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Abstract

This research presents a systematic review of various language models and data preprocessing techniques
used for predicting Yelp star ratings from user reviews. Our investigation covers baseline models such
as Recurrent Neural Networks (RNN) and Long Short-Term Memory networks (LSTM), which leverage
sequential data processing and gating units respectively, to handle the information in the review text. We
also dive into the analysis of more complex models like BERT (Bidirectional Encoder Representations from
Transformers) and RoBERTa. BERT, with its distinctive attention mechanism and bidirectional training,
offers a unique approach to our task. RoBERTa, a variant of BERT, but with altered hyperparameters,
employs a Transformer-based architecture and self-attention mechanisms. The focus of our research
lies in the adaptation and fine-tuning of the RoBERTa model, built on top of the base RoBERTa model,
which is our primary contribution to this field of study. The systematic review and comparative analysis
of these models, combined with an exploration of different data preprocessing techniques, have been
instrumental in developing our fine-tuned RoBERTa model. Our preliminary findings indicate that the
LSTM model considerably outperformed the RNN model, demonstrating test accuracies of 50.02% and
55.33% respectively. Results for BERT and RoBERTa are provided here: BERT had a test accuract of
67.18%, and RoBERTa had a test accuracy of 73.41%. The ultimate goal of this systematic review and
comparative study is to identify a model, fine-tuned for the specific task of predicting Yelp star ratings,
that can provide reliable and actionable insights to businesses aiming to understand and enhance customer
satisfaction.

1 Key Information to include

Mentor: Bessie Zhang, External Collaborators (if you have any): NA, Sharing project: NA

2 Introduction

The digital era has resulted in an unprecedented increase of user-generated content on online platforms. This growing digital
footprint can provide valuable insights, particularly for businesses seeking to understand and improve customer satisfaction.
The ability to accurately predict user sentiment from this online content is therefore highly important.

The restaurant industry, in particular, stands to benefit immensely from accurate sentiment prediction. People often rely
on Yelp reviews to decide where to eat, and a difference of even half a star rating can significantly impact a restaurant’s
profits. A Harvard Business School study found that a one-star increase in Yelp rating leads to a 5-9% increase in revenue for
independent restaurants. Hence, an accurate model for predicting Yelp star ratings from user reviews can provide valuable
insights to restaurant owners, enabling them to address customer concerns while enhancing their service quality and business
performance (Luca, 2016).

Current sentiment prediction methods are primarily based on machine learning and natural language processing techniques.
Among these, deep learning models such as Recurrent Neural Networks (RNN) and Long Short-Term Memory networks
(LSTM) have been applied with notable success. These models can process sequential data and maintain a hidden state that
holds information about a sequence, making them suitable for handling the temporal dependencies in review text (Sherstinsky,
2018). However, they may suffer from issues like vanishing or exploding gradients, which can limit their predictive accuracy
(Pascanu et al., 2012).
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More recently, transformer-based models like BERT (Bidirectional Encoder Representations from Transformers) and
its variant, RoBERTa, have been introduced. These models use self-attention mechanisms that allow them to capture
dependencies between all words in a sentence, regardless of their distance (Devlin et al., 2018) (Liu et al., 2019).

This study aims to tackle these challenges through a systematic review and comparison of various language models, including
RNN, LSTM, BERT, and a fine-tuned RoBERTa model. Our research uses the Yelp dataset, providing a rich corpus of user
reviews for our analysis (Yelp, 2022).

This research aims to fill the gaps in the current understanding of sentiment prediction from Yelp reviews, providing
businesses with a more reliable and accurate tool to gauge customer satisfaction. The insights derived from this study have
the potential to significantly impact business strategies, enabling businesses to more effectively address customer needs.

3 Related Work

Sentiment analysis, a critical field in natural language processing, has seen the evolution and development of diverse
techniques over the years. According to Wankhade et al. (2022), these techniques can be broadly categorized into machine
learning-based approaches and lexicon-based approaches. Lexicon-based approaches quantify sentiment using predefined
lexicons, with each word acting as a feature for sentiment classification. This approach is commonly combined with basic
feature extraction techniques such as term frequency, parts of speech tagging, and handling of negations. However, these
methods struggle with the subtleties and context-dependency of sentiment in natural language according to Wankhade et al.
(2022). Machine learning-based techniques utilize supervised learning models trained on labeled data. Traditional methods,
such as Naive Bayes, Support Vector Machines, and Decision Trees, are often limited in capturing complex semantic
relationships in text. Deep learning methods like CNNs and RNNs overcome this by extracting features from raw data and
handling the sequential nature of text. However, they require substantial computational resources and don’t perform well
with long-term dependencies (Wankhade et al., 2022).

Furthermore, the emergence of transformer-based models like BERT has marked a significant advancement in the field. Dang
et al. (2021) in their research study fine-tuned BERT for sentiment analysis on a large dataset of app reviews, reporting that
the fine-tuned BERT model outperformed traditional machine learning models, thereby offering more accurate sentiment
prediction. Despite the significant advancements brought by BERT in sentiment analysis, the model has limitations. One
issue is that BERT struggles with long texts due to its maximum sequence length limit. Another critical issue is that the
fine-tuning process may not fully adapt BERT to specific language nuances and styles in different domains, potentially
affecting its performance in domain-specific sentiment analysis tasks.

These limitations present opportunities for improvement, leading to the emergence of enhanced models like RoBERTa.
RoBERTa addresses BERT’s shortcomings by using a longer training time, larger batch sizes, removing the next sentence
prediction objective, which leads to improved performance, and dynamically changing the masking pattern applied to the
training data. This provides a strong basis for our project, which aims to leverage the improvements of RoBERTa in the field
of sentiment analysis (Liu et al., 2019).

4 Approach

We explore four different models for the problem of rating review classification based on restaurant text reviews. Models
include an RNN, LSTM, BERT, and RoBERTa. We additionally, modified the BERT and RoBERTa models by testing the
addition of a CNN layer and freezing early layers. See appendix for model architectures 8.

4.1 Models

4.1.1 Baseline Models: RNN and LSTM

The RNN processes sequential data by maintaining a hidden state that holds information about a sequence up to the current
step. The hidden state is updated with each step through the sequence (Sherstinsky, 2018). The key equation for an RNN is:

ht = σ(W ∗ ht−1 + U ∗ xt) (1)

where σ is the activation function, ht−1 is the previous hidden state, xt is the input at time t, and W and U are weight
matrices (Sherstinsky, 2018). This simple update rule gives RNNs their characteristic ability to model temporal dependencies
in data. However, because the effect of a given input on the hidden states decreases exponentially over time, RNNs tend to
forget information from earlier in the sequence, leading to the vanishing gradient problem.

LSTMs are designed to mitigate this issue. They maintain a separate cell state Ct, and use gating units to control the flow of
information into and out of this cell state. The equations that determine LSTM’s behavior are as follows:
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ft = σ(Wf · [ht−1, xt] + bf ) (2)
it = σ(Wi · [ht−1, xt] + bi) (3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Ct = ft ◦ Ct−1 + it ◦ C̃t (5)
ot = σ(Wo · [ht− 1, xt] + bo) (6)
ht = ot ◦ tanh(Ct) (7)

Here, ft, it, ot, and C̃t are, respectively, the forget gate’s activation vector, the input gate’s activation vector, the output gate’s
activation vector, and a vector of new candidate values for the state, at time t. Each of these vectors is calculated based on the
previous hidden state (ht-1) and the current input xt, with different weight matrices Wf , Wi, Wo, and WC . The forget gate
ft controls what proportion of the previous cell state Ct−1 is retained, while the input gate it controls what proportion of
the new candidate values C̃t is added to the cell state. The output gate ot controls the output ht which is the final hidden
state and is based on the current cell state. Therefore, through this process, an LSTM can control its memory and effectively
model long-term dependencies, addressing the key limitations of the simpler RNN. (Sherstinsky, 2018).

4.2 BERT

Google’s BERT model diverges from traditional recurrent neural networks (RNNs) by adopting a bidirectional transformer
architecture that processes words in relation to all other words in a sequence simultaneously (Devlin et al., 2019). Unlike
RNNs, which sequentially process data and maintain hidden states, BERT employs attention mechanisms to capture
dependencies between words in both directions within a sequence (Vaswani et al., 2017). The key innovation lies in BERT’s
transformer blocks, which allow for parallel computation and enable the model to consider the entire context of a word when
making predictions (Devlin et al., 2018).

Through self-attention mechanisms, BERT attends to relevant words in a sequence, allowing it to capture long-range depen-
dencies efficiently. Moreover, BERT utilizes multiple layers of transformers, each refining the representation of the input text
further. By leveraging this architecture, BERT achieves state-of-the-art performance in various natural language process-
ing tasks, demonstrating its ability to understand nuanced linguistic relationships and contexts effectively (Devlin et al., 2019).

The model utilizes an encoder and decoder stack with scaled multi-head attention:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (8)

where: (9)

headi = Attention(QWQ
i ,KWK

I , V WV
I ) (10)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (11)

WQ,WK ,WV ,WOare parameter matrices (12)
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Furthermore, each layer in the encoder and decoder contains a fully connected feed-forward network:
FFN(x) = max(0, xW1 + b1)W2 + b2 (Vaswani et al., 2017)

4.3 RoBERTa

RoBERTa, an enhanced version of BERT, introduces several key modifications to the original architecture, leading to
significant improvements in performance (Liu et al., 2019). Unlike BERT, which masks a portion of the input tokens during
pretraining, RoBERTa adopts a more extensive pretraining approach by training on larger datasets and removing the next
sentence prediction task (Liu et al., 2019).
Additionally, RoBERTa employs dynamic masking during training, where the masking pattern is randomly sampled for each
training instance, allowing the model to adapt better to various input token combinations (Liu et al., 2019). Another crucial
difference lies in RoBERTa’s training objectives; it utilizes larger batch sizes and longer training sequences, leading to more
robust representations (Liu et al., 2019).
Moreover, RoBERTa incorporates Byte-level BPE (Byte Pair Encoding) tokenization, which enhances the model’s ability to
handle out-of-vocabulary words and improves its generalization capabilities (Liu et al., 2019). These refinements collectively
enable RoBERTa to outperform BERT on various downstream tasks, demonstrating its enhanced capacity for capturing
complex linguistic patterns and nuances in natural language data (Liu et al., 2019).

4.4 Model Augmentation

4.4.1 CNN Layer

A convolutional neural network (CNN) processes data by applying filters or kernels over input data to extract relevant features.
Particularly effective in computer vision tasks, CNNs have also demonstrated utility in natural language processing (NLP),
especially when applied to text classification. In a CNN architecture for text, the network typically utilizes one-dimensional
convolutions over sequences of words or characters, allowing it to capture local patterns and hierarchical representations
within the text (Kim, 2014). Each convolutional layer learns to detect specific features, such as n-grams or semantic
structures, by sliding the filter over the input sequence and computing a feature map(Kim, 2014).

The equation describing the convolutional layer is:

yj =

p∑
k=−p

xj−kwk (13)

where x is our input, w is the kernel, and p is the position in relation to the point of interest.
Integrating a convolutional neural network (CNN) layer before the BERT or RoBERTa models can offer significant
enhancements in text classification tasks. Unlike recurrent models like BERT and RoBERTa, which inherently capture
sequential dependencies in text data, CNNs excel at capturing local patterns and feature representations through convolutions
(Kim, 2014). By incorporating a CNN layer as a preprocessing step, the model can extract relevant features from the input
text at different granularities, capturing both low-level and high-level linguistic structures. This feature extraction capability is
particularly beneficial for tasks where certain patterns are crucial for classification, such as sentiment analysis or aspect-based
sentiment analysis.

4.4.2 Freezing Layers

Freezing layers refers to the process of preventing certain layers within a neural network from being updated during the
training process. When you freeze a layer, its weights and biases remain unchanged, and they do not get updated through
backpropagation. In BERT, the initial layers capture general linguistic patterns and semantic information from vast pretraining
data, which are often transferrable across various downstream tasks (Devlin et al., 2018). By freezing these layers, we
essentially maintain the learned representations without allowing them to change during fine-tuning. This strategy reduces
the number of parameters that need to be updated during training, thereby accelerating the convergence process and reducing
computational resources and time requirements. By freezing layers, we hope to drastically speed up our models’ performance
in exchange for a small trade off in performance.

4.5 Data Exploration and Preprocessing

As a critical initial step in our analysis, we carried out an extensive exploration of our dataset to gain a comprehensive
understanding of its characteristics and underlying patterns. This informed our subsequent data preprocessing and model
selection decisions.
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• Text Length Analysis: Analyzed character length
distribution in reviews to inform the determination
of sequence lengths in models.

• Star Rating Distribution: Assessed the distribution
of star ratings to identify potential class imbalance,
influencing the choice of evaluation metrics and sam-
pling techniques.

• Review Length vs Star Rating: Investigated the
relationship between review length and star rating to
reveal potential correlations for feature engineering.

• Named Entity Analysis: Analyzed the frequency
of named entities in the dataset and removed overly
dominant ones to prevent the model from overfitting
to specific entities.

5 Experiments

5.1 Data

The dataset being used is the Yelp Open Dataset published by Yelp and is a subset of their businesses, reviews, and user data
for use in connection with academic research (Yelp, 2022). The dataset contains 6,990,280 reviews, 150,346 businesses,
and 11 metropolitan areas. Though the data contains additional information about restaurants, we are only focusing on the
language modeling task of analyzing text reviews. To be more specific, the classification task is to predict 1-5 star rating of a
specific restaurant given a text review.

To gain insights into the data, we conducted an analysis of the reviews, which included investigating the distribution of star
ratings, the length of reviews, and the frequency of common named entities.

Figure 1: Text Length Analysis Figure 2: Star Rating Distribution

Figure 3: Review Length vs Star Rating Figure 4: Named Entity Frequency Analysis

5.2 Evaluation method

The primary metrics for evaluation were overall accuracy, per-class accuracy, precision, recall, and F1 score. Overall and
per-class accuracy measures the proportion of correct predictions made by the model out of all predictions. Precision refers
to the proportion of true positive predictions out of all positive predictions. Recall is the proportion of true positives out of all
actual positives. The F1 score is the harmonic mean of precision and recall, offering a balance between the two.

5



5.3 Experimental details

5.3.1 Data Preprocessing

Through the data exploration process and testing process, we compared average model results without preprocessing, with
oversampling to balance class data in training data, named entity removal (NER), and a combination of oversampling and
NER. These methods were informed by the data exploration process. After comparing average model performance across all
methods, we finalized on the combination of oversampling and NER which we used when training and testing all models
listed below.

All of the following experiments were repeated with each of our preprocessing methods:

5.3.2 Baseline RNN

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
The batch size was set to 32, with a learning rate of 0.005
for Adam optimizer. For data embedding, we used learned
embeddings that were built into the model with a torch embed-
ding layer with a vocab size of 20,000, embedding dimension
of 100, and max length of 256. We trained the model for 100
epochs and saved the first model matching the best results,
which took 47 epochs.

5.3.3 LSTM

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
The batch size was set to 32, with a learning rate of 0.005
for Adam optimizer. For data embedding, we used learned
embeddings that were built into the model with a torch embed-
ding layer with a vocab size of 20,000, embedding dimension
of 100, and max length of 256. We trained the model for 100
epochs and saved the first model matching the best results,
which took 32 epochs.

5.3.4 Finetuning BERT

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
We used the pretrained BERT architecture provided by hug-
gingface, loading up the default ’bert-base-cased’ model. This
model has 12 Bert layers, with 109 million parameters. In the
first layer, the embedding size is 768 with a max length of
512 words. We used the AdamW optimizer, with a batch size
of 16, and ran for 5 epochs.

5.3.5 CNN-BERT

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
We used the pretrained BERT architecture provided by hug-

gingface, loading up the default ’bert-base-cased’ model. this
time with a convolutional layer and maxpool layer stacked
with it as a Pytorch model. The convolutional 1D layer takes
the same 768 input channels, but outputs 256 channels, and
has a kernel size of 3. We used the AdamW optimizer, with a
batch size of 16, and ran for 5 epochs.

5.3.6 Frozen BERT

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
This model is the same as the finetuned BERT model, ex-
cept the first six layers are frozen, meaning that they do not
change weights during model training. We used the AdamW
optimizer, with a batch size of 16, and ran for 5 epochs.

5.3.7 Finetuning RoBERTa

We used a train/val/test split of 0.7, 0.2, and 0.1 respectively.
We used the pretrained RobertaForSequenceClassification
model, also with AdamW for 5 epochs. All experimental
parameters were the same as with finetuning BERT.

5.3.8 CNN-RoBERTa

The same modifications made to BERT were made to
RobertaForSequenceClassification. All other experimental
procedures were the same.

5.3.9 Frozen RoBERaT

The same first six frozen layers made to BERT were made
to RobertaForSequenceClassification. All other experimental
procedures were the same.

5.3.10 Hyperparameter Optimization

In our systematic review, each model was subjected to Bayesian hyperparameter optimization for all hyperparameters using
the package Optuna. Bayesian hyperparameter optimization starts with defining a search space for the hyperparameters,
which includes the range or distribution of possible values for each hyperparameter. Bayesian optimization uses probabilistic
models to estimate the performance of different hyperparameter configurations and decides where to explore the search space
next using a surrogate model such as a Gaussian model, and stops adjusting the hyperparameters either when reaching a set
performance threshold or number of iterations. In this case, for each model we ran it for 10 iterations.

5.4 Results
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Precision Recall F1 Score Accuracy
No-Preprocessing 0.51 0.47 0.47 0.57
Oversampling for Imbalanced Classes 0.59 0.54 0.56 0.63
Named Entity Removal (NER) 0.52 0.49 0.49 0.58
Oversampling and NER 0.61 0.57 0.57 0.65

Table 1: Average Metrics across RNN, LSTM, Finetuned BERT, and Finetuned RoBERTa for Different Preprocessing
Techniques

Model Test Ac-
curacy

Precision Recall F1 Score Accuracy
(1-star)

Accuracy
(2-star)

Accuracy
(3-star)

Accuracy
(4-star)

Accuracy
(5-star)

Baseline
RNN

0.50 0.51 0.43 0.32 0.61 0.36 0.38 0.29 0.49

LSTM 0.55 0.58 0.45 0.31 0.68 0.39 0.40 0.31 0.56
BERT 0.67 0.62 0.61 0.61 0.78 0.49 0.49 0.54 0.80
CNN
Bert

0.67 0.62 0.61 0.61 0.78 0.47 0.51 0.55 0.78

Frozen
Bert

0.65 0.61 0.59 0.62 0.76 0.48 0.49 0.57 0.76

RoBERTA 0.73 0.66 0.65 0.67 0.86 0.54 0.55 0.58 0.88
CNN
RoBERTa

0.73 0.66 0.65 0.67 0.86 0.55 0.53 0.57 0.87

Frozen
RoBERTa

0.70 0.63 0.62 0.62 0.82 0.52 0.50 0.55 0.83

Table 2: Model Performance for Different Star Ratings

Our results are as expected. There was a significant increase in all of the models performances as compared to a random
guess. BERT outperformed the baselines and then was outperformed by RoBERTa. While expected to see a bigger
performance jump between BERT and the LSTM(with primarily accuracy only jumping from 0.55 to 0.67), the jump
between BERT and RoBERTa was around the smaller magnitude we were expecting(0.67 to 0.73). Our model performed
significantly better on more extreme reviews - 1 starts and 5 starts - than the ’middle’ reviews, with an accuracy jump from
around 0.54/55 to upwards of 0.86 in our best RoBERTa model.

Based on the results from the preprocessing, NER removal made virtually no difference, with an accuracy jump
os just 0.01 from the baseline. However, oversampling for imbalanced classes made a substantial difference, with a jump
from 0.57 to 0.63 in accuracy on average.

6 Analysis

6.0.1 Preprocessing

Preprocessing made a small but substantial difference in our results. It was expected that NER would improve test accuracy
as the model would be able to better learn textual meaning instead of overfitting to named entities such as restaurant names.
Additionally, class oversampling was also expected to increase test accuracy as the model would have equal exposure reviews
equally distributed by class (star rating). As seen in the results, when applying both oversample and NER removal, there is an
accuracy jump of 0.08. However, it is clear that NER removal did not make a significant impact. From no-preprocessing to
NER removal, there is only an increase of 0.01, which is trivial.

6.0.2 Baselines vs BERT vs RoBERTa

BERT(0.67) clearly outperformed the baseline RNN(0.5 test accuracy) and LSTM(0.55) models, and was subsequently
outperformed by RoBERTa(0.73). However, the performance jumps were not massive, as detailed in the results. This implies
that the task is simple enough such that in a situation where compute resources are limited(for finetuning a large transformers
model), the LSTM would perform adequately.

6.0.3 Class Analysis of Accuracy

The model’s performance indicates a significant improvement in predicting extreme ratings (1 or 5 stars) compared to
moderate ratings (2, 3, or 4 stars). The accuracy increases on average by 0.3 when moving from moderate to extreme
rating categories. Extreme ratings (either 1 or 5 stars) generally correspond to very strong positive or negative sentiments
towards the product or service. The language used in these reviews is often charged with strong emotions and uses definitive,
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unambiguous words. For example, a 1-star review might use words like ’terrible’, ’worst’, or ’disappointing’, while a 5-star
review might include words like ’excellent’, ’perfect’, or ’amazing’. On the other hand, moderate ratings (2, 3, or 4 stars) are
often associated with more nuanced opinions, where the customer might have liked some aspects of the product or service
but disliked others. The language used in these reviews tends to be more ambiguous and balanced, making it harder for the
model to correctly predict the sentiment. Words like ’average’, ’okay’, or ’fair’ might be used, which do not convey a strong
positive or negative sentiment. The subtleties and complexities in these reviews make them more challenging for the model
to accurately classify, resulting in lower accuracy for these rating categories.

6.1 Model Augmentations

The addition of a Convolutional Neural Network (CNN) layer to the BERT and RoBERTa models did not significantly impact
their performance. This is indicated by the negligible differences in the key performance metrics - overall accuracy, precision,
recall, and F1 score. This suggests that the CNN layer did not contribute any additional predictive power to these models for
this specific task.

Additionally, an experiment was conducted to freeze the first six layers of both BERT and RoBERTa models. The idea
behind this approach is to preserve the pre-trained patterns in these initial layers while fine-tuning the rest of the model.
However, this adjustment resulted in a slight decrease in performance, with a drop of around 0.03 in accuracy for both models.
Despite this reduction in model complexity, the computational efficiency improved only slightly with training time reducing
from 4 hours and 55 minutes to 4 hours and 37 minutes in the case of BERT as an example. These results suggest that the
transformer architecture of BERT and RoBERTa, without additional CNN layers or freezing initial layers, is quite efficient
for this particular task. The attempt to increase computational efficiency through model simplification resulted in a marginal
decrease in performance but did not significantly reduce the computational time.

7 Conclusion

In this project, we built four different types of models, some augmented with different techniques such as unique architecture
choices and frozen weights, for multi-class text classification. All of these models vastly outperformed random chance. As
expected, RoBERTa showed why it was considered state of the art and outperformed the baseline and the default BERT model.

One of our biggest accomplishments was experimenting with different types of text preprocessing and dataset manipulation.
Oversampling for imbalanced classes resulted in a clear improvement in model performance, and although NER removal
did not make a huge impact, it was a challenging accomplishment to perform it in the first place. We also tuned the
hyperparameters to ensure we were maximizing model performance

One limitation of the project was the nature of the data itself. The 2/3/4 star reviews were much more ambiguous, and were
therefore significantly harder to differentiate than the more extreme reviews. Additionally, even with our sampled dataset, the
text data and large models made it difficult to iterate on our models even with additional compute resources. Future work for
this project could involve ideas such as:

• Comparing to even newer state of the art models such as GPT
• Correcting spelling mistakes in the Yelp reviews to better align the data to the model’s pretrained tokens/embeddings
• Utilizing resources such as Stanford’s Sherlock cluster to train on the full 5 million review dataset
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8 Appendix

Figure 5: RNN Architecture Figure 6: LSTM Architecture

Figure 7: BERT Architecture Figure 8: RoBERTa Architecture
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