
Methods to Improve Downstream Generalization of
minBERT

Stanford CS224N Default Project

Ramgopal Venkateswaran
Department of Computer Science

Stanford University
ram1998@stanford.edu

Abstract

We investigate a broad suite of techniques to create robust embeddings with good
down-stream performance across tasks when fine-tuning BERT. Techniques we
explore include data processing and augmentation related changes, adopting the
two-stage strategy of linear probing then fine-tuning, architectural improvements
such as weight-sharing, loss function improvements such as contrastive loss and
multiple negatives ranking loss, and regularization penalties such as smoothness-
inducing adversarial regularization, among others. We also experiment with some
further post-training techniques such as stochastic weight averaging and knowledge
distillation. Ultimately we find that data is king - the biggest performance boosts
came from better data processing, additional pre-training, re-weighting data, or
simply adding more data. We also see that architectural improvements can some-
times bring about step changes (as with some changes in the paraphrase task arch)
but even otherwise bring consistent incremental gain. Loss-related methods were
more hit-or-miss, and so were post-training methods (aside from ensembling).

1 Key Information to include

Mentor: Cheng Chang • No External Collaborators • Project is not shared across classes

2 Introduction

BERT (Devlin et al., 2019) is a transformer-based model that significantly improved upon existing lan-
guage models at its time of release, producing robust embeddings that could be fine-tuned to achieve
state-of-the-art performance on a variety of downstream tasks. We investigate a suite of methods that
can be applied when fine-tuning a pre-trained BERT model to improve generalization performance,
and understand how well they can complement each other when to maximize performance on three
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity.

We broadly classify our improvements into five categories of approaches, include data-related
approaches (e.g. changes in data weighting, additional data, etc.), architecture-related changes, loss
function related changes (e.g. adding a contrastive learning loss, adversarial loss, etc.), hyperparameter
tuning, and post-training methods (e.g. ensembling, stochastic weight averaging, distillation). We
will more comprehensively list out and explain the different techniques in section 4.

3 Related Work

Our work is based on extending the pre-trained BERT embeddings first described in Devlin et al.
(2019), and we use ideas from many of the subsequent works that look to fine-tune these embeddings.
Data-Related: Sun et al. (2020) shows that a stage of additional pre-training with the masked
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language modeling and next-sentence prediction objectives before fine-tuning can produce better
embeddings. A two-stage strategy of just linear probing and then full fine-tuning (LP-FT) has also
been shown to improve performance on out-of-distribution data on certain vision models (Kumar
et al., 2022); we draw inspiration from this to try a similar two-stage approach where we do one
round of fine-tuning with the BERT model’s parameters frozen, and then start full fine-tuning from
that initialization. Separately, many works have also shown that training on additional data and tasks
can benefit prediction performance on our main tasks, such as Reimers and Gurevych (2019) and
Jiang et al. (2020).
Loss-Related: Henderson et al. (2017) uses the idea of multiple negatives ranking loss in their task
of training a model for response suggestion. The loss term considers the intended response as the
positive and other responses as negatives and maximizes the probability of the correct response, using
a simple dot product between an input embedding and candidate response embedding as the scoring
function to efficiently compute the suitability of each candidate response. We apply these ideas to the
tasks of paraphrase detection and semantic textual similarity. Gao et al. (2022) identifies a simple
and effective contrastive learning technique of adding a loss function that maximizes the similarity
between two embeddings generated from the same input, but with different dropouts applied. Jiang
et al. (2020) introduces a principled way to combat overfitting by adding a regularizer that encourages
smoothness by penalizing cases where we can find an adversarial input that is close (based on some
distance metric, e.g. the L∞ norm) but the output logits differ greatly.
Post-Training Methods: Stochastic weight averaging (Izmailov et al., 2019) was previously found
to improve generalizability in vision; after the model converges (or is close to convergence), it keeps
track of a running average of model weights and uses that for prediction instead of the final model
weights (the details of this idea are further explained in the following sections). We also look into the
idea of knowledge distillation from an ensemble of separately trained models to a new model, an
idea applied to BERT in Liu et al. (2019). While he focus of this work was to improve the serving
efficiency of knowledge distillation (since serving an ensemble is costly), recent work by Allen-Zhu
and Li (2023) explores the idea that even self-distillation (distilling a previously trained model of the
same size to itself, without ensembling) can result in improved performance, with some theoretical
reasoning for why this might be the case. Motivated by this, we explore if either self-distillation or
distillation from an ensemble of models can improve model performance.

4 Approach

4.1 Baseline

The datasets we use in our baseline are the Quora question-answering dataset for paraphrase detection,
the STS dataset for similarity scoring, and the Stanford Sentiment Treeback (SST) dataset for
sentiment classification. These are described in more detail in the project handout 1.

The baseline fine-tunes (all parameters of) the BERT model (Devlin et al., 2019) with the task heads
described below - note that for all task heads, the input is the pooled BERT embedding corresponding
to the <CLS> token. All linear layers described have a dropout of 0.3, the learning rate for fine-tuning
is 1e−5 and training is done for 10 epochs.

• SST: Linear layer with softmax activation, trained with cross-entropy loss.

• Paraphrase: Siamese network - each sentence embedding is fed into a linear layer to get an
intermediate embedding (size 32) followed by a dot product with and sigmoid activation,
trained with binary-cross-entropy loss.

• STS: Siamese network similar to above, but the output is the cosine similarity of the
intermediate embeddings scaled by a factor of 5.0, trained with MSE loss.

We will now describe our approach to modifying the baseline.2

1Link to default project handout
2All approaches based on existing literature have the relevant papers accordingly cited along with explanations

on the relation between the paper’s work and ours. Other approaches are original. All code is self-written unless
otherwise mentioned.
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4.2 Data

Even Batching: We modify the shuffling logic to more evenly distribute the optimization steps
across the tasks - the default baseline logic optimizes one epoch of each task at a time, in round-robin
fashion. For a given epoch, this could result in the model’s weights converging towards the optimum
for that single task whose epoch of data is currently being consumed, with the update directions then
changing sharply when the epoch of data from the next task is consumed. We instead shuffle at the
batch level instead of the epoch level; do this by splitting each task’s data into batches of equal size,
and then shuffling the batches across all tasks. We then consider one epoch to be an epoch after
training on the full shuffled dataset from all tasks’ data sources.

Loss Rescaling: We observe that the training dataset sizes are very imbalanced - the SST dataset has
a size of approximately 8500 and the STS dataset has a size of approximately 6000 - on the other
hand, the Quora dataset has a size of nearly 210000. This suggests that if we optimize each task in
the same way, we will tend to over-optimize on the Quora dataset potentially at the expense of worse
performance on the STS and SST datasets. To counteract this, we down-weight the Quora data by
a factor of 10 to bring it to approximately the same order of magnitude as the other two datasets -
that is, the loss computed for the paraphrase task is multiplied by a factor of 0.1 (or equivalently, we
can consider the learning rate for this data is a factor of 10 lower than the other two datasets). This
ensures that we still see all of the data from the Quora data in an epoch (as opposed to dropping some
part of the data), while keeping its effect on the model weights comparable to the other two tasks.

Additional AllNLI Data: The AllNLI dataset is a dataset that comprises pairs of sentences that entail
each other and can therefore be used to model textual similarity. It is formed by a combination of the
Stanford NLI dataset (Bowman et al., 2015) and the MultiNLI dataset (Williams et al., 2018). We
add AllNLI data to the existing similarity scoring task - i.e. in terms of model predictions, both the
data from the existing STS dataset and the added AllNLI dataset are generated in exactly the same
way, with the same architecture. However, the loss for AllNLI is computed differently - we use only
the multi-negatives ranking (MNR) loss function for AllNLI, while we use a combination of cosine
similarity loss, MNR loss, and unsupervised SimCSE loss for the STS data (these are all described in
more detail in subsection 4.4).

LP-FT: Linear probing then fine-tuning refers to the strategy of the two-step strategy of just linear-
probing (i.e. just tuning the task-specific parameters) then full fine-tuning to improve generalizability,
as described in Kumar et al. (2022). In this case, we first tune just the task heads, and then fine-tune
the full model after initializing it from these weights. While the approach described in the paper was
mostly tried for vision models and aimed to improve out-of-distribution performance, we attempt it
here to see if it can also improve generalizability across tasks. We note that our task heads are not
purely linear (except for the baseline), and our usage of the term "linear probing" here in the context
of freezing the BERT model weights while fine-tuning the task heads does not fully match the general
use of the term.

Additional Pre-training: We apply additional pre-training as described in Sun et al. (2020). We do
not do this on AllNLI data, but simply on the three task datasets (SST, STS, Quora). We train on
purely the masked language modeling objective with AdamW and a learning rate of 5e − 5 for 3
epochs. We first pre-process the data by combining the sentences in all three datasets and shuffling
them, to feed as training data. The training code was directly adapted from the sentence-transformers
library 3.

4.3 Architecture

We improve upon the baseline architecture to get the architecture shown in figure 1. The key changes
are described below:
Weight-sharing: We have two fully-connected linear layers (with relu activation in between) that
served as a shared architectural component for all three tasks. The goal of weight-sharing is to enable
easier transfer learning across the tasks, by allowing knowledge transfer through an explicit shared
representation used for all tasks (in addition to the knowledge transfer that can happen through the
fine-tuning of the common BERT model parameters). These are denoted as Shared FCN layers 1 and
2 in figure 1. The output of shared FCN layer 2 is used as an input for all tasks, by concatenation with

3https://github.com/UKPLab/sentence-transformers/blob/master/examples/unsupervised_learning/MLM/
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Figure 1: Diagram of the architecture yielding the best performance across tasks. The AllNLI task
(discussed further below) uses the exact same archs as the similarity task.

the outputs of each task’s own dedicated architectural component, followed by further transformations
after the transformation.

Taskhead Non-linearities: Task heads are no longer linear transformations of the BERT model
output - each task has at least one non-linear component (coming from the ReLU activation in the
shared arch), with the sentiment arch and paraphrase archs having additional non-linear activations.

Structural change for paraphrase: While the sentiment task continues to predict softmax-
probabilities and the similarity task continues to use a Siamese style network (outputting an embed-
ding, with the loss computed by similarity scores) like in the baseline, the paraphrase task is no longer
computed as a pure Siamese network. We first note that we still apply an element-wise dot product to
the representations of the pair of sentences, at the end of shared FCN layer 2 and para FCN layer
1. If we simply summed up the element-wise dot products and applied the sigmoid transformation
at the end, this would be equivalent to a Siamese network (albeit using a dot product instead of
cosine similarity). However, we also concatenate these element-wise products with direct embeddings
(coming from the BERT model’s <CLS> token) and apply further non-linear transformations to them,
allowing the network to learn functions that can be expressed in a more complex way than simply the
dot product of the two sentences’ embeddings. At the end of these transformations, we still predict a
logit that undergoes a sigmoid transform and minimize the binary cross-entropy loss (as we did in the
baseline).

4.4 Loss

Multiple Negatives Ranking Loss: MNR loss (Henderson et al., 2017) is useful when we are
provided labeled data with several pairs of sentences that are positive labels, and we would like to
predict whether a given pair will be positive or not. We use this for the semantic textual similarity
task, and will explain it in this context. We first compute the likelihood that each pair of sentences
in the batch is similar (here, we consider not just the given positively labeled pairs that form each
sample in the batch, but also combinations of sentences that come from two different samples).
For each sentence, we then look to minimize the negative log likelihood (that is, maximize the
likelihood) that the original sentence it was paired with (as a positively labeled sample) is the most
similar sentence among all the sentences in the batch. We can calculate this as LMNR(x, y) =

− 1
K

∑K
i=1 log

eS(xi,yi)∑K
j=1 eS(xi,yj)

where K is the batch size, and (x, y) denotes the K pairs of positively

labeled sentences (xi, yi). S here is the function modeling the similarity between two sentences - the
key is to ensure that S is efficiently computable - if each computation S(xi, yj) required a forward
pass, this would need K2 full forward passes per batch which would be very expensive. In our case,
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S(xi, yj) is simply the cosine similarity of the vectors msim(xi) and msim(yj) where we denote the
output of our similarity taskhead by msim, because of how we structured it as a Siamese network.
Therefore, we would only need 2K forward passes (which we need regardless to compute these
embeddings) and can just do K2 dot products (after normalizing the embeddings) to compute the
loss, instead of K2 full forward passes - this is much more efficient, and can be computed easily for
reasonable batch sizes (ours is just K = 16).

We train the AllNLI data purely with MNR loss. For STS data, we use MNR loss to augment the
regular cosine similarity loss. However, note that we cannot directly use the MNR loss in the given
form because not all of our samples in the STS data are positively labeled. Instead, they have different
degrees of similarity, so we introduce a change to the loss function to adapt it to our use case. We can
write it as

LMNR-weighted(x, y) =
1

K

K∑
i=1

el(xi,yi)∑5
j=0 e

j
log

eS(xi,yi)∑K
j=1 e

S(xi,yj)

where l(xi, yi) represents the label of the pair (xi, yi) (with 0 indicating no similarity and 5 indicating
full similarity). This ensures that we weight pairs that are very similar much higher as opposed to
pairs that are dissimilar (e.g. a pair with similarity score of 5 has e4 times more influence on the
MNR loss than a pair with similarity score of 1), since pairs that are very similar are "true positives"
while it is expected that pairs with lower similarity should not have as much influence on the MNR
loss. Implementation-wise, we adapt the existing implementation of MNR loss in the Transformers
library 4 to our use case, making the modifications mentioned above.

Smoothness-Inducing Adversarial Regularization: We try the method proposed in Jiang et al.
(2020) to combat overfitting by adding a regularization term that encourages the loss surface to be
smooth. We try this for all tasks, but will illustrate it in more detail for the STS task, and describe
the differences for the other two afterward. The goal of this regularizer is to ensure that all points
within at most a certain small distance of a given BERT sentence embedding (call the embedding
e and the distance d) have approximately the same output. d is measured in the L∞ norm in the
paper (i.e. d is the maximum absolute difference in the elements of the new embedding and the old
one), and we use this as well. To do this, for each datapoint we must first compute the embedding
eadv that approximately maximizes the difference in outputs between itself and e. The difference in
outputs is quantified through a loss function ls - for the STS task, this is the mean-squared error. That
is, we want to approximately find eadv such that eadv = argmax∥e−e′∥∞≤dls(msim(e),msim(e′)).
This quantity is maximized via a small number of steps of projected gradient ascent - note that this
is the same as gradient ascent but with a projection step at the end to project our new embedding
vector into the valid region of ∥e − e′∥∞ ≤ d. Also note that we can only do a small number of
steps here because each step requires both a forward pass and a backward pass. Therefore, each
step increases the computation time of the overall learning process significantly; we use just a single
step, which is the default used in the paper’s implementation. Once we compute eadv, we then
compute the regularization penalty as ls(e, eadv) and add it to our existing loss. The loss for the
sentiment classification and paraphrase detection tasks are the symmetrized KL divergence instead
of mean-squared error (since these are classification tasks and not regression tasks). The code to
implement this algorithm is adapted from the code in Jiang et al. (2020) 5.

Unsupervised SimCSE This is a simple technique from Gao et al. (2022) that ensures that two
forward passes generate embeddings that are close to each other (they don’t always generate the
same embedding because of dropout). It does so by doing two forward passes, and then applying an
equivalent of the MNR loss function to the embeddings obtained from the forward passes (where the
positive pairs are now the copies coming from the same input sentence, and the similarity function is
the cosine similarity). We make some minor modifications to our implementation of the MNR loss
function to also implement this, and modify it to use the dot product instead of the recommended
cosine similarity, since it seemed to have comparable out-of-the-box performance in Gao et al. (2022)
without requiring as much tuning.

4https://www.sbert.net/examples/training/nli/README.htmlmultiplenegativesrankingloss
5https://github.com/namisan/mt-dnn
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4.5 Hyperparameters

The hyperparameters we tuned included the learning rate, which we tuned from 2e−5 to 1e−5) and to
which we added a linear decay (of 4e−7 per epoch). We also tuned the batch size, and experimented
with both including and excluding dropout layers in the task head architectures (keeping the main
BERT model’s dropout rate at 0.3, and just adding or removing dropouts to the task architectures
above that). Finally, we also tuned the size of the fully connected layers above the BERT model
layers.

4.6 Post-training

Stochastic Weight Averaging: We tried running a few epochs of SWA at the end of our model training,
to see if it improves generalizability. In vision models, SWA has previously shown improvements in
generalizability with the hypothesis being that averaging weights over a few epochs results in weights
that are closer to the center of the low-loss region rather than the edges (Izmailov et al., 2019) 6. We
do this for 5 epochs with a learning rate of 1e−5, and implemented this with Pytorch’s SWA modules.

Knowlege Distillation: We first train a model, and then attempt to use its predictions as soft labels for
training another model. The main motivation for this is the work in Allen-Zhu and Li (2023) which
shows that self-distillation can sometimes lead to performance improvements, with the reasoning
being that the distillation process serves as a form of ensembling. We do this by adding the loss
compared to the distillation soft labels as a separate term in all our tasks’ loss functions, weighting it
as 2/3 of the main task’s loss. We also attempt this distillation where the soft labels are not the output
of a single model but rather an ensemble of models, to see if adding these soft labels can allow it to
out-perform a single model. We note that there is also some prior work with knowledge distillation
for BERT in Liu et al. (2019).

Ensembling: We also try three forms of ensembling - simple ensembling where we compute the
prediction as the average prediction of a set of models for all tasks, selective ensembling where we
select some combinations of models in the ensemble for some tasks and different combinations for
others, and a simple regression-based ensembler, for which we split the existing dev set into two
parts (dev-train and dev-dev), and train a logistic regression classifier to learn ensemble weights
on dev-train, evaluating on dev-dev. The classifier simply takes the logits from each model and
multiplies each by a learned weight before summing them and applying the appropriate activation
function (sigmoid in the case of the paraphrase task, and softmax in the case of SST - we did not do
this for the STS task).

5 Experiments

5.1 Data

We have included the full description of the main three data sources in subsection 4.1; we also use
entailment pairs from AllNLI data as described in subsection 4.2 7.

5.2 Evaluation method

During development, we use the average of the SST accuracy, paraphrase accuracy, and the normalized
version of the Pearson correlation to determine the overall quality of the model, aligned with the
project objectives and leaderboard criteria.

5.3 Experimental details

Models were trained for 20 epochs when used in the final ensemble, but for ablation studies and
comparison purposes we terminate at 10 epochs - we generally find that in most cases, the best dev
accuracy is achieved within 10 epochs which is why we expect that this will approximate the final
values at 20 epochs well. All models were trained on a V100 GPU, which takes approximately 3
hours to train when excluding AllNLI data and 4.5 hours to train when including it.

6This link also has a good explanation: https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/
7The data is obtained from http://sbert.net/datasets/paraphrases
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5.4 Results

The best single model, which we will call B1, includes the following combination of techniques
described above: even batching, loss rescaling, additional AllNLI data, weight-sharing, taskhead non-
linearities, structural changes for the paraphrase task, MNR loss (for AllNLI and STS), unsupervised
SimCSE loss for the STS tasks, a 1e−5 learning rate decayed by 4e−7 per epoch, no dropout layers
in the taskheads, and an FCN layer size of 256. We will denote the equivalent model without AllNLI
data by B2, and the equivalent model that both excludes AllNLI and also includes taskhead dropout
layers with a dropout rate of 0.3 as B3. B3 is the baseline for most of our ablation studies.

Experimental results and ablations of different combinations of techniques are given in figure 2. The
best final result was obtained by applying selective ensembling - we ensemble B1 and B2 for the
Paraphrase and STS tasks, while we ensemble B1, B2, B3 and B4 (which is B3 with additional
distillation loss) for the SST task. This ensemble is the top row in figure 2. We obtain an overall
test set accuracy of 0.771, comprising an accuracy of 0.531 on sentiment classification, 0.854 on
paraphrase detection, and 0.855 on semantic textual similarity for this ensemble. For reference,
the second row in figure 2 is a simple ensemble of B1, B2, B3, and B4 for all tasks. In 3, we also give
the results of applying LP-FT on top of the baseline, in comparison with pure fine-tuning.

Row No. Model Description SST Dev Acc Para Dev Acc STS Dev Acc Overall Score
Best Individual Models

1 Best Model (B1) 0.522 0.843 0.857 0.765
2 Best Model - AllNLI (B2) 0.503 0.851 0.857 0.761
3 Best Model - AllNLI + Task-Dropout = 0.3 (B3) 0.517 0.829 0.816 0.751

Data-Related Ablations & Inclusions
4 B3 - Even Batching 0.492 0.780 0.740 0.714
5 B3 - Additional Pre-training 0.503 0.806 0.767 0.731
6 B3 - Loss Rescaling - LR Decay 0.507 0.818 0.793 0.740

Architectural Ablations
7 B3 - Shared Arch - Non-linearities + FCN Size = 128 0.518 0.798 0.806 0.740
8 B3 but only one task: STS N/A N/A 0.806 N/A
9 B3 but only one task: Para N/A 0.805 N/A N/A

10 B3 but only one task: SST 0.529 N/A N/A N/A
Loss Function Related Ablations & Inclusions

11 B3 - Unsupervised SimCSE 0.500 0.821 0.815 0.743
12 B3 - MNR Loss 0.522 0.825 0.807 0.750
13 B3 + Adv Loss on STS (weight 50) 0.510 0.795 0.747 0.726
14 B3 + Adv Loss on all (weight 1) 0.520 0.766 0.797 0.728

Post-Training Methods & Best Ensembled Models
15 Best Selective Ensemble of Models 0.531 0.858 0.870 0.775
16 Best Simple Ensemble of Models 0.531 0.855 0.865 0.773
17 B3 + Distillation from Ensemble (B4) 0.518 0.820 0.807 0.747
18 B3 + SWA 0.518 0.829 0.821 0.752

Figure 2: Results from all model ablation studies, as well as additional experiments (except for
LP-FT). The notation "BN - X" refers to a model that corresponds to model BN but with technique X
ablated, while the notation "BN + X" refers to trying the technique X on top of BN.

Model Description Dev SST Dev Para Dev STS
Fine-tuned Baseline (FCN Size = 32) 0.500 0.579 0.627

Fine-tuned Baseline + Para Change + FCN Size=64 0.501 0.804 0.631
LP-FT + Para Change + FCN Size=64 0.501 0.804 0.631

Figure 3: Results from milestone report, including baseline accuracies and the accuracy when trying
out LP-FT and comparing it to pure fine-tuning. We did not see gain in Dev Accuracies from LP-FT.

In general, our quantitative results are along expected lines, with some exceptions. We first note that
data-related methods performed very well, particularly even batching and additional pre-training;
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comparing to B3, ablating each of them gives significantly worse overall performance, by 4.92%
and 2.66% respectively. Loss rescaling (or, equivalently, data reweighting) and adding additional
AllNLI data also boost performance, though a surprising finding is that adding ALLNLI data does
not necessarily improve performance on the STS data (which flows through the exact same task-head
architecture); instead, it maintains STS performance while significantly improving SST dev accuracy
by +3.77% with some trade-off against paraphrase performance as well (−0.95%).

Our architectural improvements also benefit the model, as seen from the ablation in row 7 of figure
2; figure 3 also suggests that the structural change to the paraphrase arch on top of the baseline was
critical in improving performance on that task. Row 8 to 10 where we only learn a single task at a time
also show us that both Para and SST benefit from the joint learning of all tasks, while there is negative
transfer to the SST task. Loss function related improvements were a mixed bag - unsupervised
SimCSE helped all tasks, while MNR loss, which was only applied to the STS task, helped it by
1.1% but at the expense of performance on the SST and paraphrase tasks (−1.0%,−0.5%).

Ensembling was very helpful, with a 1.3% increase in overall accuracy over the best individual model
and gains in all tasks; selective ensembling was slightly better than a simple ensemble. SWA yielded
very marginal improvement over B3 (which may also be noise), and we could not reproduce any gain
similar to ensembling by distilling ensembled predictions as soft labels, instead observing regression
in the case. Finally, we note that removing dropout layers from all task-head architectures was very
beneficial to both the paraphrase and STS tasks, while worsening the SST task.

6 Analysis

Overfitting: From the log loss and dev accuracy plots in figures 5 and 4 for the B1 model, we note
that log loss for all tasks decreases over time, and dev accuracy generally increases or stays roughly
constant for paraphrase and STS. However, SST dev accuracy gradually decreases starting around the
8th epoch, suggesting that we are overfitting to this task beyond that point, which makes sense given
the low data volume (compared to paraphrase or STS augmented with AllNLI data). These curves
also explain why we see B1 apparently significantly improve on SST dev accuracy compared to B2 -
it is likely because B1’s saved checkpoint occurred earlier in the optimization. B2 might have overall
worse performance because it takes more epochs for the paraphrase and STS dev accuracies to climb
to good values, by which point SST dev accuracy might have become very low.

Adversarial Regularization: This technique performed poorly compared to what we might have
expected from the literature. By examining the adversarial loss for a few timesteps, the projected
gradient ascent step doesn’t often find a good noise vector that lies further away from the original
embedding than the randomly initialized noise vector. This suggests that either further tuning of
the projected gradient ascent step size and the norm used might be needed, or it could be tried at
a different layer (e.g. adding noise to the <CLS> embedding instead of the input embedding). The
performance is also not suprising in light of the fact that other common regularization techniques
such as weight decay and task-head dropouts did not work well for this model.

Knowledge distillation from an ensemble of models was not able to beat single model performance.
Further tuning of distillation loss weights might be needed, or it could be worth exploring whether
adding the distillation loss to a separate task might instead be more useful; here, instead of directly
constraining each task’s head to reduce the ensembling loss, we could learn a separate task for
distillation and look to improve generalization on the main tasks by indirect transfer learning through
the shared architecture components.

7 Conclusion

By investigating a broad suite of techniques, we learn more about which combinations of them can
work well for fine-tuning BERT on downstream tasks. We find that the biggest levers in improving
performance were data-related, with some good gain from architectural and loss-related methods
as well. Limitations include the fact that we did not very precisely tune hyperparameters for any
one technique too much. Areas for further work include better understanding why adversarial
regularization does not work well for our models, exploring using other embeddings from the
BERT model besides the <CLS> token embedding, and existing techniques (like extending additional
pre-training to AllNLI data, or unsupervised SimCSE to tasks besides STS).
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Figure 4: For our best model, we take the log-loss at each epoch for each task and normalize it (so
the worst epoch would have a normalized loss of 0 and the best would have a loss of 1 - we plot this.
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Figure 5: For our best model, we take the dev accuracy after each epoch for each task and normalize
it (so the worst epoch would have a normalized accuracy of 0 and the best would have an accuracy of
1 - we plot this.
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