
Short Text Classification of Political Reddit Posts
Stanford CS224N {Custom} Project

Shirley Cheng
Department of Computer Science

Stanford University
scheng3@stanford.edu

Abstract

Text classification plays a crucial role in natural language processing, enabling
applications such as text retrieval, processing, and recommendation systems. This
project focuses on the task of classifying the ideological leanings of comments on
Reddit, a domain characterized by short and often sparse text in which traditional
text classification methods struggle. Leveraging the Word2Vec model, I train
word embeddings on the Reddit Corpus. I utilize word embeddings as features in
word vectors and experiment with different classification approaches, including: a
Support Vector Machine (SVM) classifier, Convolutional Neural Network (CNN)
classifier, Long Short Term Memory (LSTM), and CNN-LSTM. I find that a hybrid
CNN-LSTM architecture achieves the best performance, at .662 accuracy rate.

1 Key Information to include

• Mentor: Nelson Liu

2 Introduction

Text classification is the task of assigning labels to textual data based on its content. It is relevant
to many other natural language processing tasks, including text retrieval, processing, and sentiment
analysis. Traditional text classification involved techniques which extract features from text through
methods such as TF-IDF, bag of words, and n-grams. However, in the context of short text classifica-
tion, these techniques struggle due to the sparsity and dimensionality issues, as well as the inability
to capture context dependencies.

Recent advances in deep learning and neural networks have been applied to text classification tasks
to address these problems. These approaches leverage the power of distributed representations and
hierarchical feature learning, leading to significant improvements in performance. For example,
word embedding methods such as Word2Vec use distributed representations by mapping dense
vector representations in a continuous vector space where semantically similar words are mapped
to proximate points. Thus,these embeddings address both sparseness and dimensionality issues.
Additionally, they are also capture contextual and semantic similarities between words, providing a
more nuanced feature set for classification models.

I examine the problem of short text classification in the context of political ideology. I address the
task of classifying ideological leanings of Reddit posts and comments in political subreddits. With
rising political polarization, political ideology on Reddit is an important domain to examine the
applications of NLP to social sciences. Reddit provides a rich corpus to study political conversations,
as subreddit communities are formed along shared political beliefs.

There are several problems associated with the task of classifying Reddit posts and comments by
political ideology. Notably, many Reddit posts and comments are sparse and short, often consisting
of just a few words or sentences. This limited amount of text can make it difficult for classification
models to extract meaningful features and accurately classify the content. Moreover, Reddit users

Stanford CS224N Natural Language Processing with Deep Learning



often employ informal language and may employ domain specific language, such as internet memes,
which can be difficult for classification models to interpret correctly.

In addressing this classfication task, I base my approach on deep neural networks methods. I derive
domain specific word embeddings by training word2vec model on data from political subreddits.
Using word embeddings as features, I experiment with different classification techniques and neural
architectures, including Support Vector Machine(SVM), Convolutional Neural Network(CNN), Long
Short-Term Memory (LSTM), and CNN-LSTM.

3 Related Work

Mikolov et al. introduced the Word2Vec model in 2013 in which the key idea is to learn distributed
representations of words in a continuous vector space. Word2Vec models are typically trained on
large corpora of text data, and during training, they learn to map words to vectors in such a way that
similar words are represented by vectors that are close together in the vector space. Mikolov et. al
were able to train word embeddings on Google News dataset with a vocabulary of 3 million words
with embeddings of 300 dimensions(2013).

Zhang and Han showed that using Word2Vec in conjunction with SVM can be used for short text
classification tasks in the context of classifying subject category of microblogs (2019). The SVM
aims to find a hyperplane that best separates the data into different classes. Zhang and Han trained a
SVM classifier on mean word embeddings and obtain a baseline accuracy of .896.

Onan further explored how word embeddings can be used as input features into different deep neural
architecture for the task of sentiment analysis of Twitter product reviews(2020). Onan proposes a
CNN-LSTM architecture, which yielded a .835 accuracy rate when trained on padded Word2Vec
embeddings. The author finds that a combined CNN-LSTM approach outperforms naive CNN
and naive LSTM approach. These architectures leverage the strengths of both CNNs and LSTMs,
allowing them to capture both local and long-range dependencies in text data.

For the task of classifying political leanings of Reddit posts and comments, I replicate Zhang and
Han’s approach of training an SVM classifier on mean word embeddings (2019). I also replicate
Onan’s approach of building a hybrid CNN-LSTM classifier(2020). Reddit is an important domain to
replicate these techniques on as Reddit posts and comments may face even more extreme sparseness
than conventional classification tasks. For example, it is not uncommon for a Reddit comment to just
be "lol nice." Therefore, it is relevant to investigate how well current short text classification methods
perform in this domain.

4 Approach

4.1 Word2Vec Model

Word2Vec consists of two main architectures: Continuous Bag of Words (CBOW) and Skip-gram.
CBOW aims to predict the target word given its context words, while Skip-gram predicts context
words given a target word. Typically, CBOW is efficient and works well with frequent words in the
dataset, making it suitable for tasks where word order is less important. Skip-gram, on the other
hand, predicts the context words given a target word, capturing detailed semantic relationships
and contextual nuances. I train two different sets of word embeddings by using both architectures.
Because Reddit users may be more likely to use internet slang, I derive domain specific word
embeddings by training Word2Vec on political Reddit posts and comments. I obtain posts and
comments from the following subreddits

”2016Elections, ”Ask_politics”, ”Republican”, ”centrist”, ”democraticparty”, ”democrats”

I utilized Convokit to load PushShift.io Reddit Corpus which contains Reddit posts and comments up
until October 2018. After subsetting for political subreddits, I yielded 4955615 training examples.
I preprocessed the data by stemming, tokenizing, and removing common stop words. I leveraged
Gensim’s implementation of Word2Vec model to derive word embeddings with 100 dimensions.

To visualize the word embeddings trained through my model, I use Principal Component Analysis
for dimensionality reduction.

2



Figure 1: Word embeddings trained using CBOW

4.2 Classification Models

I build four different classification models: SVM, CNN, LSTM, and CNN-LSTM.

SVM aims to find the hyperplane that best separates the data points of different classes. The
hyperplane is a decision boundary that maximizes the margin, which is the distance between the
hyperplane and the nearest data points of each class error. I utilize linear kernels in optimizing the
hyperplane between the two classes of data.

CNNs, originally developed for computer vision tasks, have been adapted for text classification by
treating words or character n-grams as spatial features. Convolutional layers capture local patterns
in the input data, making them effective at learning hierarchical representations of text. I utilize the
following CNN architecture.

LSTMs are specialized variants of RNNs in which RNNs are designed to process sequential data and
are well-suited for tasks involving variable-length inputs. However, traditional RNNs suffer from
the vanishing gradient problem, which limits their ability to capture long-range dependencies in text.
By incorporating mechanisms such as forget and input gates, LSTMs address the shortcomings of
traditional RNNs and are capable of learning long-term dependencies in sequential data. I utilize

3



the following LSTM architecture. In each LSTM layer, I apply input dropout and recurrent dropout
to encourage robustness. Input dropout prevents the model from relying too heavily on specific
input features while recurrent dropout prevents overfitting by introducing noise into the recurrent
connections.

CNN-LSTM can effectively combine the separate advantages of CNN and LSTM architectures to
detect local patterns and long range dependencies. Following from Onan’s work which showed the
potential of CNN-LSTM hybrid architecture, I utilize the following CNN-LSTM architecture shown
below. I also apply input and recurrent dropout in the LSTM layer.

5 Experiments

5.1 Data

My classification task is to classify Reddit post and comments by its political leaning. To create
the training dataset for the classification problem, I load posts and comments from r\democrats
and r\Republicans through Convokit. Because r\Republicans is more active than r\democrats, I
randomly sample 50,000 comments and posts from each subreddit to create an evenly distributed
dataset. Each training example is a tokenized and stemmed post/comment. A training example is
labelled as 0 if it was posted on r\democrats and 1 if it was posted on r\Republicans. I use a .8/.2
split to create training and test data.

5.2 Evaluation method

In order to evaluate the performance of various classification methods, I compare their accuracy rates
using

P =
NumberofCorrectAssignments

TotalNumberofAssignments

Accuracy rates are a common metric for performance. Thus, utilizing accuracy rates as a performance
metric allows for comparison across different baselines.

5.3 Experimental details

Utilizing the word embeddings I trained through Word2Vec, I obtain mean word embeddings for
each training example which I then feed into SVM and CNN classifiers. I also derive sequential word
embeddings which I feed into LSTM, and CNN-LSTM classifiers.

I leverage SKlearn’s SVM classifier which is implemented using hinge loss for the problem of binary
classification. I add a regularization parameter C=.1, which balances the trade-off between achieving
a low error on the training data and minimizing the norm of the weights of the decision function.

I implement the CNN, LSTM, and CNN-LSTM models within a Tensorflow and Keras framework.
For all models, I use a binary cross-entropy loss.

4



loss = −(y log(p) + (1− y) log(1− p))

I initialize all models with a learning rate of .001 and use Adam’s optimizer to increase speed of
convergence. Training is performed over 30 epochs with a batch size of 64.

5.4 Results

I obtain the following accuracy rates:

SVM CNN LSTM CNN-LSTM

CBOW .632 .578 .627 .662
skipgram .623 .586 .543 .621

All my models performed considerably worse than the baselines established by Zhang and Onan,
who were able to achieve accuracy rates in the high .80s. There are a few factors that influence .
First, to reduce memory usage, I trained word embeddings only on six subreddits. On the other hand,
Hoffman et. al defined 605 subreddits which compose of the Reddit Politosphere(2022). Thus, my
word embeddings may be low quality due to insufficient training data. Additionally, the low accuracy
rates also highlight the inherent difficulty of classifying political sentiment based on a singular Reddit
comment. For example, one comment appearing on r\democrats reads, "Hahaha!! Not quite, but I’ll
take it." There is no indication from this comment that it expresses an explicit liberal leaning. Taking
into account that there are many comments that do not express explicit political leanings, achieving
an accuracy rate of .662 through CNN-LSTM represents reasonable performance.

In general, excluding the CNN model, CBOW embeddings outperformed skipgram. Because CBOW
focuses on target word predictions, CBOW embeddings capture better representations of frequent
words. Since political discussion often focus on certain key issues(for example, "Trump" is a very
common key word), my task was able to leverage CBOW’s advantage. On the other hand, Skip-gram
performs better when capturing fine grained semantic relationships. However, since my task involves
capturing larger political sentiments, it was not able to leverage Skip-gram’s fine grained advantage.

6 Analysis

Due the large presence of comments that do not indicate explicit political ideology, my models were
only able to obtain moderate accuracy rates. For example, one comment from the preprocessed
dataset simply reads:

’sens’

This comment was posted r\democrat, but due to the incoherence of this comment, all four models
classified it as Republican.

In contrast, the classifiers performed well on comments that expressed political sentiment. Another
comment reads:

’believ’, ’republican’, ’parti’, ’suppos’, ’stand’, ’candid’, ’leadership’

Even though this comment is short, all four models successfully classified this to its true label,
r\Republicans.

Additionally, despite the large number of incoherent comments, CNN-LSTM with CBOW word
embeddings was still able to achieve reasonable performance of .662. I show that CNN-LSTM is
able to effectively leverage the separate advantages of CNN and LSTM to obtain better performance.
For example, both CNN and CNN-LSTM were able to correctly classify the following comment as
Republican, while LSTM incorrectly classified it as Democrat.

5



’dunno’, ’lot’, ’appeal’, ’ego’

As another example, both LSTM and CNN-LSTM was able to correctly classify the following
comment as Democrat, while CNN incorrectly classified it as Republican.

’obtain’, ’gun’, ’legal’, ’proof’, ’gun’, ’control’, ’work’, ’bar’, ’bui’, ’gun’, ’legal’, ’obtain’

In this case, LSTM-CNN and LSTM classifiers were both able to capture the long range dependencies
of the relationship between guns and gun control.

7 Conclusion

This project investigated the application of deep neural methods to the task of short text classification
in the context classifying Reddit posts and comments by political leaning. Despite problems of
extreme sparseness in Reddit comments, a hybrid CNN-LSTM architecture was able to achieve
reasonable performance of .662 accuracy rate. I showed that CNN-LSTM architecture is able to
leverage the separate advantages of CNN and LSTM models to achieve superior performance.

In the context of Reddit posts and comments, most of the problems associated with classifying short
texts remain in feature extraction. When comments have sufficient context, deep neural methods
perform well. However, when comments are only a single word long, there is simply insufficient
information to determine its political leaning. Therefore, a major next step for this project is to
augment my data training data with more features. For example, single word comments on Reddit
are typically in response to a post or a larger thread. Therefore, I can augment my training data by
incorporating the surrounding thread that a comment appears in as features. Additionally, I can also
improve the quality of word embeddings by scaling training to include the entire Reddit Politosphere.

All together, deep neural networks demonstrate potential even when dealing with datasets as sparse
as Reddit comments. To improve text classification of political discussions, the main steps going
forward involve improving input features into these deep neural networks in order to improve feature
representation.

6



References
ConvoKit Developers. (2023). Reddit Corpus (by subreddit). Cornell University. Retrieved from
https://convokit.cornell.edu/documentation/subreddit.html

Hofmann, V., Schütze, H., Pierrehumbert, J. B. (2022). The Reddit Politosphere: A
Large-Scale Text and Network Resource of Online Political Discourse [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.58517293

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. arXiv preprint arXiv:1310.4546.

Onan, A. (2020). Sentiment analysis on product reviews based on weighted word embeddings
and deep neural networks. Concurrency and Computation: Practice and Experience, e5909.
https://doi.org/10.1002/cpe.5909

Zhang, R. and Han Y. , "Research on Short Text Classification Based on Word2Vec Mi-
croblog," 2020 International Conference on Computer Science and Management Technology
(ICC- SMT), Shanghai, China, 2020, pp. 178-182, doi: 10.1109/ICCSMT51754.2020.00042.
https://ieeexplore.ieee.org/document/944400

7


	Key Information to include
	Introduction
	Related Work
	Approach
	Word2Vec Model
	Classification Models

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

