
minBERT and Multitask Learning Enhancements
Stanford CS224N {Default} Project

Naman Govil
Stanford University

namang7@stanford.edu
Mentor: Andrew Lee

Abstract

This project implements minBERT (based on the BERT model) and applies it
successfully to multiple downstream Natural Language Processing tasks such as
Sentiment Analysis, Paraphrase Detection and Semantic Textual Similarity. This
work leverages multi-task learning to update shared model parameters and improve
performance across all three tasks. Multi-task learning is a crucial technique to
enable sharing of parameters across tasks to reduce computational, storage and
energy overheads of task specific neural networks. In exploring improvements to
the model, techniques such as implementing a combined loss function incorporating
losses from each task, Gradient Surgery procedure to improve conflicting parameter
updates, random data sampling to avoid over-fitting on any one single task and
further finetuning by leveraging cosine similarity on the STS task are applied. The
results demonstrate that a BERT-based multi-task learning architecture, combined
with all the techniques listed above significantly improved model performance over
the baseline of sequentially training on each task by 19%.

1 Introduction

Natural Language Processing (NLP) is making tremendous growth in recent years thanks to advance-
ments in deep learning models like BERT (Bidirectional Encoder Representations from Transformers).
Devlin et al. (2019) show that BERT can achieve impressive performance when fine-tuned on various
downstream NLP tasks. Many existing methods for improving model performance on individual
NLP tasks rely on separate models per task. However, for systems that execute on resource (such as
compute, energy and memory) constrained devices like edge computing nodes or Mobile System
on Chips (SoCs), fine-tuned networks for individual tasks would be very costly and not a scalable
growth tactic. The goal of this project is to develop an effective multi-task learning architecture where
transformations and parameters can be shared for multiple end output goals. Additionally, it aims to
validate technical learnings from contemporary research that state training a model that learns shared
encodings can help improve the performance of each individual task and also generalizes well across
unseen tasks.

In this work, the three tasks considered are sentiment analysis (SST), paraphrase detection (PARA),
and semantic textual similarity (STS). The key ideas behind the approach applied are to first start
with a transformer-based pretrained model, then building task-specific heads on top of this model
which can be trained with task-specific data. Instead of training the heads separately, the heads will
all be trained together using a combined loss function along with a technique for avoiding conflicting
gradients, called gradient surgery (Yu et al., 2020). Furthermore, techniques such as random data
sampling to avoid overfitting as well as finetuning with cosine similarity to capture the semantic
similarity between similar sentence pairs (Reimers and Gurevych, 2019) are also applied. Finally, all
these approaches are combined together and model performance is reported. It achieves an average
score of 0.671, with SST dev accuracy of 0.520, PARA dev accuracy of 0.742 and STS dev correlation
of 0.501, thereby outperforming baseline in all three tasks, as detailed in section 4.4.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

Several recent high performing NLP models are based on the Transformer architecture which utilizes
multi-head attention (Vaswani et al., 2017), including the original BERT paper by Devlin et al. where
the authors additionally fine-tune independently on all the GLUE benchmark tasks (Wang et al.,
2018). In the paper "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks," the
authors present a model architecture consisting of two BERT models with shared weights where
embeddings from two input sentences are compared using cosine similarity and fed into a mean
squared error loss function. A similar technique to finetune and improve the performance of the
semantic similarity task head is applied in this work.

There has also been significant research in exploring multitask learning techniques. The paper
"MTRec: Multi-task Learning over BERT for News Recommendation" (Bi et al., 2022) introduced
a novel multi-task learning framework that incorporated downstream tasks as auxiliary tasks in
the training process. This approach resulted in deeper and more representative BERT embeddings,
leading to improved performance over the baseline single-task learning. The paper also successfully
utilized the Gradient Surgery (Yu et al., 2020) technique to resolve conflicting gradients and further
improve model performance. Both of these techniques are also applied in this work, and further, a
combination of cosine similarity finetuning alongside gradient surgery is also experimented with.

3 Approach

In this section, the baseline model architecture, classification pipelines and enhancements applied
to improve model performance are explained. The minBERT model consists of 12 transformer
layers with multiheaded self-attention and outputs bidirectional word embeddings which are used to
represent the sentences in high dimensional vector space. Details of the architecture can found in the
default project handout and skipped here for brevity.

3.1 minBERT Sentiment Pipeline

After implementing the minBERT model based on instructions in the project handout, as part 1, a
single-task classifier pipeline for sentiment analysis is developed. The [CLS] token embedding from
the final layer of BERT is extracted and passed through a dropout and a fully connected layer to
classify the sentiment of the sentence into one of five classes (negative, somewhat negative, neutral,
somewhat positive, positive). The sentiment analysis task utilizes cross entropy loss to pretrain and
finetune the model.

3.2 Multitask Pipelines

As part2, multitask classifier pipeline for the three downstream tasks is developed. The three classifier
pipelines are detailed as follows.

• Sentiment Analysis: The technique described above of using the [CLS] token embedding
from the final layer of BERT to represent the sentence and passing through a dropout and
fully-connected layer is applied. The output of the model is a set of 5 logits (unnormalized
values) for each sentence.

• Paraphrase Detection : The same pre-trained BERT model is applied on both sentences
separately. Then, the [CLS] token from both sentences are concatenated. This concatenated
vector is passed through a dropout and a fully connected layer to predict whether the two
sentences are paraphrases or not. The output of the model is a single unnormalized logit for
each pair of sentences.

• Semantic Textual Similarity : This pipeline is also constructed similar to paraphrase detection
above, by concatenating the two sentence representations and deriving one logit for the pair
of sentences.

3.3 Adam Optimizer

As suggested in the project handout, the Adam optimizer is implemented and utilized during training.
Adam optimizer is a stochastic optimization algorithm that computes adaptive learning rates for

2



different parameters by estimating the first and second moments of the gradients. This helps in
adapting to the varying importance of different parameters, thereby leading to faster convergence
compared to vanilla Stochastic Gradient Decent (SGD).

3.4 Baseline

The baseline used in this project is to create the multitask pipeline explained above and then train
each task sequentially on their respective datasets. That is, in each training epoch, train through the
entire dataset for each task one after the other. Cross entropy loss is applied as the loss function for
SST, Binary cross entry loss with logits is applied for PARA and mean square loss is applied for STS.

3.5 Extention 1: Multitask Learning to update shared parameters and random sampling

To leverage multi-task learning to update BERT, the first update made is to train on all three tasks
concurrently using a combined loss function which sums the losses from each task.

LTotal = LSST + LPara + LSTS (1)

In each training epoch, a batch from each of the 3 datasets is evaluated, adding together the 3 losses
and then taking an optimizer step. Since the three datasets had quite varying sizes (PARA having
a significantly larger dataset compared to SST/STS), in order to avoid overfitting on one particular
task, per each epoch I only iterate over the minimum number of batches across the three data sets. To
make sure good coverage over the entire dataset is achieved, the shuffle parameter in the PyTorch
DataLoader is used to make sure a random set of batches are picked every epoch. I also experimented
by iterating over the maximum number of batches across the three datasets and using itertools to
infinitely extend the smaller datasets but this significantly increased the training time (almost 5X)
without very meaningful improvement in model performance.

To retain the best model, the average of the three dev metrics - SST accuracy, PARA accuracy and
STS pearson coefficient is used, only overwriting the old model with the newly saved best model if it
achieves better average accuracy.

3.6 Extention 2: Applying Gradient Surgery

Next, I experimented with using gradient surgery to update parameters instead of just a plain loss sum
used in the previous approach. I used Wei-Cheng Tseng’s PCGrad (Tseng, 2020) to implement this
approach. PCGrad compares pairwise gradients in a round-robin manner and projects a conflicting
gradient onto the normal plane of the other. When two gradients are conflicting, i.e. their dot product
is negative, one gradient gi is updated as follows:

gi := gi −
gi · gj
∥gj∥2

gj (2)

3.7 Extention 3: Applying Cosine Similarity to the Semantic Text Similarity (STS)

Next, I experimented with introducing cosine similarity into the semantic textual similarity task heads
instead of using a linear layer. To implement this, the BERT embeddings for the two sentences are
generated separately first, then, their cosine similarity is calculated which is scaled to the range [0, 1]
with 0 implying orthogonal or unrelated sentences and 1 implying perfect overlap. The ground truth
labels are also scaled to the same range [0, 1] to use mean square error loss function while training.

3.8 Extention 4: Combining everything together

Finally, all the extensions listed above are combined into a singular model and performance is
evaluated.

4 Experiments

This section describes the datasets used and the evaluation metrics applied. It also explains the
experiment setup details and reports the results obtained.

3



4.1 Data

The datasets used for the sentiment analysis task comes are Stanford Sentiment Treebank (SST)
(Socher et al., 2013) and the CFIMDB dataset. The SST dataset has 11,855 examples, and the
CFIMDB dataset has 2,434 examples. The dataset used for paraphrase detection task is a subset from
Quora (Quo, 2020), and consists of 202,152 examples. Finally, the dataset used for STS task is the
SemEval STS Benchmark Dataset (Agirre et al., 2013), and consists of 8,628 examples. The splits in
the dataset are given in Table 1.

Dataset Training Set Dev Set Test Set
SST 8544 1101 2210

CFIMDB 1701 245 488
Quora 141,506 20,215 40,431

SemEval STS 6041 864 1726
Table 1: Datasets used and split training vs dev vs test

4.2 Evaluation metrics

The evaluation metric for SST and PARA tasks is accuracy, because it represents the proportion of
correctly classified instances among all instances in the dataset. For STS task, the Pearson correlation
coefficient is used as it measures the linear association between the predicted similarity scores and
the actual similarity score.

4.3 Experimental details

For both parts, there are two training modes: first, "pretrain", where BERT model parameters are
unchanged and classifier task head (or heads in part 2) is fully trained. Second, "finetune", where
all parameters including BERT model are updated. For both parts, the training and evaluation is
performed on an Nvidia Tesla T4 (Turing) 16 GB GPU on Google Cloud.

For part 1, the single-task BERT implementation is trained on the sentiment analysis task alone. The
hyperparameters used are number of epochs of 10, batch size of 8, learning rate of 1e-3 (pretrain) and
1e-5 (finetune), a dropout probability of 0.3, and a hidden layer size of 768. Both the SST dataset
and CFIMDB dataset are relatively small, training takes about 26 second per epoch on SST and 49
seconds per epoch on CFIMDB. The model with the highest dev set accuracy out of all epochs was
chosen as the best model. The results are summarized in the next section.

In part 2, with the addition of multitask learning on the three tasks and new datasets Quora and
SemEval STS, I realized the size of the dataset for PARA was significant larger compared to datasets
for SST and SemEval STS, so there was inequality in number of batches to be used for training. To
counter that, first, I experimented with increasing batch size to reduce the total number of batches.
Based on the available GPU memory on T4, I was able to increase the batch size to 16. Next, in
order to avoid overfitting on PARA, I experimented with random data sampling to figure out the
optimal strategy for picking the number of batches to train on, experimenting with least number
of batches across the three datasets to the maximum. I noticed a large increase in training time
when increasing the number of batches without significant gain in model performance. I opted for
quicker training iteration time to experiment with more changes and extension techniques. I also
experimented with epoch size of 10, 15 and 20 and noticed accuracy scores leveled off after 10
epochs. I experimented with varying dropout probability to 0.3, 0.5, and 0.8 and didn’t notice too
much variance in performance. The other hyperparameters that weren’t changed were learning rate
of 1e-3 (pretrain) and 1e-5 (finetune) and a hidden layer size of 768. The per epoch training time for
the varying configurations are also reported in the next section.

4.4 Results

For part 1, the results achieved for minBERT on sentiment analysis task on the dev set are presented
in Table 2.

4



Training Type SST Accuracy CFIMDB Accuracy
Pretraining 0.390 0.780
Finetuning 0.517 0.971

Table 2: Part 1 sentiment analysis dev results

For part 2, the results obtained for the baseline and various extensions employed as described in
section 3 are presented in Table 3. The model configurations experimented with are summarized as
follows:

1. Baseline: Sequential training per task per epoch as described in section 3.4.
2. Multitask : Concurrent training on the three tasks per epoch with combined loss function

and random data sampling as described in section 3.5.
3. Multitask + PCGrad : Multitask with addition of gradient surgery as described in section

3.6.
4. Multitask + Cosine : Multitask with cosine similarity finetuning for STS task as described

in section 3.7.
5. Multiask + PCGrad + Cosine : Multitask with gradient surgery and cosine similarity

combined, as described in section 3.8.

Model Configuration SST Accuracy PARA Accuracy STS Corr.
Baseline 0.391 0.670 0.262
Multitask 0.510 0.734 0.336

Multitask + PCGrad 0.514 0.734 0.346
Multitask + Cosine 0.513 0.741 0.458

Multitask + PCGrad + Cosine 0.520 0.742 0.501
Table 3: Part 2 Multitask Learning on SST, PARA and STS task dev results

The results on the test set with the combined model (highest performing) are presented in Table
4. The best overall result is obtained when all the optimization techniques are applied together, it
improves SST accuracy by 33% over baseline, PARA accuracy by 10.75% over baseline and STS
correlation by 91% over baseline. The overall average dev score across the three tasks jumps to 0.671
from the baseline score of 0.564, improving by 19%.

Applying cosine similarity for finetuning STS task classifier worked really well, which is inline with
expectations as cosine similarity should be a good measure for how closely related two sentences are.
Applying gradient surgery (PCGrad) didn’t give as much performance boost as I had expected. This
could be because the gradients across the three tasks weren’t completely orthogonal to each other.
This could be expected since the three NLP tasks are similar in goal with respect to each other and
rely on similar learning objectives.

Model Configuration Average SST Accuracy PARA Accuracy STS Corr.
Multitask + PCGrad + Cosine 0.669 0.528 0.743 0.472

Table 4: Part 2 Multitask Learning on SST, PARA and STS task test results

In Table 5, the training time per epoch in seconds is also reported, since this is an important aspect of
training deep learning models. For baseline (sequential training per dataset) the split is SST = 89
sec, PARA = 2100 sec and STS = 90 sec. The training time is significantly higher when processing
all batches of the Quora dataset every epoch, due to it’s large sample size. Applying techniques like
random sampling across epochs turned out to be an effective strategy to reduce iteration time and
retain decent model performance.

5 Analysis

Several experiments were conducted through the course of this project, including hyperparameter
tuning for balancing model performance with execution efficiency and iteration time. Increasing

5



Model Configuration Time (s)
Baseline 2279
Multitask 204

Multitask + PCGrad 258
Multitask + Cosine 201

Multitask + PCGrad + Cosine 259
Table 5: Part 2 Multitask Learning training time per epoch (in seconds)

batch size till the working set could fit in the GPU memory helped reduce the overall latency of
training. Applying random sampling across epochs was an effective way to tradeoff iteration time
and model performance. Varying dropout rates didn’t change model behavior much, which would
indicate a small amount of dropout must have been sufficient for preventing overfitting and thus the
smallest dropout rate was good enough. Including cosine similarity on the STS task improved the
performance because it is a measure of the similarity between two vectors in a high-dimensional
space, which is an effective way to compare the semantic similarity between two texts. Gradient
surgery wasn’t as effective as I had expected, hinting that parameter gradients across the three tasks
weren’t always orthogonal to each other.

Further qualitative analysis of the model were conducted by inspecting few model outputs on the
three tasks. For the SST task, shorter sentences with clear positive or negative language turned out
to be best test cases which predicted correctly with highest accuracy. For example, " A deep and
meaningful film ." got labeled correctly as (4). However, sentences without clear positive or negative
words, or mix of both, for example, " Good film , but very glum .", weren’t accurately classified,
it was labeled as (2) as opposed to (3). This signals that the model lacks the ability to adequately
interpret context or balancing moods like a human would.

For paraphrase detection, many inaccurate test cases were found which although conveyed the same
meaning but used different sequence (syntactics) and/or different connotations. For example, "Why
are Facebook, Google, and others not allowed in China?" and "Why are Google, Facebook, YouTube
and other social networking sites banned in China?" are classified as not paraphrases. This signals the
model doesn’t recognize synonymous words or phrases with lexical variations. Incorrect labeling was
also observed on sentences that contained overlap of similar words but conveyed different meaning.
For example, "How do I become great?" and "How do I become a great doctor?" are labeled as
paraphrases. This may be due to the fact that the model has not been trained on enough examples of
similar in sequence but not identical sentences.

For STS task, it was observed that model performance trails off when context based complex language
is applied. As an instance, the model failed to capture polysemy in sentences. For example, "Work
into it slowly" and "It seems to work" has the ground truth similarity of 0.0, while the model predicted
this with a similarity score of 3.7. This indicates an inability to differentiate between the different
meanings of the word "work".

6 Conclusion

During the course of this project, I delved into the inner workings of the BERT model, implemented
self-attention, built pipelines for pre-training and fine-tuning, and adapted the model for the three
NLP tasks. Through experimentation, I learnt hyperparameter tuning and how various aspects of
batch size and dataset size are reasoned about to efficiently train models on the GPU hardware
available. I implemented extensions like cosine similarity and gradient surgery and was able to
demonstrate significant model performance improvement for all three tasks over the baseline by using
an ensemble of all these techniques. I was especially proud of this achievement, given this work is
an individual project. Possible future work include applying cosine similarity to the PARA task as
well as experimenting with using cosine similarity as a feature alongside downstream linear layers
to improve STS/PARA accuracy. Another set of avenues could be exploring alternative finetuning
techniques for each task and improving embeddings by applying Multiple Negative Ranking Loss
Learning. A key limitation of this work was not exploring training on more data samples, beyond the
already provided datasets, this would have helped generalize the model more. Another limitation was

6



varying epoch sizes didn’t lead to more performance in the concurrent training phase, I would need
to spend more time to understand why.

References
2020. First quora dataset release: Question pairs.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013
shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

7

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2001.06782

	Introduction
	Related Work
	Approach
	minBERT Sentiment Pipeline
	Multitask Pipelines
	Adam Optimizer
	Baseline
	Extention 1: Multitask Learning to update shared parameters and random sampling
	Extention 2: Applying Gradient Surgery
	Extention 3: Applying Cosine Similarity to the Semantic Text Similarity (STS)
	Extention 4: Combining everything together

	Experiments
	Data
	Evaluation metrics
	Experimental details
	Results

	Analysis
	Conclusion

