
Detect failure root cause and predict faults from
software logs
Stanford CS224N Project

Name Sandip Pal
Department of Computer Science (NDO)

Stanford University
sandipal@stanford.edu

Abstract

We aim to find anomalies and their root causes from system log data. Log files
from computers speak a technical language that is sometimes limited to a series of
80-character sentences, but provides insights into what leads to a possible failure.
We intend to map "anomaly" log detection as a problem in the domain of NLP
analysis of computer components conversing and emitting signals of health, despair,
and possibly panic. As a first step we aim to leverage zero shot classifiers to identify
log anomalies and subsequently aim to leverage Large Language Models and the
Retrieval Augmented Generation to devise a question-and-answer system.

1 Key Information to include
• Mentor: Tony Wang
• External Collaborators (if you have any):None

2 Introduction

We aim to find anomalies in computer logs and subsequently discover the root cause that led to that
anomaly. The anomalies in this context are "failures" or fatal errors. Software engineers write code to
build systems and they insert logs (print them to the console or file or stream) to debug in case of
any error. As the systems grow in complexity the amount of log that accumulates is of considerable
volume that can stretch over hours to days and possibly months. When an error occurs in a system, it
becomes a necessary activity to find the root cause, and the logs are studied to identify when such an
error occurred and what led to the error. The job of manually going through such logs is laborious
and time-consuming and requires an understanding of the system context. Due to the difficulty in
analyzing such voluminous logs, automation is the best choice for repeated log analysis.

There are existing methods that have been tried out to find the "root cause" by analyzing log sections
by conducting a semantic search. The semantic search and root cause associations are heavily
dependent on the type of log that it is built for. With advances in NLP, the problem can be mapped to
"processing" computers/systems talking and broadcasting information, warnings, pain, fatalities etc.
"Sentiment" detection is a similar problem space as compared to our primary problem of log fault or
anomaly analysis.

With the recent progress with LLMs, log anomaly identification can leverage the existing relationship
of words already present in the base large language model. The technique of fine-tuning a pre-
existing language model is a candidate to solve our problem. Retrieval Augmented Generation (RAG)
techniques to create a prompt for the large language model with a local vector "database" and answer
the "anomaly" question will be another approach.

The problem becomes hard when the log output doesn’t follow conventional "English" language rules.
Some systems output cryptic logs that follow an encoding scheme, which implies the training system

Stanford CS224N Natural Language Processing with Deep Learning



and the query system need the decoder to understand the logs. Zero shot classifier techniques will not
work on an encoded log system. Log systems that produce "non-english" logs will need a translator
(auto or manual) to be present to feed an analyzer system.

3 Related Work

This section helps the reader understand the research context of your work by providing an overview
of existing work in the area.

Pan et al. (2023) authors have carried out a similar investigation by trying to solve the detection
of log anomaly problems by using retrieval augmented generation and building a vector database
with normal logs. The architecture was to populate a RAG vector database with normal logs and use
chatGPT as the base LLM and subsequently answer the log anamoly context

He et al. (2016) describes various methods and the experience around studying different
logs and extracting features from them. Conventional log parsing, with context windows, feature
extractions and event detection were primarily used to study the logs. Statistical methods involving
logistic regression , Principal component analysis and supervised learning methods like support
vector machines were used to detect anomalies and study their effectiveness.

4 Approach

• Approach 1 NLI(Natural langiuage Inference) based zero shot classifier
To detect an "anomaly" log, we will use the pre-trained "facebook/bart-large-mnli" and
classify each line of log as [’error’, ’normal’]. This analysis will give us insights into using
a pre-trained model (Williams et al. (2018)) to classify sections of the log entries. We’ll
experiment with different sentences used in the log entries to get an insight into this "zero
shot" classification. The zero-shot classification works under the premise of a sequence and
a hypothesis, results in probabilities of "Contradiction", "Entailment" or "Neutral". The
table below has examples of how it works.

Premise Label Hypothesis
Memory in location 0x224568 has overflow and a sigfault
has been generated, shutting down Contradiction The system is healthy
user xyz has logged in successfully from IP 2.2.2.4
and port 23 Neutral Multiple users have registered for the system
module unit phy has malfunctioned and is restarting Entailment Some entity has crashed

Table 1: Zero shot method

The Python source file "zeroshot_log.py" uses "facebook/bart-large-mnli" to conduct a
hypothesis testing of "This example is an error" and the "sequence" as one line from the file.
We will detail some of the results that we obtained on different files and their precision,
recall and F1 scores.

• Approach 2 RAG based vector DB and pre-trained LLM
The next approach is detailed in Figure1 and Figure 2. For our experiments, we use "Faiss"
Huggingface Vector db format to build our vector database. We split the log file into
manageable chunks of 100 lines and prepare it as an input for the next stage. The python
source code "src/createtxtdb.py" uses the "HuggingFaceEmbeddings" module to create the
Faiss database disk file.

2



Figure 1: Vector db

Figure 2: RAG with llama2 LLM

5 Experiments

5.1 Data

• BGL Oliner and Stearley (2007)
BGL is an open dataset of logs collected from a BlueGene/L supercomputer system at
Lawrence Livermore National Labs (LLNL) in Livermore, California. The non-alerts are
marked with "-" at the beginning of the log. This data will used in our study for experiments.
A snapshot of the data :

Figure 3: BGL log

• Synthetic microservices log
A simulated log with failure pattern injected at random times. We wrote a Python code to
simulate three micro-services that continuously print logs to their output files. Error events
were injected with 10% probability. Each event comprises 3-10 such error logs that are
printed in the log file. Statistically, the entire log file will have around 90% normal logs and
10% error(or anomalous) logs Data snapshot:

3



Figure 4: Our synthetic log

• SSHLog: OpenSSH log github : Zhuet al. (2023) Data snapshot:

Figure 5: SSH log

5.2 Evaluation method

As the problem datasets are binary, we used the following definitions of Precision, Recall and F1 score.

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2 x PrecisionxRecall
Precision+Recall

The RAG and LLM evaluation will be qualitative by examining a few results by hand for this research.
More extensive evaluation will be discussed in the "future work" of the conclusion section.

5.3 Experimental details

• Synthetic log creation with anomaly event
The data section details the experiments that we did to create relevant synthetic logs. The
difficulty in creating such simulated logs was the randomness and relevance of an anomaly
event that we triggered. We used a fixed set of log template lines to generate almost similar
lines, but with a new timestamp. The generation logic turned out to be complicated and will
be investigated in future.

• Experiment NLI zero shot classification
As described earlier, "zeroshot_log.py" was used to conduct the hypothesis testing of "This
example is an error" and the "sequence" as one line from the file.

Lines to classify Time compute
11k 162 mins 24 core cpu
1k 13 mins 24 core cpu

Table 2: NLI classification time

• RAG Vector db creation and RAG with Llama2_7b
For the first proof of concept we created a very small corpus of seven text documents and
created a small "Faiss" vector db. We then devised a very simple query to try to access
logical deduction from the new set of documents. The answer given was as expected and
can be rated as "good" if we’re to rate the qualitative aspect of it.

4

https://github.com/logpai/loghub/tree/master/OpenSSH


Figure 6: RAG LLM initial exp

5.4 Results

Report the quantitative results that you have found. Use a table or plot to compare results and compare
against baselines.

• Approach 1: NLI zero shot log classification as "error" or "normal" for two synthetic logs

Precision Recall F1
microserv NLI (ours) 0.949 0.969 0.958

RAGLog (Pan et al. (2023)) 0.91 0.88 0.89
LogPrompt(Liu et al. (2024)) 0.25 0.83 0.38

Table 3: NLI zeroshot and comparison with RAGLog and LogPrompt

The Precision, Recall and F1 scores are based on our simulated log data , and the
comparative scores are based on the corresponding research papers.

• Approach 2: RAG and LLM (llama2)
Our investigation with RAG and LLM was exploratory and we sampled a few answers from
the combined vector database and LLM.
With the synthetic microservices log file as an input for the vector db , and the question
"When did the wrong memory location corruption happen? How many times?"
The answer was satisfactory as it pointed to one correct date and log, and was not able to
give the count. yes, it did hallucinate, but that is how the inherent transformer and attention
mechanism works.

Figure 7: RAG QA

6 Analysis

With the advent of LLMs the models have successfully mapped the relationship between words
used in common English language conversations and can answer questions using the underlying
transformer architecture. Log analysis using RAG can be further fine-tuned to identify the specific
log conversations of a particular system.

As we study diverse log systems, the intuition behind log entries and their association with
natural language becomes evident. Logs are written by developers/engineers who speak a mix of
technical and natural language conversation. It may happen the logs are written by multiple diverse
developers, yet the overall system can be thought to be independent conversations about individual
health, happiness, warning, despair and finally fatality.
The zero-shot method is very effective in identifying a "cluster" of "anomalous" logs given an
effective "anomalous" label is used in the hypothesis. It may need a few iterations to test the
hypothesis that works best to identify most of the anomalous log lines or clusters of log lines.
Log analysis can have real time needs and LLM with RAG may turn out to be a bottleneck. Our

5



experiments with "llama2" 7 billion parameters 8 bit LLM had a high latency (5-10 secs) when
executed on a twenty-four core CPU. The 7 billion parameter LLM model was very large in terms of
loading it to a GPU memory less than 24Gigabytes.

7 Conclusion

Simple models like NLIYin et al. (2019) which are trained on far less corpus can serve as classifiers
for unseen text and classes. On the other hand, LLM models trained with a generic huge corpus of
text provide the base for word association. This helps with transfer learning techniques like RAG that
save cost and time in terms of computations when a model is trained from scratch.

Log analyzers can be more precise if the underlying log message schema is agreed on and
the same is used by the analyzer. But most of the systems are designed without this fixed template,
and thus there is a need to have a generic solution. As the nature of logging varies vastly from system
to system, a globally general fixed model/algorithm to detect failures for any kind of log is very hard
to design.

Log analyzers need to learn from the local system that it is trying to analyze and the infer-
ence model built for such a system may not be fairing well for another system. The primary limitation
of our study was getting enough diverse logs that could be used to train a system to find anomalies.
There needs to further experiments to decipher relationships between multiple components of the
system to trace the original root cause of that failure.

References
Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2016. Experience report: System log analysis

for anomaly detection. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pages 207–218.

Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yanqing Zhao, Yuhang Chen, Hao
Yang, Yanfei Jiang, and Xun Chen. 2024. Interpretable online log analysis using large language
models with prompt strategies.

A. Oliner and J. Stearley. 2007. What supercomputers say: A study of five system logs. In LLM-
Parser: An Exploratory Study on Using Large Language, page 575–584, 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’07). IEEE.

Jonathan Pan, Swee Liang Wong, and Yidi Yuan. 2023. Raglog: Log anomaly detection using
retrieval augmented generation. In RAGLog: Log Anomaly Detection using Retrieval Augmented
Generation, Online.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Benchmarking Zero-shot Text Classification:
Datasets, Evaluation, and Entailment Approach. In Proc. of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R. Lyu. 2023. Loghub: A large
collection of system log datasets for ai-driven log analytics. In IEEE International Symposium on
Software Reliability Engineering (ISSRE).

A Appendix

-

6

https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
http://arxiv.org/abs/2308.07610
http://arxiv.org/abs/2308.07610
https://arxiv.org/abs/2311.05261
https://arxiv.org/abs/2311.05261
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://cogcomp.seas.upenn.edu/papers/YinHaRo19.pdf
https://cogcomp.seas.upenn.edu/papers/YinHaRo19.pdf

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Appendix

