
Enhanced TreeBERT: High-Performance,
Computationally Efficient Multi-Task Model

Stanford CS224N Default Project
Mentor: Hamza El Boudali

Thanawan Atchariyachanvanit
Department of Computer Science

Stanford University
thanawan@stanford.edu

Pann Sripitak
Department of Computer Science

Stanford University
pannsr@stanford.edu

Abstract

Transfer learning has emerged as a valuable tool for addressing a wide range of
downstream NLP tasks using a single pre-trained model (Zhuang et al., 2020).
However, fully harnessing the potential of transfer learning in a multi-task setting
remains a challenge. In this project, we address this challenge by comparing various
multi-task model configurations and multi-task fine-tuning techniques to identify
the best-performing and the most computationally efficient multi-task BERT mod-
els across three different downstream tasks. We further improve these models
through non-architectural approaches. Our top-performing model, composed of
three individually fine-tuned BERT models, totals 328M trainable parameters and
achieves an overall test score of 0.791. Conversely, our most computationally
efficient model with only one underlying BERT and 29M trainable parameters
achieves an overall test score of 0.765 with multi-task learning. These results are
attributed to the multi-task BERT model configuration, the SMART framework,
and the lightweight input preprocessing.

1 Introduction

When addressing NLP tasks in low-resource target domains, transfer learning emerges as a valuable
approach by leveraging data from high-resource domains (Zhuang et al., 2020). Within this transfer
learning framework, the Bidirectional Encoder Representations from Transformers (BERT) achieved
the state-of-art performance, primarily due to fine-tuning deep bidirectional pretrained representations
on each individual downstream task (Devlin et al., 2019). However, within a multi-task setting,
addressing multiple tasks in isolation with one BERT model per task can be computationally expensive
in terms of both time and space. Moreover, this approach may overlook potential benefits derived
from multi-task learning.

In this paper, we explore the multi-task setting with the main objective of constructing 1.) the
best-performing (BESTMODEL) and 2.) the most computationally efficient (EFFICIENTMODEL)
multi-task BERT models for three distinct downstream tasks: sentiment analysis (SST), paraphrase
detection (QQP), and semantic textual similarity (STS). To achieve this goal, we compare various
multi-task model configurations and multi-task fine-tuning techniques. Furthermore, we investigate
the global effectiveness of Jiang et al. (2020)’s SMART framework across all tasks, as well as the local
improvement achieved by implementing lightweight input preprocessing, varying the loss function,
and exploring sentence-pair encoding methods for certain tasks.

Our BESTMODEL comprises three individually fine-tuned BERT models, totaling 328M trainable
parameters, while our EFFICIENTMODEL is a single BERT model with the last 4 encoder layers
unfrozen and 29M trainable parameters. Through the utilization of the SMART framework and
lightweight SST input preprocessing, they attain overall test scores of 0.791 and 0.765, respectively.
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2 Related Work

While the original BERT paper (Devlin et al., 2019) demonstrated BERT’s capability in achieving
state-of-the-art performance across eleven NLP tasks, it did not explore its effectiveness as a multi-
task learning model. This aspect is crucial for comprehending BERT’s versatility and potential
in real-world applications spanning various NLP domains. Liu et al. (2019) filled this research
gap by presenting a Multi-Task Deep Neural Network (MT-DNN) with the BERTLARGE model
incorporated. They found that MT-DNN consistently outperformed the BERT baseline, showing
BERT’s applicability and high performance as a multi-task learning model. They believe that it is
because MT-DNN can leverage large amounts of cross-task data and benefit from a regularization
effect which leads to more general representations to help adapt to new tasks and domains. We extend
our contribution by exploring efficient model configurations in addition to the optimal one, all while
adhering to the more limited constraint of utilizing only BERTBASE .

Another area of research concerning fine-tuning BERT models for multi-task settings addresses
overfitting and excessive updates during the fine-tuning phase. To address this challenge, Jiang
et al. (2020) introduced the SMART framework, which integrates smooth-inducing adversarial
regularization into the loss function. Specifically, they added small random perturbations to each
embedded input and penalized the model for any resulting changes in output. They also proposed a
class of Bregman proximal point optimization methods to optimize their new training objective.

Furthermore, efforts were made to address the limitations of BERT in single-task settings, which also
pose challenges when transitioning to a multi-task setting. In the sentence-pair tasks, the original
BERT architecture takes the concatenation of a sentence pair as its input. Therefore, no independent
sentence embeddings are computed, making it difficult to derive sentence embeddings from BERT
alone. To address this limitation, Reimers and Gurevych (2019) introduced Sentence-BERT (SBERT),
a modification of the BERT network that integrates siamese and triplet networks. This enhancement
enables us to derive semantically meaningful sentence embeddings, which can be compared using
cosine similarity.

3 Approach

The foundation of our research lies in minBERT, a minimal version of BERT described in the Default
Project handout, along with the utilization of pretrained BERTBASE weights from Huggingface.
We leverage the concept of transfer learning to tailor minBERT to tackle three downstream tasks:
sentiment analysis (SST), paraphrase detection (QQP), and semantic textual similarity (STS).

Subsequently, with the objective of constructing the BESTMODEL and the EFFICIENTMODEL, we
begin by exploring various multi-task model configurations and multi-task fine-tuning methods.
Then, we adopt a combination of two approaches to enhance performance: global enhancement
and local enhancement. Our global enhancement strategies aim to improve the overall multi-task
performance by leveraging techniques like Jiang et al. (2020)’s SMART framework. Conversely, our
local enhancement strategies focus on enhancing task-specific performance. This includes performing
lightweight input preprocessing for SST, adjusting loss functions for STS, and investigating sentence-
pair encoding methods for STS and QQP. Finally, we apply the subset of the methods mentioned that
are proven to be advantageous to our multi-task models.

Baseline. For our baseline model, we integrate three trainable minimal heads (one dropout and one
linear layer) onto the pretrained minBERT architecture introduced in the Default Project handout with
each head dedicated to one of the tasks (See A.2). Other configurations adhere to the default settings
described in Section 4.3. This baseline model establishes the initial performance benchmark of the
fixed pretrained minBERT, demonstrating the inherent difficulty of tasks for the BERT architecture.

Preliminary Study: Dropout Rate in Head Dropout Layers. Prior to conducting our main
experiment, we conduct a preliminary exploration to determine the default hidden dropout rate within
the dropout layer of the heads. We try dropout rates of 0.1, 0.3, 0.5, 0.7, and 0.9 on a fully fine-tuned
single-task BERT model for both the SST and STS tasks.1 We then select the optimal dropout rate to
be used for the main experiment.

1We did not conduct experiments on the QQP task due to computational and time limitations.
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Main Study I: Multi-task Model Configuration. We primarily focus on two types of multi-task
models (See A.1). Both models were implemented by us using the provided MultitaskBERT class.

• The TripleBERT model comprises three separate BERT models, each equipped with a
dedicated minimal head for executing a downstream task.2

• The TreeBERT model consists of a single BERT model and three heads, where the weights
of the BERT model are shared across all tasks.

We are interested in these two configurations because, while a single BERT model has proven to
perform exceptionally in various single tasks, fine-tuning one BERT model per task in a multi-task
setting is computationally expensive. Moreover, each task’s input in a multi-task setting is the same in
some scenarios, prompting us to process the input through a BERT model only once to save inference
time. Hence, we explore fine-tuning a single BERT to be used for all tasks. While a reduction in
parameters might restrict the performance of this compact model, we posit that implicit knowledge
sharing during training in multi-task learning can compensate for it.

Main Study II: Fine-Tuning Methods for TreeBERT. Traditionally, fine-tuning involves training
all layers of a BERT model to achieve optimal performance. We instead propose a different approach
with our TreeBERT model, where we unfreeze only the last k encoder layers of BERT and fine-tune
them on multiple tasks. We expect this approach to better optimize the TreeBERT model towards
downstream tasks compared to our baseline model, where all BERT layers are frozen. We also
anticipate that this approach will conserve computational time and cost while maintaining, if not
improving, performance levels compared to TripleBERT by leveraging the benefits of out-of-domain
data. Note that we implemented all the fine-tuning frameworks ourselves. While inspired by existing
methods, to the best of our knowledge, these methods are novel within this specific context.

Global Enhancement Approach: SMART Framework. Considering the potential risks of over-
fitting and aggressive updating during the fine-tuning stage, we investigate Jiang et al. (2020)’s
smooth-inducing adversarial regularization as a means to address the complexity of the model. Jiang
et al. suggest minimizing L(θ) + λSRS(θ) during fine-tuning, where L(θ) is the typical loss, λS

is a tuning parameter, and RS(θ) is the smoothness-inducing adversarial regularizer defined as
RS(θ) =

1
n

∑n
i=1 max||x̃i−xi||p≤ϵ ls(f(x̃i; θ), f(xi; θ)), where ϵ > 0 is a tuning parameter, and x̃ is

a sampled embedded input perturbation. Note that ls is selected to be the symmetrized KL-divergence
for the classification task and the squared loss for the regression task. By minimizing this objective,
function f is encouraged to exhibit smoothness within the neighborhood of all xi’s. This property
proves particularly beneficial in mitigating overfitting and enhancing generalization. However, rather
than adopting Jiang et al. (2020)’s Bregman proximal point optimization, we utilize the ADAMW
optimizer implemented as outlined in the Default Project handout to optimize the new objective
function. In terms of implementation, we integrated the available smart-pytorch3 into our codebase.

Local Enhancement Approach I: SST Lightweight Input Preprocessing. After establishing
the main architecture, we proceed to enhance the performance of each task-specific head. For the
sentiment analysis head, we explore lightweight input preprocessing in an attempt to improve the SST
accuracy. We discovered placeholders like ‘-lrb-’ and ‘-rrb-’, which represent ‘(’ and ‘)’ respectively,
are not tokenized appropriately by the BERT tokenizer. Additionally, we noticed that the tokenizer
treats “don’t” and “do n’t” in the datasets differently. Thus, we standardize them by making the
following replacements: ["" ", """],[" "", """], [" n’t", "n’t"], ["-lrb- ", "("] , [" -rrb-", ")"] and ["\/",
"/"]. We made these observations without any external guidance.

Local Enhancement Approach II: STS Loss Function. Zhuang and Chang (2017) introduce the
Pearson Correlation Coefficient loss and argue that it reflects invariance to changes in location and
scale of the expected STS score, unlike other training objectives such as mean squared error (MSE).
We decide to explore its application. We implemented this loss ourselves using torch.corrcoef.

LPCC = −
∑N

n=1(y
n − y)(ŷn − ŷ)√∑N

n=1(y
n − y)2

√∑N
n=1(ŷ

n − ŷ)2

where yn is the predicted expected score, and ŷn is the annotated gold score.
2When we mention TripleBERT, we are referring to its fully fine-tuned variant, unless otherwise specified.
3https://github.com/archinetai/smart-pytorch
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Local Enhancement Approach III: QQP & STS Sentence-Pair Encoding Method We inves-
tigate two approaches for encoding sentence-pair inputs introduced in the original BERT model
(Devlin et al., 2019) and the SBERT model (Reimers and Gurevych, 2019). We implemented both
ourselves in the QQP and STS heads.

• Cross-Encoder Method: In this approach, the BERT model processes the concatenation of
the two sentences in the following format: [CLS] sentence1 [SEP] sentence2 [SEP]. The
resulting BERT embedding is then forwarded through the task head as usual.

• Bi-encoder Method: In this approach, the BERT model processes one sentence at a time,
generating the corresponding output embeddings u and v. Then, for the QQP head, we
concatenate u, |u− v| and v and pass them through a dropout and linear layer. For the STS
head, we pass cos(u, v) to the ReLU activation layer and multiply the resulting value by
5 to transform the cosine value into a logit between 0 and 5. Finally, for both heads, we
consider two types of pooling strategies: CLS pooling and MEAN pooling.

Final Step: Ensembling & Comparing Methods and Models. Based on these findings, we apply
the advantageous global and local enhancements to the selected BESTMODEL and EFFICIENTMODEL
candidates and compare the performance of all the model candidates.

4 Experiments

4.1 Data

As explained in the Default Project handout, we perform sentiment analysis on the Stanford Sentiment
Treebank (SST) dataset (Socher et al., 2013). The SST dataset consists of 11,855 single sentences
from movie reviews with a label of negative, somewhat negative, neutral, somewhat positive, or
positive represented by integers 0 to 4. We use the Quora dataset4 for paraphrase detection, which has
400,000 question pairs with labels 0.0 and 1.0 indicating whether particular instances are paraphrases
of one another. We use the SemEval STS Benchmark dataset (Agirre et al., 2013) for semantic textual
analysis. The dataset consists of 8,628 different sentence pairs of varying similarity on a continuous
scale from 0 (unrelated) to 5 (equivalent meaning).

4.2 Evaluation method

Aligned with the provided leaderboard metrics, we evaluate model performance using accuracy for
SST and QQP (AccSST & AccQQP ), and Pearson correlation for STS (CorSTS). The overall score
is computed as follows: (AccSST+AccQQP+0.5·CorSTS+0.5)

3 . We also track the number of total and
trainable parameters to evaluate the trade-off between performance and computational cost.5

4.3 Experimental details

The following is our default setup unless a variable is the independent variable for a particular
experiment. Our setup follows the default hyperparameter values provided in the codebase (e.g.
epochs = 10, batch_size = 8, lr = 1e−5, hidden_dropout_prob = 0.3). The only exception is
the baseline model, which uses lr = 1e−3. Additionally, we introduce early stopping with a patience
of 5. Regarding the architecture, our default BERT pooling strategy is CLS pooling, and our default
sentence-pair encoding method is the cross-encoder approach. For our training procedure, we employ
different loss functions based on the task: cross entropy for SST, binary cross entropy for QQP, and
mean squared error for STS. We utilize the ADAMW optimizer, implemented as per the guidelines
provided in the Default Project handout. In terms of training steps, within each epoch, the model will
be trained on one task at a time in the following order: SST, QQP, STS.6

4https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
5We initially tracked the fine-tuning time when running on a single GPU via Google Cloud Platform. However,

upon rerunning it, we noticed a significant discrepancy, likely stemming from network traffic fluctuations.
6For the baseline model and TripleBERT variants, shuffling single-task batches is inconsequential since there

are no shared trainable parameters. For TreeBERT with the k last encoder layers unfrozen, shared trainable
parameters do exist, but we did not observe any improvement and sometimes encountered worse results when
experimenting with shuffling single-task batches. Therefore, we opted not to perform shuffling. Moreover, the
training task scheduling choices are beyond the scope of our project, so we did not delve deeply into this aspect.
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4.4 Results

Preliminary Study Results: Dropout Rate in Head Dropout Layers

pdropout AccSST CorSTS

0.1 0.511 0.880
0.3 0.518 0.875
0.5 0.517 0.874
0.7 0.516 0.875
0.9 0.522 0.873

Table 1: Performance of a single-task
fully fine-tuned BERT on SST and STS
with different head dropout rates

Table 1 presents the performance of a single-task fully fine-
tuned BERT model on the SST and STS tasks across various
dropout rates (pdropout). For the SST task, pdropout = 0.9 pro-
duces the best SST model, while pdropout = 0.3 yields the
second-best. For the STS task, pdropout = 0.1 results in the best
model. Interestingly, both pdropout = 0.3 and pdropout = 0.7
produce the second-best. Conversely, pdropout = 0.9 results in
the worst-performing model. To strike a balance between the
performance on the two tasks, we opt for pdropout = 0.3 since
it yields a model that performs relatively well on both tasks.

Main Study Results: Multi-task Model Configuration & Fine-Tuning Methods for TreeBERT

Table 2 displays the results of our model configuration experiments. The overall results align closely
with our expectations. We anticipated that TripleBERT would perform best in all tasks, given it
is fine-tuning towards specific tasks, and that it would require more time for fine-tuning due to its
328M trainable parameters. Specifically, it achieves the highest overall score of 0.781, making it
our BESTMODEL candidate. Additionally, all variants of TreeBERT with some unfrozen layers
outperform the baseline due to its increased flexibility as expected.

The results demonstrate a notable enhancement across all tasks when the last encoder layer is
unfrozen, with overall performance increasing from 0.604 to 0.742 with 8M trainable parameters
in total. Nevertheless, it appears that the marginal benefits of unfreezing the second layer (0.744),
third layer (0.761), and fourth layer (0.763) are not as substantial, yet still represent an improvement.
Additionally, we observe that the performance of the TreeBERT model begins to decline once k > 4.
This outcome is expected, as the reduction in non-trainable parameters and the simultaneous increase
in shared trainable parameters could potentially destabilize the model during joint training.

Considering the outcomes of varying k, we opt for k = 4 for our EFFICIENTMODEL candidate.
This is motivated by the fact that they have more than ten times fewer trainable parameters, yet still
achieve a commendable overall score of 0.763. This overall score stands higher by 0.159 compared
to the baseline, while being only 0.018 lower than that of the fully fine-tuned TripleBERT.

Multi-task
Model Configuration

Overall
Score

AccSST AccQQP CorrSTS # of Parameters
( Trainable / Total )

Baseline 0.604 0.398 0.690 0.448 5,383 / 5,383
TripleBERT 0.781 0.518 0.886 0.875 328M / 328M
TreeBERT with k = 1 0.742 0.480 0.839 0.814 8M / 109M
TreeBERT with k = 2 0.744 0.493 0.820 0.836 15M / 109M
TreeBERT with k = 3 0.761 0.502 0.858 0.845 22M / 109M
TreeBERT with k = 4 0.763 0.503 0.863 0.848 29M / 109M
TreeBERT with k = 5 0.757 0.496 0.881 0.810 36M / 109M
TreeBERT with k = 6 0.732 0.404 0.859 0.864 43M / 109M

Table 2: Performance and efficiency of multi-task model under various configurations

Global Enhancement Results: SMART Framework
λs AccSST CorrSTS

0 0.518 0.875
0.01 0.521 0.880
0.05 0.518 0.878
0.1 0.529 0.880
1.0 0.515 0.877

Table 3: Performance of a
single-task fully fine-tuned
BERT on SST and STS with
different SMART weights λs

Table 3 shows the impact of adopting Jiang et al. (2020)’s smooth-
inducing adversarial regularization with different weights λs on a
single-task BERT model fully fine-tuned on the SST and STS tasks,
while using the default hyperparameters of smart-pytorch7. Results
reveal that λs = 0.1 yields the best performance on both tasks, with
an increase of 0.11 in SST accuracy and 0.05 in STS correlation com-
pared to when SMART is not applied. We believe that this regular-
ization yields superior outcomes compared to dropout as it mitigates
overfitting across the entire model rather than solely on the head.

7https://github.com/archinetai/smart-pytorch
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Local Enhancement I Results: SST Lightweight Input Preprocessing

SST IP ACCSST

✗ 0.518
✓ 0.522

Table 4: Effectiveness of SST input
preprocessing (SST IP)

With lightweight input preprocessing, we observe a notable
enhancement in the performance of a single-task fully fine-tuned
BERT model for the SST task, with its performance increasing
from 0.518 to 0.522 as shown in Table 4. This underscores the
significance of standardizing the input format, as it might enable
the pretrained model to leverage prior knowledge and learn more
effectively.

Local Enhancement II Results: STS Loss Function
LSTS CorSTS

MSE 0.875
Pearson 0.870

Table 5: Effectiveness of each
STS loss function

Based on Table 5, it is evident that the Pearson Correlation Coefficient
loss yields worse performance for a single-task fully fine-tuned BERT
model on the STS task compared to the mean squared error loss,
contrary to what Zhuang and Chang (2017) suggested. We attribute
this unexpected result to the notion that the Pearson Correlation
Coefficient loss may not be as widely generalizable as the more commonly used MSE loss function.

Local Enhancement III Results: QQP & STS Sentence-Pair Encoding Method

Encoding
Method

Pooling
Method

AccQQP CorSTS

Cross-enc CLS 0.886 0.875
Bi-enc CLS 0.852 0.756
Bi-enc MEAN 0.880 0.872

Table 6: Effectiveness of each sentence-pair en-
coding method

Table 6 presents a comparison of the performance of a
single-task fully fine-tuned BERT model using differ-
ent sentence-pair encoding methods for the QQP and
STS tasks. Our findings indicate that our default cross-
encoder method outperforms the bi-encoder method
on both tasks, irrespective of the pooling strategy em-
ployed. This aligns with our expectations, as cross-
encoders are known to offer superior performance com-
pared to bi-encoders, albeit at a higher computational

cost. Additionally, the observation that bi-encoders with MEAN pooling exhibit better performance
than those with CLS pooling is consistent with Reimers and Gurevych (2019)’s finding.

Final Step Results: Ensembling & Comparing Methods and Models

Based on the results of our primary study on multi-task model configuration and fine-tuning methods,
we believe that the fully fine-tuned TripleBERT and the TreeBERT models with the last 4 encoder
layers unfrozen are the top candidates for achieving superior performance and efficiency, respectively.
Additionally, our investigations into global and local enhancements demonstrate that the SMART
framework and SST lightweight input preprocessing have the potential to enhance our multi-task
model’s performance, while the default settings of the dropout rate, the STS loss function, and the
sentence-pair encoding method are already optimal. We thus apply SMART with weight 0.1 and SST
input preprocessing to our two model candidates and introduce a TripleBERT model with the last 4
encoder layers unfrozen for comparison.

Our results in Table 7 demonstrate that the combination of the SMART framework and SST
lightweight input preprocessing leads to an increase in the overall performance of the fully fine-tuned
TripleBERT by 0.006 and the TreeBERT with 4 layers unfrozen by 0.011. However, this combination
does not improve the performance of the TripleBERT model with the last 4 encoder layers unfrozen.
Furthermore, although the enhanced TreeBERT with 4 last encoder layers unfrozen still performs
slightly worse than the fully fine-tuned TreeBERT, its overall score increases to 0.774. Additionally,
it outperforms the TripleBERT model with the last 4 encoder layers by 0.007 while having only
one-third of the total and trainable parameters. Finally, we experiment with training the model for 30
epochs instead of 10. We observe a small improvement in TripleBERT performance (+0.001), but a
significant decline in TreeBERT performance (-0.006), possibly due to multi-task learning conflicts.

We evaluate our BESTMODEL, the fully fine-tuned TripleBERT trained for 30 epochs with SMART
and SST input preprocessing applied, and our EFFICIENTMODEL, TreeBERT with the last 4 encoder
layers unfrozen trained for 10 epochs with SMART and SST input preprocessing applied, on the test
set. The BESTMODEL achieves an overall test score of 0.791, while the EFFICIENTMODEL achieves
an overall test score of 0.765 as shown in Table 8.
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Multi-task
Model Configuration

SMART SST
IP

Overall
Score

AccSST AccQQP CorrSTS # of Parameters
( Trainable / Total )

Baseline (ST) ✗ ✗ 0.604 0.398 0.690 0.448 5,383 / 5,383
TripleBERT (ST) ✗ ✗ 0.781 0.518 0.886 0.875 328M / 328M
TripleBERT (ST) ✓ ✓ 0.787 0.533 0.890 0.874 328M / 328M
TripleBERT with k = 4 (ST) ✗ ✗ 0.768 0.507 0.876 0.842 87M / 328M
TripleBERT with k = 4 (ST) ✓ ✓ 0.767 0.507 0.875 0.837 87M / 328M
TreeBERT with k = 4 (ST) ✗ ✗ 0.763 0.503 0.863 0.848 29M / 109M
TreeBERT with k = 4 (ST) ✓ ✓ 0.774 0.516 0.872 0.868 29M / 109M
TripleBERT (LT) ✓ ✓ 0.788 0.533 0.890 0.880 328M / 328M
TripleBERT with k = 4 (LT) ✓ ✓ 0.768 0.507 0.875 0.842 87M / 328M
TreeBERT with k = 4 (LT) ✓ ✓ 0.768 0.504 0.866 0.867 29M / 109M

Table 7: Model performance on dev set when non-architectural methods are applied

[ST = short training (10 epochs) / LT = long training (30 epochs)]

Multi-task Model Overall
Score

AccSST AccQQP CorrSTS # of Parameters
( Trainable / Total )

BESTMODEL
(TripleBERT
+ SMART + SST IP + LT + Rounding)

0.791 0.543 0.891 0.876 328M / 328M

EFFICIENTMODEL
(TreeBERT with k = 4
+ SMART + SST IP + ST + Rounding)

0.765 0.492 0.873 0.862 29M / 109M

Table 8: Performance of our BESTMODEL and EFFICIENTMODEL on test set

[ST = short training (10 epochs) / LT = long training (30 epochs)]
[Rounding = Replace STS prediction that is out of [0.0, 5.0] range with 0.0 or 5.0]

5 Analysis

5.1 Overall Experimental Result Interpretation

It is evident that the fully fine-tuned TripleBERT model excels across all tasks due to its extensive
trainable parameters and the capacity for task-specific fine-tuning. These supplementary enhance-
ments like the SMART framework and SST lightweight input preprocessing can further elevate its
performance to achieve notable improvements.

Conversely, the performance of the TreeBERT model with the last 4 encoder layers unfrozen is
initially constrained by its fewer trainable parameters, resulting in inferior performance compared to
TripleBERT with the last 4 encoder layers unfrozen under similar conditions. However, upon applying
the two enhancements, the TreeBERT model surpasses the performance of the frozen TripleBERT.
This underscores the benefits of multi-task learning over isolated training approaches, particularly
when overfitting concerns are addressed and the input is standardized, enabling the model to leverage
prior knowledge and learn more effectively.

5.2 Ablation Study

We conduct ablation experiments to dissect the impact of the two key enhancements on our BEST-
MODEL and EFFICIENTMODEL. The results are shown in A.3. They indicate that SST Input
preprocessing contributes to an increase in SST accuracy for both models. Conversely, while SMART
enhances the performance of TripleBERT on STS and QQP tasks, it leads to a decline in performance
for TreeBERT on those tasks, as well as in the overall score. However, when both methods are used
in combination, we observe a significant improvement in both models, particularly for TreeBERT.

We attribute this success of the combined approach to its ability to prevent TreeBERT from overfitting
excessively to one task during joint training, especially when encountering tasks with varying input
formats. This synergy effectively ensures that TreeBERT can adapt to diverse task requirements
without compromising its performance.
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5.3 Model Performance Analysis

Examples referenced in the model performance analysis are provided in A.4.

Sentiment Analysis (SST). We observe that while the SST dataset exhibits class imbalance, our
BESTMODEL and EFFICIENTMODEL cannot capture this imbalance well (See A.5). Moreover, we
find that, out of 514 misclassifications made by our BESTMODEL on the dev set, 440 instances were
off by just one class. In these cases, the sentiment of the sentence is often subjective, and many
individuals might agree with the predictions (Ex.1). When the model is off by 2, it is often either
because the sentence can be viewed as positive in a haunting way (Ex.2), the model misunderstands
nuances of language and sarcasm (Ex.3), or the sentence has a lot of negative words, but the message
is overall positive (Ex.4). Finally, there are only 6 sentences where the model is off by 3 or more. In
these edge cases, there is no discernable pattern as to why the model predicts the sentiment incorrectly.
Our EFFICIENTMODEL exhibits a similar trend, with a higher frequency of misclassifications across
all levels of error (See the confusion matrices in A.6 for further insights).

Paraphrase Detection (QQP). The confusion matrices for both models are shown in A.7. Our
investigation of both models’ predictions reveals frequent false positives for very similar sentences
with subtle, crucial differences such that even a person quickly reading it can think they are para-
phrases of one another (Ex.5). False negatives occur in sentences that require inference beyond
simple language (Ex.6), require better parsing (Ex.7) and instances where the sentences are arbitrary
on whether or not they are paraphrases of one another (Ex.8). In comparing the two models, we
observe that our BESTMODEL demonstrates a stronger ability to discern differences between two
sentences that may appear in similar contexts, while our EFFICIENTMODEL may misinterpret these
sentences as paraphrases due to their contextual similarity (Ex.9)

Semantic Textual Similarity (STS). By plotting the histogram of the STS similarities in the
training and dev sets, we observe that the labels frequently cluster around integer values rather than
being uniformly distributed across the interval. However, our models struggled to effectively capture
this clustering pattern as shown in A.8. Additionally, for both models, the majority of errors are less
than 1.0, with a bias towards being somewhat similar (See A.9). The model’s misclassification of
sentences being too similar often occurs due to numerous shared words and a similar structure with a
small but significant difference (Ex.10). Conversely, misclassifications as too dissimilar typically
resulted from drastically different expressions conveying the same idea (Ex.11). We examine the
number of predictions falling within error ranges of 0.01 - 1.0, 1.0 - 2.0, and 3.0+. We observe that
our EFFICIENTMODEL exhibits more errors in the 1.0 - 2.0 range than BESTMODEL (135 compared
to 114 instances), whereas a similar number of mispredictions are observed in the 3.0+ range.

6 Conclusion

Our findings highlight the pivotal role of the multi-task BERT model configuration in determining
performance. Supplementary factors such as the SMART framework and SST lightweight input pre-
processing bolsters model performance, particularly in multi-task learning scenarios where overfitting
to one task or non-standardized inputs may impede overall performance.

Our key contributions include our BESTMODEL, which achieves an overall test score of 0.791, and
our EFFICIENTMODEL, which achieves an overall test score of 0.765. Despite comprising only one
BERT with four unfrozen layers and 29M trainable parameters, our EFFICIENTMODEL outperforms
the model with three underlying BERTs, equal numbers of unfrozen layers, and 87M parameters
on the dev set. Furthermore, despite its inferior performance compared to BESTMODEL, it notably
diminishes training time. Additionally, with only one underlying BERT, this model configuration
offers a valuable foundation for minimizing inference time when applying identical inputs across
multiple tasks, as the input only needs to pass through the BERT layers once.

Moving forward, we aim to explore task scheduling choices for multi-task learning, as this could
potentially enhance our shared training outcomes. Furthermore, performing cross-validation can
mitigate overfitting to our dev set and ensure the generalizability of our model.

Team Contributions: Pann was responsible for the minBERT implementation, the ADAMW optimizers,
and the integration of SMART. Thanawan led the development of TreeBERT and implemented the
SST lightweight input preprocessing, STS loss function, and sentence-pair encoding methods. We
conducted experiments, performed analysis, and collaborated on writing the paper together.
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A Appendix

A.1 Multi-task Model Types

Figure 1: Multi-task Model Types: TripleBERT vs. TreeBERT

A.2 Multi-task Model Configurations

Figure 2: Multi-task Model Configurations: Baseline - TripleBERT - TreeBERT with k Last Encoder Layers
Unfrozen
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A.3 Ablation Study Results

Multi-task
Model Configuration

SMART SST
IP

Overall
Score

AccSST AccQQP CorrSTS # of Parameters
( Trainable / Total )

TripleBERT (ST) ✗ ✗ 0.781 0.518 0.886 0.875 328M / 328M
TripleBERT (ST) ✓ ✗ 0.782 0.518 0.890 0.876 328M / 328M
TripleBERT (ST) ✗ ✓ 0.782 0.522 0.886 0.875 328M / 328M
TripleBERT (ST) ✓ ✓ 0.787 0.533 0.890 0.874 328M / 328M
TreeBERT with k = 4 (ST) ✗ ✗ 0.763 0.503 0.863 0.848 29M / 109M
TreeBERT with k = 4 (ST) ✓ ✗ 0.760 0.504 0.855 0.844 29M / 109M
TreeBERT with k = 4 (ST) ✗ ✓ 0.769 0.506 0.873 0.857 29M / 109M
TreeBERT with k = 4 (ST) ✓ ✓ 0.774 0.516 0.872 0.868 29M / 109M

Table 9: Ablation Study on the effects of SMART regularization and SST input preprocessing on our BEST-
MODEL and EFFICIENTMODEL [ST = short training (10 epochs)]

A.4 Examples Referenced in the Model Performance Analysis Section

Ex. Task Sample Actual Predicted
1 SST “It’s a lovely film with lovely performances by Buy and Ac-

corsi.”
3 4

2 SST “A gripping, searing portrait of a lost soul trying to find her
way through life.”

2 4

3 SST “The film takes the materials of human tragedy and dresses
them in lovely costumes, Southern California locations and
star power.”

2 4

4 SST “You’ll gasp appalled and laugh outraged and possibly, watch-
ing the spectacle of a promising young lad treading desperately
in a nasty sea, shed an errant tear.”

3 1

5 QQP “What are some facts that everyone knows?” & “What are
some facts that everyone should know?”

0.0 1.0

6 QQP “What does the small blue icon of a man with a plus sign mean
in the upper right side of Quora answers?” & “What is the
blue human figure button for on right top of quora answers?”

1.0 0.0

7 QQP “How much does wolfram alpha cost?” & “How much did
Wolfram|Alpha cost?”

1.0 0.0

8 QQP “Why do you learn foreign languages?” & “Why should I
learn foreign languages?”

1.0 0.0

9 QQP “What can you get as a customer of Star Alliance?” & “What
are some ways to register with Star Alliance?”

0.0 1.0

10 STS “Syrian fighter pilot defects to Jordan” & “Syrian PM defects
to Jordan”

1.4 3.7

11 STS “In these days of googling, it’s sloppy to not find the source
of a quotation.” & “I agree with Kate Sherwood, you should
be able to attribute most quotes these days by simple fact
checking.”

3.2 0.83

Table 10: Examples referenced in the model performance analysis section with their actual labels and the
predicted labels made by BESTMODEL [Note: We reformatted the spacing for improved readability.]
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A.5 Class Imbalance Issues in the SST Dataset

Figure 3: Sentiment Class Distribution in SST Train Set

Figure 4: Actual/Predicted Sentiment Class Distribu-
tion for SST Dev Set (BESTMODEL)

Figure 5: Actual/Predicted sentiment class distribution
for SST dev set (EFFICIENTMODEL)

A.6 Confusion Matrices Illustrating the Performance of the BESTMODEL and the
EFFICIENTMODEL on SST Dev Set

Figure 6: Confusion matrix illustrating the performance
of the BESTMODEL on SST dev set

Figure 7: Confusion matrix illustrating the performance
of the EFFICIENTMODEL on SST dev set
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A.7 Confusion matrix illustrating the performance of the BESTMODEL and the
EFFICIENTMODEL on QQP dev set

Figure 8: Confusion matrix illustrating the performance
of the BESTMODEL on QQP dev set

Figure 9: Confusion matrix illustrating the performance
of the EFFICIENTMODEL on QQP dev set

A.8 Data Non-uniformity in the STS Dataset

Figure 10: Similarity Distribution in STS Train Set

Figure 11: Actual/Predicted similarity distribution for
STS dev set (BESTMODEL)

Figure 12: Actual/Predicted similarity distribution for
STS dev set (EFFICIENTMODEL)
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A.9 Confusion matrix illustrating the performance of the BESTMODEL and the
EFFICIENTMODEL on STS dev set

Figure 13: Confusion matrix illustrating the perfor-
mance of the BESTMODEL on STS dev set (created by
rounding similarity values to the nearest integer value)

Figure 14: Confusion matrix illustrating the perfor-
mance of the EFFICIENTMODEL on STS dev set (cre-
ated by rounding similarity values to the nearest inte-
ger)
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