
Finetuning minBERT for Downstream Tasks with
Multitasking

Stanford CS224N default Project

Niall Kehoe
Department of Computer Science

Stanford University
nkehoe@stanford.edu

Pranav Ravella
Department of Computer Science

Stanford University
pravella@stanford.edu

Abstract

Creating fine-tuned language models of pre-trained transformer language models
are extremely powerful tools that have made an immense revolution in the field
of machine learning. However, fine-tuning these models on single down stream
tasks do not generalize across various other tasks. We want to extend the Bidi-
rectional Encoder Representations Transformers (minBERT) model to make high
quality predictions on multiple sentence-level tasks, namely sentiment analysis,
paraphrase detection, and semantic textual similarity. The advantage of using one
model with a multitasking capability is it creates more robust and generalized
sentence embeddings which perform well on a variety of tasks. We experiment
with various method to create generalized embeddings extending off the minBert
model with techniques and avoiding task interference as much as possible, such as
Gradient Surgery (Yu et al., 2020), Gradient Vaccine (Wang et al., 2020), SMART
regularization techniques for fine-tuning (Jiang et al., 2019), model embedding
optimizations, and stronger multi-head networks

1 Introduction
The landscape of natural language processing (NLP) has experienced a notable shift with the emer-
gence of pre-trained language models like minBERT. However, a limitation of these models is their
inability to perform the best multiple tasks. For instance, fine-tuning them for a single specific task
often hampers their ability to generalize across other tasks. To address this issue, multi-task learning
has emerged as a promising strategy. This approach enables models to undergo training on multiple
tasks simultaneously, facilitating the exchange of knowledge between tasks and leading to enhanced
efficiency, generalization, and overall performance. In this experiment, we understand how minBERT
can be optimized on three different NLP downstream tasks: sentiment analysis, paraphrase detec-
tion, and semantic textual similarity. Some of these multi-tasking optimizations included Gradient
Surgery (Yu et al., 2020), Gradient Vaccine (Wang et al., 2020), SMART regularization techniques for
fine-tuning (Jiang et al., 2019), model embedding optimizations, and stronger multi-head networks.

To train our model, we utilized the Stanford Sentiment Treebank dataset (SST) (Socher et al., 2013),
the Quora dataset for paraphrase detection (Iyer et al., 2012), and the SemEval STS Benchmark
dataset (STS) (Agirre et al., 2013) for semantic textual similarity as the various tasks. Our findings
indicate that multitask fine-tuning with gradient vaccine, contextual embeddings in paraphrase and
semantic textual similarity detection tasks, and SMART regularization was the best method of creating
a model that compromise on all three tasks the best.

2 Related Work
When training for mutliple downstream tasks the gradients for each task can often conflict, making it
more difficult to converge. Yu et al. (2020) presents a possible solution (PCGrad) to this issue, by
presenting an approach for gradient surgery for multitask learning. This involves projecting a task’s

Stanford CS224N Natural Language Processing with Deep Learning



gradient onto the normal plane of the other tasks which have conflicting gradients. This technique has
been show in other multi-task applications to effective at improving convergence and performance.

Wang et al. (2020) also presents an alternative solution to the same problem of conflicting gradients in
multitasking models called Gradient Vaccine. Gradient Vaccine solves some of the problems faced by
PCGrad, one being the assumption that all tasks have similar gradient interactions. Gradient vaccine
works by changing the magnitude and direction of the gradients so that some gradient similarity
requirement is met.

Jiang et al. (2019) tackles the issue of over fitting with aggressive fine-tuning leading to poor
performance on unseen data. Jiang et al. (2019) tackles this by incorporating a regularization function
designed induce smoothing (reducing complexity/variability of decision boundaries) which improves
generalization. It also adds Bregman proximal point optimization which regularizes so that the
parameter updates during finetuning are not too aggressive. This makes for a smoother and more
stable convergence during training.

3 Approach
3.1 Implementation of minBERT and Baseline Model
We implemented the minBERT model, where we completed the multi-head attention layer of the
BERT transformer (Devlin et al., 2018) and the AdamW optimizer (Kingma and Ba, 2017). We
added 3 different heads for each respective task. Using our minBERT model, we pre-trained and
fine-tuned using just for each dataset to achieve a baseline on the task. For SST, the head takes
the embeddings from BERT, applies dropout, and then a linear layer that reduces the output to the
number of sentiment classes. For paraphrase and STS tasks, the embeddings of each of the two input
sentences after dropout is computed and combined together. Then, this is put through another linear
layer for the final outputs. For STS, the linear layer output dimension is equal to 5 or the number of
classes and the prediction is the largest outputted logit with a basic cross entropy loss function. For
paraphrase detection a binary logit is outputted and a binary cross entropy loss function is utilized.
We treat the SST task a regression method and use an mean-squared-error loss function from the final
output of the linear layer.

ŷsentiment = Linear(Dropout(BERT output))

ŷsts = Linear(Dropout(BERT
(1)
output), Dropout(BERT

(2)
output))

ŷparaphrase = Linear(Dropout(BERT
(1)
output), Dropout(BERT

(2)
output))

3.2 Sequential Multi-task Fine-tuning
Our multi-tasking baseline model used a multi-task approach for the three tasks aforementioned.
In every epoch, the model goes through all the batches for a single dataset and backpropagates
appropriately through all the batches. It then goes through the other two datasets in a similar manner
within the same epoch. The loss functions for each task is independent and not combined. This was
purely a sequential approach to give us a baseline of what training on all three datasets would result
(Algorithm 1).

3.3 Multi-task Fine-tuning with Round Robin Scheduling
Multi-tasking with the sequential method did not accurately capture how the different tasks should
be combined with each other when backpropogating through the model and updating the weights.
As a result, we utilized a round-robin approach to update the model with the knowledge of all three
tasks at once. For every batch index, we would predict each task and calculate the loss function.
Then, a gradient treatment would be applied to the three loss functions and an update would occur.
In this approach, we had to align the number of batches we could cycle through, since the number
of STS training examples was much smaller than the paraphrase training dataset. As a result, we
aligned the batch index to go up to the end of the STS dataset and then randomly sampled without
replacement for all of the datasets (Algorithm 2). This meant that the model effectively underfit for
the paraphrase dataset and slightly for SST dataset. It is important to note that the indexes for the
SST and paraphrase datasets have a saved state iterator that cycled once it reached the end of the
dataset. So after 1.5 epochs, the SST batch iterator would restart.

2



Algorithm 1 Multi-Tasking Baseline Model Training
1: procedure TRAINMULTITASK(model, num_epochs, SST_dataset, STS_dataset, Para_dataset)
2: Initialize model parameters θ
3: Initialize optimizer opt
4: for epoch← 1 to num_epochs do
5: TRAINONDATASET(model, SST_dataset, opt, sst_loss)
6: TRAINONDATASET(model, STS_dataset, opt, sts_loss)
7: TRAINONDATASET(model, Para_dataset, opt, paraphrase_loss)
8: end for
9: end procedure

10: procedure TRAINONDATASET(model, dataset, optimizer, loss_fn)
11: for batch ∈ dataset do
12: logits← model(batch_input, task)
13: loss← loss_fn(logits, batch_labels)
14: loss.backward()
15: optimizer.step()
16: optimizer.zero_grad()
17: end for
18: end procedure

Algorithm 2 Pseudocode for Multi-Task Round-Robin Model
1: batch_indices← range(len(sts_dataset))
2: for epoch in num_epochs do
3: for batch_idx in batch_indices do
4: sst_batch← sst_dataset[sst_batch_idx]
5: para_batch← para_dataset[para_batch_idx]
6: sts_batch← sts_dataset[batch_idx]
7: sst_outputs← model(sst_batch)
8: para_outputs← model(para_batch)
9: sts_outputs← model(sts_batch)

10: sst_loss← loss_function(sst_outputs, sst_labels)
11: para_loss← loss_function(para_outputs, para_labels)
12: sts_loss← loss_function(sts_outputs, sts_labels)
13: total_loss← sst_loss+ para_loss+ sts_loss
14: total_loss.backward()
15: optimizer.step()
16: optimizer.zero_grad()
17: end for
18: end for
19: Loss
20: L = LSST + LPara + LSTS

3.3.1 Gradient Surgery
In order to mitigate the issue of conflicting gradients in multi-task fine-tuning, we implemented
gradeint surgery using PCGrad (Yu et al., 2020), a method to mitigate opposing gradients from
impairing training. By projecting the task-specific gradients onto the normal plane of the gradient
vector sum and then consolidating them, PCGrad aims to reduce the interference between conflicting
gradients while still allowing the model to leverage the shared representations across tasks. This
equation represents the projection of the gradient vector g⃗i of the i-th task onto the normal plane of
another conflicting task’s gradient vector g⃗j .

g⃗i = g⃗i −
g⃗i · g⃗j
∥g⃗j∥2

g⃗j

After having [LSST ,LPara,LSTS ], PCGrad was then used appropriately with its optimizer.

3.3.2 Gradient Vaccine and Gradient Accumulation
The paraphrase task and STS are more similar compared to the SST task, and such should not be
treated with equal similarity to one another. Gradient vaccine (Wang et al., 2020) seeks too modify
the gradient of task i by adding a component that is proportional to the gradient of task j, scaled by a
factor that depends on the angle between the two gradients and the target angle ϕT

ij . Gradient vaccine

3



encourages the gradients of different tasks to become more aligned and allows inter-task relationships
to be more evident during training.

g⃗′i = g⃗i +
∥g⃗i∥
∥g⃗j∥

(
ϕT
ij − ϕ2

ij − ϕij

√
1− (ϕT

ij)
2
)
g⃗j

Furthermore, batch sizes of more than 16 caused the model to run out of memory. As a result,
we utilized gradient accumulations to create a virtual batch size of 32 to improve over-fitting risk.
Gradient accumulations allowed gradient updates to be taken at delayed staged, while still summing
the batches’ gradients up to that point.

3.4 Comparison Contextual Embeddings
The traditional approach of encoding both pairs of sentences with BERT for the Paraphrase and STS
tasks, and then running a classifier on the two outputs of the encodings showed weak performance.
Standalone sentences have less context than comparing them side by side as humans do.In order to
simulate this behavior we concatenated the two sentences together and marked the break between the
two using separator tokens. This created one bigger sentence which we then fed into BERT to get the
embeddings. One large text embedding gives the model a greater view of the two sentence context’s
allowing it to make smarter decisions over their similarity / differences.

3.5 Regularized Optimization
With fine-tuning our models with multi-task learning and the aforementioned gradient treatments, the
model still had a risk of over-fitting on the data. As a result, we utilized the SMART regularization
framework Jiang et al. (2019) to diminish this risk and improve the models ability to generalize on
data.

The SMART frameworks reduces over-fitting and generalization of limited data with two steps. The
Smoothness-Inducing Adversarial Regularization step

min
θ

F(θ) = L(θ) + λsRs(θ)

RS(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓS (f (x̃i; θ) , f (xi; θ)) ,

L(θ) is the loss function after gradient treatment, λs > 0 is a tuning parameter, and Rs(θ) is the regu-
larizer. By incorporating this regularization technique, it acts as a constraint that discourages extreme
updates to the model’s parameters, ensuring that the model learns more stable and generalizable
patterns from the data.

The second step is bregman proximal point optimization.
θt+1 = argminθF(θ) + µDBreg (θ, θt)

where µ > 0 is a tuning parameter, and DBreg(·, ·) is the Bregman divergence defined as

DBreg (θ, θt) =
1

n

n∑
i=1

ℓs (f (xi; θ) , f (xi; θt))

This prevents abrupt changes to the paramaters during training. It prevents θt+1 update to be signifcant
of that to θt update.

3.5.1 Fine-tuning with Initial Paraphrase Task
Training the multi-task learning system for 5 epochs on just the paraphrase task before the rest of the
tasks allowed the model to start at a point where it was guided towards higher scores for STS and
paraphrase tasks. We saw general improved performance from just training on the paraphrase dataset
across all three tasks, and it increased accuracy by 0.1 across all tasks. This was only implemented
for the models with SMART and gradient vaccine combined.

3.6 Bigger Networks in task-specifc Heads
For each head, we explored adding a few hidden layers in order to allow it to model more compli-
cated relationships between the BERT outputs and the downstream output. This helped improve
performance slightly but required longer training periods, a larger number of epochs, and caused
memory constraint issues. We ended up using a hidden layer of size BERT_HIDDEN_SIZE for the
SST head, a 2 deep hidden layer with size BERT_HIDDEN_SIZE and BERT_HIDDEN_SIZE//4
respectively for both Paraphrase and STS.

4



4 Experiments
4.1 Data
Our pre-trained model is a BERT-base-uncased model (Devlin et al., 2018). This pre-trained model
uses a masked language modeling (MLM) method. Furthermore, the pre-trained model has around
110 million paramaters trained a diverse and large English language dataset. For our downstream
tasks, we fine-tuned the model on 3 datasets.
1. We used the Stanford Sentiment Treebank (SST) dataset (Socher et al., 2013) for the sentiment
classification task, where the given text is classfied by its polarity with 5 classes. The dataset has
11,855 sentences that were extracted from movie reviews. Furthermore, these sentences were split
into 215,154 phrases and labeled by human judges in one of the 5 classes (0 is the most negative and
4 is the most positive).
2. For the paraphrase detection task, we employed the Quora dataset (Iyer et al., 2012). This dataset
contained 400,00 lines of questions that could be duplicates of each other. The input is a pair of
questions and the output is either 0 or 1 for not being a paraphrases of each other or not.
3. For the Semantic Text Similarity (STS) task we utilized the SemEval STS Benchmark dataset
(Agirre et al., 2013). This dataset had 8,628 different sentence pairs. The dataset aimed to measure
the semantic degree of pairs of sentence from 0 (dissimilar) to 5 (basically equivalent).

4.2 Evaluation method
For the SST and Quora dataset based tasks, we measure the accuracy of the model on the test and
dev datasets. Accuracy is measured by the number of examples that are correctly classified by the
model in the set proportion to the total number of examples in the set. For the SemEval dataset task,
we evaluate the model’s performance using the Pearson Correlation score (Agirre et al., 2013). This
score measures the linear relationship between the predicted and actual scores, which is a proper
evaluation metric for continuous values.

4.3 Experimental details
We were able to emulate a higher batch size with gradient accumulations that started after imple-
menting gradient vaccine. Adjusting to the higher batch size, we also increased the learning rate and
epochs to get better results. Furthermore, we only fine-tuned the minBERT model and no use of the
frozen pre-trained minBERT model was done (Table 1).

Table 1: Model Configurations

Model Configuration Batch Size Epochs Learning Rate

Sequential Multitask learning 16 10 1× 10−5

Gradient Surgery + CON 16 10 1× 10−5

Gradient Vaccine + RR 32 15 1× 10−5

Gradient Surgery + RR 16 15 1× 10−5

Gradient Surgery + RR + CON + HLH 16 15 2× 10−5

Gradient Vaccine + RR + CON + HLH 16 15 2× 10−5

SMART + GVAC + RR + CON 32 15 2× 10−5

SMART + GVAC + RR + CON + HLH 32 15 3× 10−5

5



4.4 Results

Table 2: Dev Set Model Performances

Model epochs SST Acc. Para Acc. STS Cor. Overall Score

SST head fine tuning only 10 0.52 0.43 0.057 0.0493
Sequential Multitask learning 5 0.501 0.741 0.353 0.64
Individual Pre-training and Finetuning 5 0.521 0.762 0.384 0.658

Gradient Surgery + CON 10 0.503 0.812 0.863 0.749
Gradient Vaccine + RR 15 0.480 0.757 0.375 0.642
Gradient Surgery + RR 15 0.453 0.748 0.364 0.628
Gradient Surgery + RR + CON + HLH 15 0.509 0.826 0.857 0.755
Gradient Vaccine + RR + CON + HLH 15 0.494 0.858 0.865 0.762
SMART + GVAC + RR + CON 15 0.521 0.854 0.887 0.772
SMART + GVAC + RR + CON + HLH 15 0.517 0.871 0.891 0.778

RR: Round Robin, GVAC: Gradient Vaccine, CON: Comparison Contextual Embedding, HLH: Hidden Layer Heads

Table 3: Test Set Model Performances

Model epochs SST Acc. Para Acc. STS Cor. Overall Score
Gradient Surgery + RR 15 0.512 0.841 0.861 0.761
SMART + GVAC + RR + CON + HLH 15 0.516 0.870 0.884 0.776

RR: Round Robin, GVAC: Gradient Vaccine, CON: Comparison Contextual Embedding, HLH: Hidden Layer Heads

• Sequential Multitask Learning: The results for the baseline sequential model performs
better than the model with gradient surgery and round-robin, but around the same as the
model with gradient vaccine and round-robin. This may be because it synthesizes common
information from across the datasets. However, we see through training that the conflicting
gradients causes the model to over fit for the paraphrase task, since it has a abundance of
data compared to the other tasks. Furthermore, the model performs better than we expected
it to, but the comparison is hard to make as the models with gradient treatments was trained
on a dataset aligned to the STS dataset size. As a result, the paraphrase information that
could help the tasks was not used.

• Gradient Surgery + CON: This model greatly improved performance over previous meth-
ods, seeing a massive boost in the STS Correlation (0.353 -> 0.863). It also increased Para
Acc. significantly (0.741 -> 0.812). By combining the embeddings of the two sentences into
a single tensor it allows the model to gain a more effective understanding of both. Examining
both sentences leads to a more complete understanding the measure of semantic textual
similarity as well as identifying paraphrases.
Gradient surgery also helped improve performance by improving the optimization process
as we have tasks which vary in difficulty (illustrated by the gap in performance across
categories)

• Gradient Vaccine + RR: This model outperformed the gradient surgery configuration,
which was what we initially predicted. It helped increase the STS score as well, which
was less aligned to the other two tasks and is the purpose of using cosine similarity when
calculating the gradient to project on.

• Gradient Surgery + RR: In comparison to the sequential model, we initially predicted
that the model would outperform it. However, as seen from the results, the lack of data
that it was trained on showed in the results. As a result, even with the limited data (1/10th
of sequential), it performed similarly, which demonstrates how good gradient surgery is
as removing the conflicting gradients. This model configuration aligned to the paraphrase
dataset and cycling the other two would have made the model overfit on the other two tasks
and took around 8 hours to complete just 6 epochs. As a result, when testing, this model
could not be use but should be looked into for future research.

6



• Gradient Surgery + RR + CON + HLH: By combining the Round Robin approach with
the Comparison Contextual Embeddings we see a slight boost in performance over Gradient
Surgery + CON. We also added 1 hidden layer for each task’s head which might have
allowed the model to make more complex connections.

• Gradient Vaccine + RR + CON + HLH: Again, as with Gradient surgery, combining
previous successful methods we see a performance improvement.

• SMART + GVAC + RR + CON: The SMART regularization, along with fine-tuning the
model with the paraphrase dataset to start, made slight improvements to the contextual
embedding model on all tasks, and this is directly due to SMART allowing for the model
not to over-fit on the training data, as well as getting a push in the right direction with the
STS and paraphrase tasks from the initial fine-tune. This was what initially predicted when
implementing SMART, however, we hoped for a bigger jump in benchmarks.

• SMART + GVAC + RR + CON + HLH: By adding hidden layers to each task head, more
complex relationships can be captured and this is why we see a slight boost in performance.

5 Analysis
SST:
We see our model is often off in our prediction by 1, but much less likely to be off by 2 or 3 (Figure
1).
Incorrect:
An example which was labelled a 4, but we predicted a 1 for is "the acting , costumes , music ,
cinematography and sound are all astounding given the production ’s austere locales ." This sentence
use complex vocabulary that we suspect is not seen in the training set "austere locales". This makes
it difficult to predict as the model is unsure of the meaning of this words. An example which was
labelled a 0 but we predicted a 3 for is "it ’s everything you do n’t go to the movies for." We believe
here the space between the "do" and "n’t" instead of "don’t" confused the model into predicting a
positive but was actually negative.
Correct:
Example which were labelled a 4 and we predicted correctly is "a warm , funny ,engaging film". This
review is short and direct which is much easier to predict. "dazzles with its fully-written characters
, its determined stylishness -lrb- which always relates to characters and story -rrb- and johnny
dankworth ’s best soundtrack in years ." was also correct. These reviews vary in length but are both
straightforward and direct in their review, making it easier to predict by the model.

Para:
We see our model is more likely to make the mistake of falsely predicting a paraphrase when none
exits (false positive) than it is to not see a paraphrase when one is present (false negative) (Figure 2).
Incorrect:
An example which was not a paraphrase, but we predicted to be was "what ’s your favourite jackie
chan movie ?" and "what are the best movies of jackie chan ?". This sentence uses a lot of the
same words, which make it similar but the model fails to spot the difference in singular/plural. An
example which was a paraphrase but we predicted it was not was "why does india have immigration
checks/passport control while leaving the country ?" and "what does immigration officers check on
their screen while leaving india ?". These sentences use many different words to express the same
meaning, with different sentence structure which we believe confused the model as they appeared to
be very different on the surface despite capturing the same underlying meaning.
Correct:
An example we correctly classified was "how do i speak english fluently ?" vs "how can i speak
english more fluently ?". This example is relatively simple as there is only one word that is different
between them.

STS:
Graphing a histogram of our STS errors, we see it is approximately normal but is slightly positively
centered, meaning it is more likely to underpredict the STS score (Figure 3).
Incorrect:
An example which was similar (3.2), but was predicted to be (0.111): "in these days of googling ,
it ’s sloppy to not find the source of a quotation ." and "i agree with kate sherwood , you should be

7



able to attribute most quotes these days by simple fact checking ." Despite these quotes feeling very
disconnected to the model, there is an underlying theme of searching for quotations that it missed.
We think one reason for this was the use of "quotation" in one and "quote" in the other.

Correct:
An example in which our error was 0.0005 (true value of 0.2, prediction was 0.1995) was "two lambs
stand on a grassy hill ." and "two dirt bikers riding over dirt hill ." Our model correctly spotted
these two things had very few things in common appear from "two" and "lambs". One of the reasons
the error is so low was that sentence was simple and used the same vocab for similar parts but very
different vocab for the unconnected portions.

Figure 1: STS Dev Errors Figure 2: Para Error

Figure 3: STS Error

6 Conclusions
Through trail and error we found certain techniques that were effective on this multitasking objective
and others that proved less worthwhile. Comparison Contextual Embedding (CON) led to a major
improvement in performance for both the Para and STS tasks as they involved comparison between
two sources of text, which each contained less context to base decisions of individually than when
they were combined together. Round Robbin (RR) led to a slight boost in performance across all
metrics. We found Gradient Vaccine (GVAC) led to better scores than Gradient Surgery in general.
Combining SMART, Gradient Vaccine, Round Robbin, Comparison Contextual Embeddings and
Hidden Layer Heads for downstream tasks lead to the best model performance in Para, STS and
second best in SST. Further work may improve upon this by incorporating pre-training for each of
the three task heads and further enhancing pretraining for the upstream minBERT model.

8



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Shankar Iyer, Nikhil Dandekar, and Csernai Kornél. 2012. First quora dataset release: Question pairs.
Quora.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A method for stochastic optimization.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. 2020. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. CoRR, abs/2010.05874.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

9

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/2010.05874
http://arxiv.org/abs/2010.05874

	Introduction
	Related Work
	Approach
	Implementation of minBERT and Baseline Model
	Sequential Multi-task Fine-tuning
	Multi-task Fine-tuning with Round Robin Scheduling
	Gradient Surgery
	Gradient Vaccine and Gradient Accumulation

	Comparison Contextual Embeddings
	Regularized Optimization
	Fine-tuning with Initial Paraphrase Task

	Bigger Networks in task-specifc Heads

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusions

