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Abstract

In this project, we explore the adaptability and performance optimization of a pre-
trained BERT encoder model across three distinct NLP tasks: sentence sentiment
classification (SST), paraphrase detection, and semantic textual similarity (STS).
We initially employed a round-robin multitask classifier that was trained on all
3 tasks. To address the inherent challenges of multitask learning, such as task
interference and training inefficiency, we integrated gradient surgery techniques
into our approach, following the methodologies suggested by Yu et al. (2020).
To improve the accuracy of our multitask model, we added a shared sentence
embedding layer based on the methodologies by Reimers and Gurevych (2019)
by training the embedding layer on cosine similarity loss. Subsequently, we
shifted our focus towards the development of specialized neural networks, tailored
to each specific task, to harness the full potential of task-specific optimizations.
Our empirical results reveal that these specialized networks outperformed the
multitask learning approach, demonstrating marked improvements in precision and
effectiveness across all tasks. This finding underscores the significant advantages
of employing specialized models for individual NLP tasks over a generalized
multitask framework, aligning with recent studies that highlight the efficacy of
task-specific fine-tuning in the realm of transfer learning such as by Weiss et al.
(2016).
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2 Introduction

The transformative power of deep learning in the field of Natural Language Processing (NLP) has
been significantly amplified by the advent of transformer architectures and large pre-trained models
like BERT. These advancements have ushered in a new era of performance benchmarks across a
wide array of NLP tasks, from sentiment analysis to paraphrase detection and beyond, showcasing
remarkable abilities in understanding and generating human-like text. Despite these successes, the
nuanced adaptation of such models to specialized tasks remains a challenging frontier. This challenge
is not only technical, involving the fine-tuning of complex models on task-specific datasets, but also
conceptual, requiring an understanding of how to best leverage shared knowledge across different
tasks without diluting the model’s expertise in any single domain.

In this research, we use pre-trained embeddings from a BERT encoder model for three specialized
tasks: sentence sentiment classification (SST), paraphrase detection, and semantic textual similarity
(STS). We first evaluate the raw effectiveness of BERT embeddings for the task of sentiment analysis

Stanford CS224N Natural Language Processing with Deep Learning



without introducing additional model complexities and simply applying a linear transformation to
classify sentences according to their sentiment.

Building upon this foundational work, we then integrate gradient surgery techniques by Yu et al.
(2020) to enhance the training efficiency of our model, particularly when addressing the multifaceted
challenge of multitask learning. This method, designed to optimize the simultaneous learning
across diverse tasks, helps to mitigate the potential for task interference and conflicting gradients by
projecting the task’s gradient onto the normal plane of the gradient of the other task(s).

To improve our model’s performance, we add a shared sentence embedding layer suggested by
Reimers and Gurevych (2019) that allows the three tasks to benefit from commonalities in the
sentence representations derived from BERT. This shared layer is trained on cosine similarity loss
and the cosine similarity is used as the direct output for the semantic textual similarity (STS) task,
while also fed as input to the paraphrase detection and sentiment analysis (SST) tasks.

Finally, recognizing the limitations of a purely shared approach, we develop specialized neural
networks tailored to each specific task. These specialized networks have the same architecture (and
neural network layers) as the multitask classifier for each individual tasks but unlike the multitask
classifier, the individual tasks do not share weights amongst them and are trained solely on the
individual training datasets and task objectives.

Our empirical results reveal that these specialized networks outperformed the multitask learning
approach, demonstrating marked improvements in precision and effectiveness across all tasks. These
findings underscore the significant advantages of employing specialized models for individual NLP
tasks and highlight the efficacy of task-specific fine tuning in the realm of transfer learning. We
finally also explore avenues for future work and discuss several enhancements that could be made to
improve our models’ performance across the various tasks.

3 Related Work

The exploration of multitask learning and the optimization of pre-trained models like BERT for
specific NLP tasks have been subjects of increasing interest within the field of natural language
processing (NLP). Ruder (2017) discusses soft and hard parameter sharing approaches for multi-task
learning. We found hard parameter sharing more appealing for our specific project because it reduces
the risk of overfitting and we observed that our baseline sentiment classifier model suffered from
overfitting, where additional training was leading to a better training accuracy but a lower accuracy
on our development dataset.

To increase our model training efficiency, we integrated the pioneering gradient surgery technique
known as PCGrad (Projecting Conflicting Gradients), developed by Yu et al. (2020). This method
emerges from the identification of three core challenges in multi-task optimization: conflicting gradi-
ents, high positive curvature, and large differences in gradient magnitudes. PCGrad adeptly mitigates
these challenges by altering gradients directly when they are found to be conflicting—defined as
pointing in opposite directions, thereby impeding progress due to negative cosine similarity. The
technique projects each conflicting gradient onto the normal plane of the other, effectively neutralizing
the adverse effects of interference and fostering a more harmonious optimization process.

We then shifted our focus on improving the performance of our multitask model. Ruder (2017)
discusses that closely related tasks can benefit from shared layers. Taking inspiration from Reimers
and Gurevych (2019), we decided to introduce a shared sentence embedding layer across all three
tasks. We used the suggested Siamese network structure, where we concatenated the sentence
embeddings u and v with the element-wise difference u− v for inputs to the paraphrase detection
task, and used cosine similarity between the sentence embeddings for the semantic textual similarity
task.

Finally, when we developed specialized neural networks tailored to each specific task, we studied
the work done by Howard and Ruder (2018). They discuss a spectrum of fine tuning strategies
ranging from gradual unfreezing of layer weights and triangular learning rates to a simple transfer
technique that employs additional feed-forward layers on top of the pre-trained models. Given the
close relationship among our tasks — sentence sentiment classification, paraphrase detection, and
semantic textual similarity — we hypothesized that the integration of additional layers would likely
offer the most effective method for enhancing task-specific performance.
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4 Approach

Our approach to enhancing the performance of a pre-trained BERT model for diverse NLP tasks
includes developing a baseline model, a round-robin multitask classifier with a shared sentence
embedding layer, and integrating gradient surgery techniques to mitigate task interference. We
further advanced our model by implementing specialized neural networks for each task, drawing on
fine-tuning strategies such as additional feed-forward layers for task-specific optimization. Below,
we detail these components and discuss our approach for each of them.

4.1 Baseline Model

In part 1 of the project, we focused on establishing a solid understanding and foundation of the
BERT model’s internal workings. We successfully implemented the BERT self-attention layer and
the BERT transformer layer from scratch, ensuring our implementation’s correctness through passing
the predefined tests. This foundational work laid the groundwork for our subsequent development of
a baseline model for sentiment classification.

Building upon this, we developed a sentiment classifier leveraging the pre-trained BERT model.
Specifically, we utilized the pooled output of BERT’s CLS token, which serves as a summary
representation of the input sequence’s entire context. This representation was then fed into a simple
linear transformation layer to classify sentences according to their sentiment. By applying this
straightforward approach, we aimed to evaluate the raw effectiveness of BERT embeddings for the
task of sentiment analysis without introducing additional model complexities.

4.2 Round-Robin Multitask Classifier

To leverage BERT’s capabilities across diverse NLP tasks, we extended the skeleton code, which was
initially designed to train solely on SST data, to a multitask learning framework. This framework
facilitates simultaneous training on three distinct datasets: SST for sentiment classification, Quora
Question Pairs for paraphrase detection, and the SemEval dataset for semantic textual similarity.

Given the disparity in dataset sizes, we employed a round-robin training methodology. This approach
ensures equitable learning across tasks by cyclically iterating through datasets with fewer examples,
thereby balancing the model’s exposure to each task. Furthermore, we tailored the loss functions
to suit the nature of each task: cross-entropy loss for SST, binary cross-entropy for paraphrase
detection, and mean squared error for STS. This customization reflects our understanding of the
inherent differences in task objectives and evaluation metrics.

Figure 1: Initial architecture of multitask classifier

4.3 Shared Sentence Embedding Layer

A pivotal enhancement in our model is the introduction of a shared sentence embedding layer based
on Reimers and Gurevych (2019). Recognizing that BERT’s output, particularly the pooled CLS
token, might not directly serve as an optimal sentence representation for all tasks, we devised a
single-layer neural network to transform this output into a more task-agnostic sentence embedding.
This shared embedding underpins the task-specific components of our model:
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• For STS, the model computes cosine similarity directly from these embeddings, leveraging
their numerical properties to assess sentence similarity.

• In paraphrase detection, a neural network processes both embeddings and their absolute
difference, capturing nuanced relational features.

• Sentiment classification integrates the raw BERT pooled output with the derived sentence
embeddings, acknowledging the complex nature of sentiment as a task requiring both
semantic understanding and domain knowledge.

Figure 2: Addition of sentence embedding layer to multitask classifier

We used cosine embedding loss to train the sentence embedding layer. In hindsight, Henderson
et al. (2017) suggest that multiple negative rankings loss would have been a much more efficient loss
function to train on, where all pairs of sentence inputs are used for training leading to a quadratically
larger training corpus. Furthermore, Solatorio (2024) discuss an even more novel and effective
approach of GISTEmbed loss, which when compared to multiple negative rankings loss, uses a
guide model to guide the in-batch negative sample selection, thereby reducing the reliance of random
sampling and improving model accuracies at the expense of some training overhead. We believe that
changing our loss function can substantially improve our sentence embeddings and overall model
performance.

4.4 Gradient Surgery

Gradient surgery by Yu et al. (2020) is a technique designed to enhance the training process in
multitask learning environments. It addresses the issue of conflicting gradients, where simultaneous
gradient descent on multiple tasks can lead to suboptimal convergence or even divergence. This is
particularly crucial when tasks have different learning objectives that may not align. Through gradient
surgery, specifically Projecting Conflicting Gradients (PCGrad), we project each task’s gradient onto
the normal plane of the other task’s gradient when they conflict, thereby resolving the conflicts and
allowing for a more cooperative convergence.

When the dot product of a pair of task gradients is negative (i.e., they are conflicting), we use the
following projection formula to correct the task gradient:

gPC
i = gPC

i − gPC
i · gj

∥gj∥2
gj , (1)

where gPC
i and gj are the gradients of tasks i and j respectively.

In our application to the multitask classifier, gradient surgery was used to optimize the shared sentence
embedding layer, ensuring that each task’s updates contributed positively to the overall learning
objective without undermining the performance on other tasks.
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5 Experiments

5.1 Data and Evaluation Metrics

This section provides an overview of these datasets, their respective splits and evaluation metrics
used.

Stanford Sentiment Treebank (SST) The SST dataset includes 11,855 sentences extracted from
movie reviews. It features a rich annotation of 215,154 phrases from parsed trees, each assigned
a sentiment label ranging from negative to positive. The dataset is partitioned into training (8,544
examples), development (1,101 examples), and test sets (2,210 examples). We used accuracy as the
evaluation metric.

Quora Dataset This dataset contains 400,000 question pairs, with binary labels indicating whether
the questions are paraphrases of each other. We were provided subsets for training (141,506 examples),
development (20,215 examples), and testing (40,431 examples), with accuracy as the evaluation
metric.

SemEval STS Benchmark Dataset The SemEval STS Benchmark dataset includes 8,628 sentence
pairs, each scored from 0 (unrelated) to 5 (equivalent meaning). The dataset is split into training
(6,041 examples), development (864 examples), and test sets (1,726 examples), with the Pearson
correlation coefficient used for evaluation.

Our minBERT model is pre-trained on Wikipedia articles with masked language modeling and next
sentence prediction tasks. For downstream task fine-tuning, we employ the aforementioned SST,
Quora, and STS datasets, alongside the CFIMDB dataset for baseline comparisons. These datasets
necessitate minimal pre-processing such as tokenization, lower-casing, punctuation standardization,
and sentence padding for matrix operations.

5.2 Experimental Details

To maintain consistency across our models, we set the learning rate to 1 × 10−3 for pretraining
and opted for either 1× 10−5 or 2× 10−5 during finetuning. Each model underwent 10 epochs of
training with a dropout rate of 0.3 across all hidden layers, and a standard batch size of 64 was used
whenever possible (except the baseline model CFIMDB dataset, where a batch size of 8 was used).

The Adam optimizer was utilized without weight decay, featuring correction bias, an epsilon value of
1× 10−6, and beta values of 0.9 and 0.999.

5.3 Results

For the baseline model, we achieved the following results:

Phase Train (Actual) Dev (Actual) Dev (Ref)
Pretraining (SST) 0.415 0.396 0.390 (0.007)
Fine-tuning (SST) 0.842 0.523 0.515 (0.004)
Pretraining (CFIMDB) 0.771 0.771 0.780 (0.002)
Fine-tuning (CFIMDB) 0.999 0.967 0.966 (0.007)

Table 1: Baseline model results

In Table 1, we report the dev dataset performance of our baseline pre-trained and finetuned BERT
models for the baseline sentiment classification model vis-a-vis benchmarks from the project handout.
After pretraining and fine tuning, our baseline model closely aligned with the provided reference
accuracies. This outcome not only validated our implementation but also established a benchmark for
comparing the effectiveness of our enhanced multitask learning model.
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Phase Dev (SST) Dev (Paraphrase) Dev (STS) Dev (Overall)
Round-robin MTL 0.520 0.475 (-0.005) 0.330
MTL with sentence embeddings 0.511 0.697 0.517 0.575
Specialist neural networks 0.518 0.743 0.616 0.690

Table 2: Dev Set Performance Results

Phase Test (SST) Test (Paraphrase) Test (STS) Test (Overall)
Specialist neural networks 0.527 0.745 0.560 0.684

Table 3: Test Set Performance Results

In Table 2, we report the dev set performance for all proposed model approaches/stages of the project.
Table 3 mentions the test set performance results. Note that we only evaluated our specialist neural
networks on the test set and hence, only reported those results here.

Our quantitative results, as detailed in Tables 1, 2, and 3, provide insightful perspectives on the
efficacy of our approaches across different stages of model development and testing. The baseline
model performances, both in pretraining and fine-tuning phases, were closely aligned with the
reference accuracies provided, confirming the reliability of our implementation and setting a robust
benchmark for subsequent comparisons.

The outcomes observed from the round-robin multitask learning (MTL) approach, while promising,
did not meet our expectations, particularly in the domain of semantic textual similarity (STS), where
the performance marginally regressed. This underperformance highlights the inherent challenge in
balancing learning across diverse tasks, suggesting that a uniform application of MTL might dilute
the focus required for tasks with more nuanced distinctions.

Conversely, the integration of sentence embeddings into our MTL framework led to a notable im-
provement in the dev set performance, especially for the paraphrase detection task. This enhancement
underscores the value of shared representations in capturing semantic relationships more effectively,
thereby validating our hypothesis about the benefits of leveraging sentence embeddings for closely
related NLP tasks.

The most significant advancements were realized through the deployment of specialist neural networks.
Both on the dev and test sets, these models outperformed their MTL counterparts across all tasks, with
particularly impressive gains in paraphrase detection and STS. This success reaffirms the importance
of task-specific tuning and model specialization, providing compelling evidence that a focused
approach can yield superior results compared to generalized multitask frameworks.

In conclusion, our exploration into multitask learning and the application of specialized models
for distinct NLP tasks reveals the intricate balance required between shared knowledge utilization
and task-specific optimizations. The marked improvement observed with specialist neural networks
indicates that tailored approaches significantly enhance model performance. Based on these insights,
we posit that further refinements, such as adopting a Multiple Negatives Ranking Loss or GISTEmbed
Loss for our loss function, could potentially yield an additional performance boost, possibly in the
realm of 10%.

6 Analysis

In addition to our quantitative evaluation, a qualitative evaluation of our models provides deeper
insights into their behavior, effectiveness, and areas for improvement. Through examining specific
outputs and characteristics, we seek to understand the underlying mechanisms of our system, its
strengths, and its limitations.

6.1 Understanding Model Outputs

By scrutinizing the outputs of our models, particularly in cases where their predictions diverged from
the expected results, we gained valuable insights into their operational nuances. For instance, the
specialist neural networks demonstrated remarkable accuracy in paraphrase detection tasks, often
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successfully identifying subtle semantic similarities and differences between sentences. However,
in instances of highly nuanced or context-dependent meanings, even these specialized models
occasionally faltered, highlighting the challenge of capturing the full complexity of human language.

6.2 Successes and Failures

Our analysis revealed that the models’ successes often stemmed from their ability to leverage detailed
sentence embeddings and task-specific fine-tuning to capture a wide range of linguistic features.
In contrast, failures typically occurred in scenarios involving ambiguous expressions, idiomatic
language, or sentences requiring extensive world knowledge for accurate interpretation. Such cases
suggest that while our models are adept at handling structured linguistic tasks, they are sometimes
limited by the inherent constraints of their training data and the current state of natural language
understanding technology.

6.3 Implications for Further Development

This qualitative evaluation underscores the importance of diverse and comprehensive training datasets,
the potential benefits of integrating external knowledge sources, and the need for ongoing refinement
of model architectures to better capture the subtleties of human language. Furthermore, the insights
gained from analyzing model successes and failures guide us toward more nuanced loss functions and
optimization strategies, such as the proposed shift to Multiple Negatives Ranking Loss or GISTEmbed
Loss, which could further enhance model performance.

In summary, our qualitative analysis not only complements our quantitative findings but also illumi-
nates the path forward for refining our models. It highlights the critical balance between leveraging
generalized language understanding capabilities and honing in on the specificities of individual tasks,
setting the stage for future advancements in NLP technology.

7 Conclusion

Throughout this project, we embarked on an extensive exploration of the adaptability and performance
optimization of a pre-trained BERT model across a variety of NLP tasks, including sentence sentiment
classification, paraphrase detection, and semantic textual similarity. Our journey led us through the
integration of advanced techniques such as gradient surgery for mitigating task interference, the
employment of shared sentence embeddings to foster a deeper understanding across tasks, and the
deployment of specialized neural networks tailored to maximize task-specific performance.

Our findings reveal that while multitask learning frameworks offer valuable pathways for leveraging
shared linguistic features, the pinnacle of performance is achieved through specialized models that are
finely tuned to the unique demands of each task. Notably, the introduction of gradient surgery and task-
specific embeddings significantly enhanced our models’ ability to navigate the complex landscape of
NLP challenges, culminating in a marked improvement in accuracies across all tasks. These successes
highlight the critical importance of model customization and the potential of specialized architectures
in advancing the field of natural language processing.

However, our work is not without its limitations. The nuanced nature of language and the broad
spectrum of linguistic phenomena present challenges that our current models occasionally struggle to
fully capture. Ambiguities, idiomatic expressions, and context-dependent meanings remain areas
where our systems can see further improvement.

Looking to the future, several promising avenues present themselves for advancing our work. Explor-
ing alternative loss functions, such as Multiple Negatives Ranking Loss or GISTEmbed Loss, offers
the potential for even greater performance enhancements. Additionally, the adoption of more ad-
vanced pre-trained encoder models and the expansion of our multitask learning framework to include
more diverse datasets could further refine our understanding and processing of natural language.

In conclusion, this project not only advances our comprehension of the capabilities and challenges
associated with deploying BERT for NLP tasks but also sets the stage for future innovations in model
optimization, task-specific tuning, and the exploration of new methodologies in the quest for more
sophisticated and nuanced language understanding systems.
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