
Good Things Come to Those Who Weight: Effective
Pairing Strategies for Multi-Task Fine-Tuning

Stanford CS224N Default Project

Nachat Jatusripitak
Department of Computer Science

Stanford University
nachatj@stanford.edu

Pawan Wirawarn
Department of Computer Science

Stanford University
pawanw@stanford.edu

Abstract

Although multi-task fine-tuning is a promising technique for improving NLP
task performance in theory, empirical studies have shown that it can significantly
decrease performance compared to single-task fine-tuning. The goal of our project
is to explore effective task pairing strategies for improving fine-tuning performance
on three downstream NLP tasks. We characterize task relationships by comparing
the performance of models trained with paired tasks to single-task fine-tuned
baselines while controlling for dataset size. We observe overarching trends in
multi-task fine-tuning performance across different loss combination functions.
Our results show that paraphrase detection benefits significantly from multi-task
fine-tuning, especially when paired with semantic similarity. We find that unitary
scalarization outperforms other loss combination techniques but only with proper
weighting, which is necessary to realize performance improvements over single-
task models.

1 Key information

• Mentor: David Lim

• External Collaborators (if you have any): None

• Sharing project: Yes

• Team contributions: We conducted all of the research, programming, experiments, writing,
and poster-making as a pair. All of our work was done together with equal contribution.

2 Introduction

Multi-task learning emulates how humans learn multiple skills such that these skills can benefit
each other. For example, reading enhances a person’s ability to write because they gain a wider
vocabulary and incorporate new literary techniques into their prose. In the context of machine learning
models, Caruana (1997) characterizes multi-task learning as “an inductive transfer mechanism whose
principle goal is to improve generalization performance.” Multi-task learning involves using a shared
representation across multiple tasks while training on them in parallel. In theory, what the model
learns from one task can help it learn other tasks better.

However, the potential of multi-task learning has led to significant performance benefits in real-world
machine learning models. Previous studies have shown that multi-task learning can significantly hurt
model performance compared to conventional single-task training. These results have been attributed
to so-called “conflicting” tasks, which Yu et al. (2020) characterizes as the presence of conflicting
gradients between tasks during training. The problem of which tasks are considered “related” or
not remains an open question in machine learning research, given that there is no clear definition of

Stanford CS224N Natural Language Processing with Deep Learning



task relatedness (Worsham and Kalita, 2020). Understanding which tasks work well together is an
important step in realizing the benefits promised by multi-task learning.

The goal of our research is to study how tasks should be combined to effectively increase model
performance. In doing so, we answer two questions: “which tasks should be paired” and “how
should tasks be combined.” We fine-tune a pre-trained minBERT model on different task pairings and
observe how they affect task performance on sentiment analysis, paraphrase detection, and semantic
similarity. We characterize task relationships by comparing these scores to single-task fine-tuned
baselines while controlling for dataset size. In addition, we experiment with loss addition, unitary
scalarization, and PCGrad, to see which loss combination techniques are effective for our use case.

Our results show that paraphrase detection benefits the most from multi-task fine-tuning, followed by
sentiment analysis, and semantic similarity least of all. Paraphrase detection and semantic similarity
mutually benefit each other. We observe that unitary scalarization generally outperforms loss addition
and PCGrad. The strong performance of unitary scalarization biased towards a “main” task suggests
that multi-task fine-tuning should be viewed not as an approach to train a truly multi-purpose model,
but rather a technique to improve performance on a specific task.

3 Related work

Multi-task learning is not a new concept in machine learning literature. Caruana (1997) proposed
that multi-task learning could improve generalization by allowing features developed in the hidden
layer for one task to be used by other tasks in backpropagation. However, the same paper found that
multi-task learning sometimes hurt task performance.

A number of multi-task optimization (MTO) methods have been developed to address these per-
formance drops. Sener and Koltun (2018) solves for a Pareto optimal solution across multiple
task-specific loss objectives instead of combining these losses into a single objective. Yu et al. (2020)
uses gradient surgery to project conflicting task gradients onto each other, with positive results in
reinforcement learning tasks. However, work by Kurin et al. (2022) and Xin et al. (2022) dispute
the efficacy of MTO approaches, citing high memory and computational overhead as well as mixed
empirical results.

Other research has focused on the task relationships themselves. Zamir et al. (2018) studied task
relationships in the context of transfer learning, which Standley et al. (2020) built upon Zamir et al.
(2018) by performing a similar analysis for multi-task learning in computer vision. Standley et al.
(2020) discovered that some tasks improve others’ performance at the expense of its own. They found
that multi-task learning generally improved performance when conducted on a set of similar tasks.
However Standley et al. (2020) combined the task losses by averaging them; our study tests a wider
range of loss combination techniques in case performance is sensitive to the method used. We have
seen limited studies of task relationships in NLP literature, which is a gap that we aim to fill with this
research.

4 Approach

4.1 minBERT

We first completed a minimalist implementation of BERT, a transformer-based model that generates
contextual word representations (Devlin et al., 2018). We implemented minBERT by referencing the
skeleton code and the default project handout.

For each task, we implemented a prediction head consisting of a hidden block followed by a task-
specific block, shown in Figure 1. The hidden blocks consist of a dropout layer, a linear projection
layer, and a ReLU activation. Each task-specific block consists of a dropout layer, a linear projection
layer, and a task-specific activation. We chose the softmax function for sentiment classification, the
sigmoid function for paraphrase detection, and ReLU for semantic similarity, which are well-suited
for their respective tasks. The prediction heads take in the [CLS] token embedding and pass it through
the hidden block and then the task-specific block, returning the output.

2



Figure 1: Diagram of model architecture,
with task-specific prediction heads

Figure 2: Tokenization strategy for single sentence
and sentence pair inputs

We modified the skeleton code to implement our tokenization approach, which follows the procedure
described in Devlin et al. (2018). Figure 2 describes how we tokenized our inputs to the various tasks,
depending on the number of input sentences.

4.2 Controlling dataset sizes

In our preliminary experiments, we found that the unbalanced dataset sizes skewed performance
improvements towards tasks with larger datasets while hurting tasks with smaller datasets, motivating
the need to control for dataset size. These results can be found in Appendix A.

Some sampling strategies to address size imbalances include oversampling smaller datasets and
undersampling larger datasets. We decided to undersample larger datasets to avoid the problem of
overfitting on the smaller datasets. We use PyTorch Lightning’s CombinedLoader, set to ‘min_size’
mode, which stops sampling after the smallest dataset is exhausted. This approach ensures that all
fine-tuning sessions train the model on the same quantity of data for each task.

4.3 Fine-tuning on single and multiple tasks

We will sometimes abbreviate the task names using acronyms: sentiment analysis (SEN), paraphrase
detection (PAR), and semantic textual similarity (SIM). We implemented code to fine-tune minBERT
on combinations of these tasks. We use our implementation of the AdamW optimizer (Loshchilov
and Hutter, 2019) to minimize loss, saving model weights with the highest dev set score. We use
cross-entropy loss for sentiment analysis and paraphrase detection and mean squared error loss for
semantic similarity.

Our baselines are single-task fine-tuned models. As our experiment, we fine-tune minBERT on
all possible task pairings: SEN + PAR, PAR + SIM, and SEN + SIM. We combine losses using the
techniques described in the following section.

4.3.1 Combining loss gradients

The naive approach to combining task losses is to sum them:

Ladd = L1 + L2 ∇Ladd = ∇L1 +∇L2

where L1 and L2 are the losses for the first and second task, respectively.

Another approach for combining task losses is to perform unitary scalarization, where the combined
loss is a convex combination of the individual losses:

Lunit = αL1 + (1− α)L2 ∇Lunit = α∇L1 + (1− α)∇L2

where α ∈ [0, 1] is a weight parameter.

Yu et al. (2020) propose a multi-task optimization technique called PCGrad, a form of gradient
surgery, to address the problem of conflicting gradients. If two task gradients conflict (i.e. have
negative cosine similarity), PCGrad replaces the gradient of the i-th task ∇Li onto the normal plane

3



of another conflicting tasks’ gradient ∇Lj :

∇LPC
i = ∇Li −

∇Li · ∇Lj

∥∇Lj∥2

These projected gradients are then summed to form the combined loss gradient. We use Tseng’s
PyTorch implementation of PCGrad.

5 Experiments

5.1 Data

We use the Stanford Sentiment Treebank (SST) (Socher et al., 2013) for sentiment analysis, the Quora
dataset (Shankar Iyer, 2017) for paraphrase detection, and the SemEval dataset (Agirre et al., 2013)
for semantic textual similarity. The SST consists of 11,855 single sentences from movie reviews,
which are parsed into 215,154 unique phrases. Each phrase has a label of negative, somewhat negative,
neutral, somewhat positive, or positive. The Quora dataset consists of 400,000 question pairs with
labels indicating whether or not the pairs are paraphrases of each other. The SemEval dataset consists
of 8,628 sentence pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).

5.2 Evaluation method

We evaluate the scores achieved by the multi-task models against the baselines to quantify the impact
of task pairings on performance on the three downstream tasks. We use prediction accuracy for
sentiment analysis and paraphrase detection, and Pearson correlation for semantic similarity and
calculate the relative score change. Our absolute scores can be found in Appendix B.

5.3 Experimental details

We fine-tune minBERT on the following task groupings: (1) SEN, (2) PAR, (3) SIM, (4) SEN + PAR,
(5) PAR + SIM, and (6) SEN + SIM. We use a batch size of 8, hidden dropout probability 0.5, and
train for 10 epochs. We used weight decay 0.01, learning rate 10−5, ε = 10−6, β1 = 0.9, β2 = 0.999.
This process is repeated for each loss combination technique. For unitary scalarization, we test
weights from 0.1 to 0.9 in increments of 0.1.

5.4 Results

Note: we abbreviate the names of the unitary scalarization models in the form TASK1(α1) +
TASK2(α2). For example. SEN (0.2) + PAR (0.8) refers to the SEN + PAR task pairing with
unitary scalarization where SEN has weight 0.2 and PAR has weight 0.8.

5.4.1 Sentiment analysis

In the sentiment analysis task, we found that the SEN (0.4) + PAR (0.6) pairing and the SEN +
SIM pairing with loss addition scored the highest on the dev set, as shown by the heatmap in Table 1.
Both the SEN (0.4) + PAR (0.6) pairing and SEN (0.9) + SIM (0.1) pairing scored 1.35%
higher than the baseline. Loss addition did not improve the score relative to the baseline and PCGrad
only showed improvement for the SEN + PAR pairing.

We performed quadratic regressions for the unitary scalarization models to identify the relationship
between the value of the SEN weight parameter and the relative change in accuracy score on the SEN
task. The SEN + PAR trendline, shown in Figure 3, is loosely quadratic (R2 = 0.644) and shows
significant variance while the SEN + SIM trendline appears virtually linear (R2 = 0.909). Neither
seem to follow well-defined functions, but the accuracy scores fall off precipitously as α → 0.

4



Figure 3: Relationship between SEN loss weights
and relative SEN accuracy change Table 1: % change in SEN accuracy

relative to baseline by loss function used

5.4.2 Paraphrase detection

Figure 4: Relationship between PAR loss weights
and relative PAR accuracy change

Table 2: % change in PAR accuracy
relative to baseline by loss function used

In the paraphrase detection task, we find that the SEN (0.3) + PAR (0.7) pairing and the PAR
(0.6) + SIM (0.4) pairing score the highest on the dev set, as shown by the heatmap in Table
2. The SEN (0.3) + PAR (0.7) pairing scored 0.6% higher than the baseline while the PAR
(0.6) + SIM (0.4) pairing scored 1.56% higher than the baseline. Both loss addition and PCGrad
improved upon the baseline in the PAR + SIM pairing but not in the SEN + PAR pairing.

Both regression trendlines closely fit the data, with R2 = 0.939 for SEN + PAR and R2 = 0.897 for
PAR + SIM. The regression results, shown in Figure 4, suggest that the relative change in accuracy
score is quadratic and that there exists an optimal weight value around 0.75 for the SEN + PAR
pairing and around 0.6 for the PAR + SIM pairing. There is a similar falloff in accuracy as α → 0.

5.4.3 Semantic similarity

In the semantic similarity task, we found that the SEN + SIM pairing with loss addition, the PAR
(0.2) + SIM (0.8) pairing, as well as the baseline produced the highest Pearson correlation scores
on the dev set. As shown in the heatmap in Table 3, most models performed slightly worse than the
baseline. The SEN + SIM pairing with loss addition performed exactly equal to the baseline while
the PAR (0.2) + SIM (0.8) pairing scored merely 0.11% above the baseline. PCGrad performed
especially poorly on both task pairings.

5



Figure 5: Relationship between SIM loss weights
and relative SEN Pearson corr. change

Table 3: % change in SIM Pearson corr.
relative to baseline by loss function used

Our regression analyses in Figure 5 found a loosely quadratic relationship for both trendlines.
However, neither were particularly close fits, despite R2 = 0.802 for the SEN + SIM pairing and
R2 = 0.901 for the PAR + SIM pairing. Like the other tasks, the Pearson correlation score drops off
as α → 0.

5.4.4 Test leaderboard submission

We fine-tuned our models for 25 epochs to boost our scores for the test leaderboard. For sentiment
analysis, we chose the SEN (0.7) + PAR (0.3) model with no weight decay because we suspected
that weight decay caused some underfitting in sentiment analysis. For paraphrase detection, we chose
the PAR (0.8) + SIM (0.2) model with weight decay 0.01. For semantic similarity, we chose the
PAR (0.2) + SIM(0.8) model with weight decay 0.01.

Our leaderboard scores are 0.524 for sentiment analysis, 0.866 for paraphrase detection, and 0.898 for
semantic similarity, for an average score of 0.779. We were pleased with these results and attribute
them to the performance benefits from multi-task fine-tuning, which validates our approach.

6 Analysis

6.1 Discussion of experimental results

Paraphrase detection was the most receptive to multi-task fine-tuning among the three tasks. Accuracy
scores on the PAR dev set improved by up to 0.6% and 1.56% when paired with SEN and SIM,
respectively. In this task, multi-task fine-tuning improved on the baseline across nearly all loss
combination techniques, with the exception of low values of α in the unitary scalarization models
and some occasional outliers.

However, sentiment analysis and semantic similarity did not show the same improvement from
multi-task fine-tuning. Although this observation could indicate that there is something inherent
about the paraphrase detection task that enables it to improve more, a more likely explanation is
that the PAR models are simply under-trained. In our approach, we had to control for dataset size by
heavily undersampling from the PAR dataset, so the PAR models did not have as many opportunities
to learn, especially within 10 epochs. Therefore, it is plausible that the model benefited directly from
additional information regardless of the nature of the tasks.

Our results show that paraphrase detection and semantic similarity make a good task pairing. The
PAR + SIM pairing outperformed the SEN + PAR pairing on paraphrase detection while the PAR +
SIM pairing did not hurt performance on semantic similarity as much as the SEN + SIM pairing.
These results imply that PAR + SIM is a mutually beneficial pairing. Indeed, paraphrase detection
and semantic similarity are fundamentally related sentence pair tasks: sentences that are paraphrases
of each other often share a similar meaning, though the former is a binary classification task while the
latter is a regression task. Along these lines, the SEN + PAR pairing likely performed better than the

6



PAR + SIM pairing on sentiment analysis because both sentiment analysis and paraphrase detection
are classification tasks.

From our results, we see that multi-task fine-tuning generally led to modest performance improve-
ments. The strong overall performance of unitary scalarization with α > 0.5 indicates that weights
should be biased towards one task rather than being split equally. Intuitively, biased weighting is
equivalent to the model being focused on one main task while learning from another auxiliary task on
the side. When α becomes too small, we put more emphasis on the auxiliary task than on the main
task. The model becomes “distracted” by the auxiliary task, focusing too much on it, leading to the
performance dropoff that we observed. On the other hand, equal weighting leads to a model that is
decent at both tasks but good at neither: a jack-of-all-trades but a master of none. This idea explains
why PCGrad performed better than loss addition but worse than unitary scalarization; PCGrad retains
loss addition, but with additional treatment of conflicting gradients.

6.2 Qualitative evaluation of model behavior

We proceed with a qualitative evaluation of some model behavior by computing confusion matrices
for sentiment analysis and paraphrase detection, and generating scatterplots for semantic similarity.
For each task, we select the top performing models and compare their behavior to the baseline to
understand how particular task pairs affect the distribution of predicted classes and values.

Figure 6: Confusion matrices for sentiment analysis task.
Models (left to right): SEN baseline, SEN (0.4) + PAR (0.6), SEN (0.1) + SIM (0.9)

Sentiment analysis: SEN + PAR is better than the baseline and SEN + SIM at predicting the ‘some-
what negative’ class accurately. With over 200 examples in the ‘somewhat negative’ class, this
comparative advantage accounts for SEN + PAR’s high performance on sentiment analysis, even
though it is worse than the baseline at predicting the ‘somewhat positive’ class. As shown in Figure
6, SEN + PAR tends to falsely classify these examples as ‘neutral’ and ‘somewhat negative.’ On
the other hand, SEN + SIM is better than the baseline and SEN + PAR at predicting the ‘negative,’
‘neutral,’ and ‘positive’ classes, which have fewer examples between them. As a regression task
that predicts values across a continuous range, SIM may have influenced the model to discern inputs
across the whole sentiment spectrum with more nuance.

Paraphrase detection: Both top-performing SEN + PAR models are better at detecting paraphrases
but worse at detecting non-paraphrases than the baseline, as shown in Figure 7. This change could be
caused by the presence of SEN, but the exact effect on this behavior is unclear because the model with
lower SEN weight was better at detecting paraphrases than the one with higher weight. Meanwhile,
PAR + SIM outperformed the baseline in detecting both paraphrases and non-paraphrases with no
clear drawbacks. It is clear from this analysis that PAR benefits more from being paired with SIM than
it does from SEN under our experimental conditions.

Semantic similarity: We generated a scatter plot for each of these models to compare the predicted
values to the true values and overlaid a line to represent ideal model predictions. As shown in Figure
8 baseline predictions roughly follow this line with moderate variance but no apparent bias. With
PAR + SIM, there is a clear difference in predictions for examples with high true similarity values.
As shown by a leftward “curve” of the scatterplot, the PAR + SIM model tends to underpredict these
examples. A possible explanation is that this occurs due to the binary nature of PAR influencing the
model to make more clustered predictions. This bias is offset by PAR + SIM’s predictions being

7



Figure 7: Confusion matrices for paraphrase detection task.
Models (left to right): PAR baseline, SEN (0.4) + PAR (0.6), SEN (0.1) + PAR (0.9), PAR
(0.6) + SIM (0.4)

less spread out from the line, which explains its slightly higher Pearson correlation score than the
baseline. These effects are nearly absent in the case of SEN + SIM, where the overall plot looks
remarkably close to the baseline in variance and “slope,” corresponding to comparable performance
to the baseline.

Figure 8: Scatter plots for semantic similarity task with predicted and true label on the horizontal and
vertical axis, respectively. Models (left to right): SIM baseline, SEN + SIM with loss addition, PAR
(0.2) + SIM (0.8)

7 Conclusion

We investigate the impact of task pairings on multi-task fine-tuning performance on three downstream
NLP tasks and found that paraphrase detection benefits the most from multi-task fine-tuning, followed
by sentiment analysis and semantic similarity. Our results indicate that paraphrase detection and se-
mantic similarity are compatible because they mutually improve each other’s performance, especially
on paraphrase detection. Overall, unitary scalarization is an effective method for combining multiple
loss functions for multi-task fine-tuning. We find that unitary scalarization should be biased towards
a main task, which reliably receives a performance boost from the addition of an auxiliary task when
given correct weighting.

Although these results were backed by attempts to control for as many variables as possible, there
remain a number of limitations to our study. In particular, our study used only one random seed
and did not perform hyperparameter tuning due to computational and time constraints. Model
performance is highly sensitive to hyperparameters and other training parameters, so these results
may not generalize to all fine-tuning cases. In addition, our data on unitary scalarization performance
could benefit from more data points, which would come from fine-tuning models with smaller spacing
between weight values. As we mentioned, the paraphrase detection results should be interpreted with
caution because our approach highly undersampled its dataset, which may have led to underfitting
and further potential for learning if trained for more epochs.

From the limitations of our study, we see many avenues for further research in this area. In particular,
future work can be done to extend the benefits of unitary scalarization to PCGrad, which is a potent
technique in theory but underperformed in our experiments. It would be interesting to characterize
the sensitivity of multi-task fine-tuning to changes in hyperparameters. Finally, we see potential
to investigate task pairings for other tasks to see if they also increase performance compared to
single-task fine-tuning.

8



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Rich Caruana. 1997. Multitask learning. Machine learning, 28:41–75.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda.
2022. In defense of the unitary scalarization for deep multi-task learning. Advances in Neural
Information Processing Systems, 35:12169–12183.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization.

Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective optimization. Advances
in neural information processing systems, 31.

Kornél Csernai Shankar Iyer, Nikhil Dandekar. 2017. First quora dataset
release: Question pairs. https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
2020. Which tasks should be learned together in multi-task learning? In International Conference
on Machine Learning, pages 9120–9132. PMLR.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Joseph Worsham and Jugal Kalita. 2020. Multi-task learning for natural language processing in the
2020s: where are we going? Pattern Recognition Letters, 136:120–126.

Derrick Xin, Behrooz Ghorbani, Ankush Garg, Orhan Firat, and Justin Gilmer. 2022. Do current
multi-task optimization methods in deep learning even help?

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
2018. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3712–3722.

9

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1711.05101
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2209.11379
http://arxiv.org/abs/2209.11379


A Absolute task performance scores with imbalanced datasets

Note: these runs were performed with a different architecture and different losses. They only motivate
our decision to control for dataset size.

SEN accuracy score PAR accuracy score SIM Pearson correlation
Baseline 0.520 0.888 0.843
Loss Fn. SEN + PAR SEN + SIM SEN + PAR PAR + SIM SEN + SIM PAR + SIM
Addition 0.504 0.524 0.887 0.888 0.835 0.806

B Absolute task performance scores by task grouping and loss function used

SEN accuracy score PAR accuracy score SIM Pearson correlation
Baseline 0.519 0.836 0.895
Loss Fn. SEN + PAR SEN + SIM SEN + PAR PAR + SIM SEN + SIM PAR + SIM
α = 0.1 0.480 0.469 0.800 0.812 0.885 0.885
α = 0.2 0.503 0.477 0.819 0.828 0.891 0.890
α = 0.3 0.510 0.484 0.825 0.841 0.892 0.892
α = 0.4 0.526 0.489 0.828 0.843 0.892 0.894
α = 0.5 0.522 0.495 0.834 0.845 0.892 0.895
α = 0.6 0.511 0.509 0.839 0.849 0.894 0.894
α = 0.7 0.518 0.495 0.841 0.843 0.893 0.894
α = 0.8 0.509 0.515 0.834 0.848 0.894 0.896
α = 0.9 0.521 0.526 0.839 0.835 0.894 0.895
Addition 0.511 0.490 0.833 0.843 0.895 0.893
PCGrad 0.521 0.493 0.836 0.844 0.888 0.887

10


	Key information
	Introduction
	Related work
	Approach
	minBERT
	Controlling dataset sizes
	Fine-tuning on single and multiple tasks
	Combining loss gradients


	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Sentiment analysis
	Paraphrase detection
	Semantic similarity
	Test leaderboard submission


	Analysis
	Discussion of experimental results
	Qualitative evaluation of model behavior

	Conclusion
	Absolute task performance scores with imbalanced datasets
	Absolute task performance scores by task grouping and loss function used

