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Abstract

In this project, we first implement and train a small scale BERT model to perform
sentiment classification on the Stanford Sentiment Treebank dataset. We extend
this model to also perform paraphrase detection and semantic text similarity, using
a round robin training method to iterate through batches of all three tasks. We
then implement a BERT model that finetunes on the task of generated uniform
hypersphere embeddings, with the assumption that this is an underlying symmetry
in our data in the spirit of geometric deep learning. We find that directly finetuning
BERT on this loss caused it to overall perform worse than baseline, and that likely
we would need to introduce another network to perform this transformation of the
data.
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2 Introduction

Data often contain certain equivalence classes of transformations that still preserve the semantic
meaning of the transformed data, called symmetries. For example, a rotated image of an apple is still
an apple. Training neural networks that respect these symmetries, through making them insensitive to
input transformations, can lead to more robust and generally better performing models (Bronstein
et al., 2021). We can represent these transformations as equivariant functions on our data, or functions
that transform the data in a way that is predictable given knowledge of those symmetries.

However, compared to rotations, symmetries are much more difficult to define on NLP data in a
closed-form manner, though they definitely still exist. Word embeddings have intrinsic geometric
properties, with distance representing semantic similarity Yin and Shen (2018). Similar geometric
embeddings arise through contrastive learning, which forces them to become uniform along a unit
hypersphere Wang and Isola (2022).

In lieu of explicitly stating these symmetries to the model, it may be possible to learn them through
optimization with an appropriate choice of objective function (Kaba et al., 2023). In this work we
consider using explicit metrics of alignment and uniformity as a finetuning task, in order to train our
BERT model to output better symmetrized sentence embeddings. We use these finetuned sentence
embeddings on three downstream tasks, closely following the ideas of learned canonicalization in
Kaba et al. (2023).
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3 Related Work

3.1 Equivariance and Canonicalization

When talking about symmetry, it is often the case that you care about the set of all symmetries that
behave similarly. This can be formalized as a mathematical group, which can be thought of as an
object that respects permutations of elements of a set. Formally, we represent transformations on
our data using a group G on a vector space X representing the data itself. The group representation
ρ : G → GL(X) gives us the set of invertible linear transformations on X , since GL(X) is the set
of invertible matrices representing the transformations induced by G. And equivariant function is
then defined as a function f : X → Y that behaves according to

f(ρ(g) · x) = ρ′(g) · f(x) (1)

where ρ′ is another group representation that acts on the output Y . The transformation represented by
ρ′ is induced by G, meaning we know how the data will transform given knowledge of G.

Using the formulation above, our equivariant function f : X → Y can be written in a decoupled
form:

f(x) = ρ′(c(x)) · p(ρ(c(x)−1 · x) (2)

where c : X → G is called a canonicalization network and p : X → Y is a prediction network
(Mondal et al., 2023). This prediction network can be a network that is difficult to make equivariant,
such as a pretrained language model, as it decouples the equivariance requirement to be on the
canonicalization network instead.

3.2 Contrastive Learning

Contrastive learning improves sentence embeddings by learning a metric between positive and
negative sampled examples (Chen et al., 2020). This metric pushes negative sampled pairs further
away in the model’s embedding space, and puts positive sampled pairs together. This method was
applied to NLP domains by defining positive pairs by generating two sets of embeddings from the
same model using, where low probability dropout layers add noise as data augmentation (Gao et al.,
2022). This is done through a constrastive loss function on two embeddings hi, h

+
i :

L(hi, h
+
i )contrast =

exp(sim(hi, h
+
i )/τ)∑N

j=1 exp(sim(hi, h
−
j )/τ)

(3)

where sim(x, y) is a similarity metric between x and y and temperature value τ . In this work, we
add this loss to our downstream task loss as a weighted regularization function.

This loss asymptotically forces sentence embeddings to become uniform and aligned along a hyper-
sphere in Wang and Isola (2022). For the purpose of our work, we consider this as an appropriate
optimized symmetry for a language model.

4 Approach

We implement a method for finetuning BERT to directly output uniform sentence embeddings and
compare it to contrastive learning as a baseline. This is in the spirit of a canonicalization network, in
that it attempts to learn some relevant geometry in the input data of a downstream task.

4.1 Loss Functions

We train our model on four separate loss functions. First, we use the loss associated to the finetuning
task, which we denote as Ltask. Second, we use the contrastive loss function defined in equation 3.
For our similarity metric, we use cosine similarity. Lastly, we use the uniform and alignment metrics
defined by
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Lalign(h, h
+) = E(||h− h+||22) (4)

and

Luniform(h, h+, t) = E(e−t||h−h+||22) (5)

We then take a weighted sum of these loss functions in various combinations depending on the model.

4.2 Model

We propose finetuning our pretrained BERT model on the weighted sum of the uniformity and
alignment loss functions, and then train our downstream models on these hopefully symmetric
embeddings. Figure 1 shows a diagram of this model. Note that the weights of the BERT model are
unfrozen during training on the uniform-alignment loss, and frozen when training the feedforward
networks on the downstream task. The final loss term can also be substituted to include the contrastive
loss term as well.

Figure 1: Proposed model architecture. We finetune BERT to the uniform-alignment loss function to
train it to output sentence embedings that respect our proposed hypersphere symmetry.

We thus have two models to test against a baseline: one that uses the contrastive loss and another that
doesn’t.

4.3 Baseline Models

We compare our models against a BERT model finetuned with only the task loss, and a BERT model
finetuned with the contrastive loss term. We expect BERT with the constrastive loss to be more
comparable to our model.

5 Experiments

5.1 Data

We train and evaluate our models on three different downstream tasks.

5.1.1 Sentiment Classification

One task is multiclass sentiment classification, using the Stanford Sentiment Treebank (Socher et al.,
2013). This contains annotated phrases parsed by the Stanford parser. There are 5 output classes total.

5.1.2 Paraphrase Detection

Another task is paraphrase detection – given two sentences, determining if they are paraphrases or
not. For this we use the Quora dataset, which consists of sentences for comparison. There are 2
output classes total.
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5.1.3 Semantic Text Similarity

The last task is determining semantic equivalence of two sentences using the STS benchmark dataset
(Agirre et al., 2013). This is a regression task, where the model attempts to output a continuous value
determining how similar pairs of sentences are. This scale goes from 0 to 5, representing unrelated to
equivalent, respectively.

5.2 Evaluation method

We evaluate performance on both sentiment classification and paraphrase detection using accuracy,
as both are classifcation problems. For semantic text similarity, we use the Pearson correlation of the
true similarity values against the prediction similarity values.

5.3 Experimental details

All models were trained with a learning rate of 1× 10−5, with 3 training epochs of finetuning on all
three downstream tasks. Models with the uniform loss were trained with 5 additional epochs on the
SST training data.

Models were trained round robin, with alternating batches between each task dataset. Due to the
uneven sizes of the datasets (specifically the Quora dataset being much larger than the others),
we iterate multiple times through the smaller datasets and consider an epoch finished once we
have finished passing through the largest dataset. In certain experiments, where only the relative
performance differences between the models matter, we subsample 128 batches evenly between each
task.

5.4 Results

Due to time constraints, we performed a comparison analysis between models through subsampling
the data as mentioned above. In the tables below, BERTvanilla is the vanilla BERT multitask model,
BERTsimCSE is the BERT multitask model with the additional contrastive loss term, BERTunif

is BERT trained on the uniform loss function, and BERTsimCSEcanon is the same as the previous
model with an additional contrastive loss term.

Model Performance

SST-Dev Para-Dev STS-Dev

BERTvanilla 0.453 0.720 0.342
BERTsimCSE 0.447 0.712 0.336

BERTunif 0.373 0.618 0.049
BERTsimCSEunif 0.370 0.375 0.199

Table 1: Performance finetuning on small subset of data from all tasks.

These results show that the vanilla model performs the best out of all methods. The performance
drop introducing simCSE is possibly due to our choice of treating the loss as a regularization term
instead of the actual full loss objective.

It is important to note here that the uniform BERT model is only trained on the SST dataset, while
BERT is finetuned on all datasets for the baseline models. To have a realistic comparison, we repeat
the same experiment but only finetune the baseline models on the SST dataset. This gives an improved
relative performance in our models, but not by much.

As a result, we submit test results using the contrastive loss model. This gave us test results 0.446 on
SST, 0.527 on paraphrase, and 0.307 on STS.

6 Analysis

Overall we see that our model performs worse than baseline, even when finetuning on the same
dataset. Finetuning all models on the SST dataset does make performance look closer, and the
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Model Performance

SST-Dev Para-Dev STS-Dev

BERTvanilla 0.489 0.517 0.091
BERTsimCSE 0.505 0.507 0.083

BERTunif 0.417 0.618 0.049
BERTsimCSEunif 0.383 0.618 0.049

Table 2: Performance finetuning on only SST task.

uniform loss model does outperform the baselines for the paraphrase task. However, the model does
not expect the way we would expect. Qualitatively, we expect a model that preserves symmetries
in sentence embeddings to perform better on the STS benchmark even when training on sentences
outside of that dataset. The canonical model fails to do so.

There are two possible reasons for this, the first of which is the scale of the experiments performed.
A key assumption with this method is that we can finetune BERT to output embeddings adhering to a
hypersphere through the alignment and uniformity losses. However, we only ever finetune BERT on a
single dataset for 5 epochs. It is possible that longer finetuning to this task will improve performance,
but this may not increase the expressivity of the model and would thus need to be trained on a dataset
not in the test set to determine if the results are actually due to the uniformity loss. We also, due to
lack of time, were not able to finetune BERT on all task datasets using the uniform-alignment loss,
which would likely improve model performance greatly.

Another possible reason for the model’s performance is the motivation for decoupling the equivariance
requirement from the pretrained model in the first place. If large pretrained models can be regularized
to be equivariant, they likely already would be. Instead, this task should be given to a feedforward
network or something similar.

7 Conclusion

We found that directly enforcing symmetries through finetuning a pretrained model is not enough
to ensure better performance in downstream tasks, likely due to conflicting optimization objectives
and lack of sufficient training. Our proposed uniform model, when trained similar to the baselines,
outperformed in paraphrase detection but underperformed in the other two tasks. Surprisingly, the
model does not do better on the SST dataset, even though it’s trained for longer on it. Due to time
constraints, we were not able to investigate whether this was the case where our model was finetuning
BERT on all tasks with the uniform-alignment loss.

Though this attempt underperforms, we still believe that the connection between the work done by
Wang and Isola (2022) and Kaba et al. (2023) is one worth exploring in more detail. If we can use
the uniformity-alignment loss on a feedforward network, to act as a symmetry on NLP data up to
optimization, then we can have at least a starting point for defined symmetries on NLP data.
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Learning: Grids, Groups, Graphs, Geodesics, and Gauges.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022. Simcse: Simple contrastive learning of sentence
embeddings.

5

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821


Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
2023. Equivariance with learned canonicalization functions.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Sai Rajeswar, and Siamak Ra-
vanbakhsh. 2023. Equivariant adaptation of large pretrained models. In Thirty-seventh Conference
on Neural Information Processing Systems.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Tongzhou Wang and Phillip Isola. 2022. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere.

Zi Yin and Yuanyuan Shen. 2018. On the dimensionality of word embedding.

6

http://arxiv.org/abs/2211.06489
https://openreview.net/forum?id=m6dRQJw280
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2005.10242
http://arxiv.org/abs/2005.10242
http://arxiv.org/abs/1812.04224

	Key Information to include
	Introduction
	Related Work
	Equivariance and Canonicalization
	Contrastive Learning

	Approach
	Loss Functions
	Model
	Baseline Models

	Experiments
	Data
	Sentiment Classification
	Paraphrase Detection
	Semantic Text Similarity

	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

