content (measured by FactScore as introduced in |Min
et al.| (2023))) and the quantity of true claims within the output. These metrics are averaged across the
dataset to provide a comprehensive view of performance.

Experiment Details Our findings are presented in a scatter plot (Figure [I)), with accuracy on
the y-axis and the quantity of true claims on the x-axis, highlighting the preference for methods
positioned towards the upper right. Uncertainty-aware decoding methods delineate a trajectory
within the plot when varying the uncertainty estimation threshold, represented by points (z;, y;)
corresponding to specific threshold settings. In contrast, the greedy decoding method is depicted as
a single point due to its lack of threshold variation. The experiments utilize GPT-3.5-turbo on the
FactScore dataset, aiming to illustrate the superiority of uncertainty-aware decoding in bolstering the
informativeness and reliability of generated content. This visual comparison elucidates the trade-offs
between information density and accuracy, shedding light on the inherent strengths and limitations of
each method.

Results and Analysis The analysis of Figure[I|reveals several key insights:

* The comparison between greedy decoding and conformal factuality decoding underscores
the accuracy benefits derived from incorporating uncertainty estimation, albeit at the cost of
reducing the volume of useful information.

* The evaluation of conformal factuality decoding against SelfCheckGPT + Multiple Gen-
erations indicates that utilizing a claim pool from multiple generations outperforms mere
greedy decoding in terms of accuracy for a given quantity of useful information, and con-
versely, provides more useful information for a given level of accuracy. This suggests that
incorporating multiple generations into the claim pool significantly enhances generation
quality.

* The comparison between SelfCheckGPT + Multiple Generations and CC + Multiple Gener-
ations highlights the efficacy of our CC uncertainty method in improving uncertainty-aware
decoding, emphasizing the value of a superior uncertainty estimation method in elevating
generation quality.

6 Conclusion

In conclusion, our study introduces an practical approach to uncertainty estimation in text generated
by LLMs with zero-resource required. This innovative graph-based methodology, alongside the
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Figure 1: This plot shows the tradeoff of output accuracy (FActScore) and the number of true claims
included in the output in the Factscore dataset, as the threshold varing.

development of an uncertainty-aware decoding prototype, marks a significant advance over traditional
methods. By leveraging a bipartite graph to intricately map the relationships between outputs and
claims and employing closeness centrality for assessing claim credibility, we offer a robust tool for
hallucination detection in NLG. Furthermore, the introduction of an uncertainty-aware decoding
prototype underscores the practicality of our approach in real-world applications, demonstrating
significant advancements over traditional uncertainty quantification methods.

Our methodology’s zero-resource nature signifies that it does not rely on extensive additional datasets
or external computational resources beyond what is already required for LLM operation. This aspect
not only enhances the accessibility of our approach but also underscores its practicality for a wide
range of applications.

However, it’s crucial to note the limitations associated with the intensive computation demanded
by the method’s requirement for self-prompting multiple times. While this ensures detailed un-
certainty estimation, it may lead to impractical computational costs for some applications. Future
work will need to focus on optimizing the computational efficiency of our approach, balancing the
comprehensive nature of our uncertainty estimation with the need for computational pragmatism.

By addressing these computational challenges and further refining our methodology, we aim to make
our uncertainty estimation approach even more versatile and applicable across various domains. This
will enhance the reliability, interpretability, and overall utility of LLM-generated text, paving the way
for more accountable and trustworthy Al applications in the future.
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