
GRAPHGEM: Improving Graph Reasoning in
Language Models with Synthetic Data

Stanford CS224N Custom Project

Tony Sun
Department of Computer Science

Stanford University
tony.sun@cs.stanford.edu

Abstract

Reasoning over graph problems is challenging for language models. By adapt-
ing code from Fatemi et al. (2023), we generate and publically release GraphQA
(Easy) and GraphQA (Hard), two synthetic datasets composed of 432,000
question-answer-explanation triplets over 12 graph-related tasks in total. We
fine-tune Gemma-2B-it on these datasets and find that the resulting model family,
GRAPHGEM, improves on average by 45.7% (Easy) and 42.4% (Hard). Addition-
ally, we find that find that fine-tuning Gemma-2B-it on GraphQA (Hard) improves
its 0-shot GSM8K performance by 17.5%, despite never seeing any GSM8K prob-
lems during training. 1

1 Introduction

In order to accurately answer questions such as “What are the indicators of collusive bidding patterns
in some given data from public procurement auctions?” or “What is most efficient pathway for a
given drug to reach a specific target cell in the human body?”, language models should be able to
implicitly reason over graphs. For instance, the first question may be mapped to a triangle counting
problem, and the second question may be mapped to a shortest path problem.

However, existing language models do not exhibit strong graph reasoning ability. In Table 1, Gemma-
2B-it and GPT-4 are asked about a triangle counting problem in a social network graph. Gemma-2B-it
thinks there are 9 nodes and 13 edges, when in fact there are 10 nodes and 16 edges. Additionally,
Gemma-2B-it implicitly reasons that there is a direct relationship between the number of nodes and
edges to the number of triangles, which is false. GPT-4 almost answers correctly, but mistakenly
counts a triangle that does not exist. 2

In this work, we make the following contributions:

(i) We train a family of models, GRAPHGEM, by fine-tuning Gemma-2B-it with QLoRA on com-
pletely synthetic data to improve its graph reasoning capabilities.

(ii) We experiment with training with explanations and investigate the effect of scale and curriculum
learning on training. Additionally, we examine whether or not training on one set of graph problems
transfers to other graph problems and GSM8K.

(iii) We release GraphQA (Easy) and GraphQA (Hard). In total, there are 432,000 question-answer-
explanation triplets across 12 graph-related tasks. The dataset is synthetically generated using code
adapted from Fatemi et al. (2023). 3

1Mentor: Rohan Taori; External collaborators (if you have any): N/A; External mentor (if you have any): Ian
Covert; Sharing project: N/A

2https://chat.openai.com/share/5d28c0e1-bd6c-42c7-ba47-0c6a5178660a
3https://huggingface.co/datasets/tonysun9/GraphQA_Easy

https://huggingface.co/datasets/tonysun9/GraphQA_Hard

Stanford CS224N Natural Language Processing with Deep Learning

https://chat.openai.com/share/5d28c0e1-bd6c-42c7-ba47-0c6a5178660a
https://huggingface.co/datasets/tonysun9/GraphQA_Easy
https://huggingface.co/datasets/tonysun9/GraphQA_Hard

Question For Visualization Purposes

G describes a social network graph among nodes
James, Robert, John, Michael, David, Mary,
Patricia, Jennifer, Linda, and Elizabeth.

We have the following edges in G:
James and Robert are connected.
James and John are connected.
...
Robert and Elizabeth are connected.
John and Elizabeth are connected.
...
Q: How many triangles are in this graph?
A:

Target
7.

GraphGem Gemma-2B-it GPT-4
(correct) (incorrect) (incorrect)

7.

There are 7 triangles including
node James as a vertex.
There is 1 triangle including node
Robert as a vertex.
There is 1 triangle including node
John as a vertex.
...
There are 7 triangles including
node Elizabeth as a vertex.
Summing the number of triangles
for all nodes and dividing them by
three gives us 7 triangles in total.
The triangles are: [(0, 1, 9), (0, 2,
9), (0, 4, 9), (0, 5, 9), (0, 6, 9), (0,
7, 9), (0, 8, 9)].

A graph with
9 nodes and
13 edges has 5
triangles.

To determine the number of triangles in
the graph described, let’s first
understand the structure based on the
connections (edges) provided. A
triangle in a graph is a set of three nodes
where each node is connected to the
other two nodes directly, forming a
closed loop.
...
1. James - Elizabeth - Robert
2. James - Elizabeth - John
3. James - Elizabeth - Michael
4. James - Elizabeth - David
5. James - Elizabeth - Mary
6. James - Elizabeth - Patricia
7. James - Elizabeth - Jennifer
8. James - Elizabeth - Linda
There are 8 unique triangles involving
James and Elizabeth with each of the
other nodes, based on the connections
provided.

Table 1: A question about counting the number of triangles in a social network graph. James is
connected to everyone, and Elizabeth is connected to everyone except Michael. GRAPHGEM responds
with the correct answer, 7 triangles. Gemma-2B-it and GPT-4 answer incorrectly, responding with
5 and 8 triangles, respectively. The key result of each answer is bolded. Mistakes in reasoning are
underlined.

2 Related Work

2.1 Large Language Models

Large language models (LLMs) are pre-trained on vast corpora of text data and are suitable for
fine-tuning on a target task (Devlin et al., 2018; Brown et al., 2020). Parameter-efficient fine-tuning
(PEFT) is a class of methods that adapt LLMs while making minimal adjustments to the model’s
parameters (Houlsby et al., 2019; Li and Liang, 2021).

2

LoRA is a PEFT method that keeps the pre-trained language model weights frozen and only updates
a small, low-rank projection of the weight matrices (Hu et al., 2021). QLoRA leverages the 4-bit
NormalFloat (NF4) type for quantization among other optimizations to be even more memory-efficient
while maintaining 16-bit fine-tuning performance Dettmers et al. (2023).

2.2 Machine Learning for Graphs

Graph neural networks (GNNs) are a class of machine learning models designed to capture the
complex relationships and structures inherent in graph data. They extend traditional neural network
approaches to directly operate on graphs, enabling effective representation and processing of non-
Euclidean data for tasks such as node classification, link prediction, and graph classification (Kipf
and Welling, 2017; Hamilton et al., 2018).

However, in comparison to LLMs, GNNs struggle with generalization across diverse domains due
to the specialized nature of graph data and lack a unified pre-training approach that leverages vast,
varied datasets for broad applicability.

2.3 LLMs and Graph Reasoning

Tasks such as multi-hop question answering and structured commonsense reasoning may ask LLMs
to maintain an implicit graph structure in order to effectively deduce logical conclusions. Recent
work has laid the foundation for understanding the ability of LLMs to reason over graphs.

GraphQA is a thorough benchmark designed to test language models’ performance on various graph-
related tasks (Fatemi et al., 2023). Questions are constructed across 7 graph generation algorithms
and 9 diverse graph encoding methods. NLGraph is a similar benchmark, composed of graph-based
problem solving designed in natural language Wang et al. (2024). Several tasks in GraphQA overlap
with NLGraph.

Both works perform preliminary investigation into the graph reasoning abilities of language models
and find that while large language models (LLMs) are capable of solving some basic graph problems,
they consistently struggle with more complex ones, even with various prompting methods.

GraphToken is a PEFT method that learns to encode the graph data in the prompt (Perozzi et al.,
2024). Without prior knowledge, however, it may be trivial to identify which parts of a given prompt
constitute a graph.

3 Methodology

3.1 Dataset

We choose to use the GraphQA benchmark since there is code to generate synthetic question-answer
pairs in the authors’ repository Fatemi et al. (2023). We divide the tasks into GraphQA (Easy) and
GraphQA (Hard). Tasks are divided such that those present in Fatemi et al. (2023) as of March
2024 are categorized as “easy” and tasks not yet in the paper but present in https://github.c
om/google-research/google-research/tree/master/graphqa, commit hash eb560d0, are
categorized as “hard.” Explanation of each of the tasks can be found in Table 2.

While the authors of GraphQA release the code to generate graph reasoning problems, the cor-
responding dataset is not public. Therefore, we adapt their code to create GraphQA (Easy)and
GraphQA (Hard), which are solely composed of synthetic data. In total, there are 432,000 question-
answer-explanation triplets across 80-10-10 train-validation-test splits. Each sample corresponds to
a task-specific problem on a given graph, which is represented by its graph generation algorithm,
text encoding (e.g. representing an edge as (0, 1) vs “John wrote a paper with Amy”), and a random
seed. Additionally, we leverage existing code to create a new column, “explanation,” which provides
reasoning for the answer. For instance, for the cycle check task, the explanation would also provide a
sample cycle through the graph in addition to the yes / no answer.

3

https://github.com/google-research/google-research/tree/master/graphqa
https://github.com/google-research/google-research/tree/master/graphqa

GraphQA Task Description

EASY

Edge Existence Determine whether a given edge exists in a graph.
Node Degree Calculate the degree of a given node in a graph.
Node Count Count the number of nodes in a graph.
Edge Count Count the number of edges in a graph.
Connected Nodes Find all the nodes that are connected to a given node in a graph.
Cycle Check Determine whether a graph contains a cycle.

HARD

Disconnected Nodes Find all the nodes that are not connected to a given node in a graph.
Reachability Determine whether or not there exists a path between two given nodes.
Shortest Path Calculate the length of the shortest path between two given nodes.
Maximum Flow Calculate the maximum capacity of the flow between a given source and sink node.
Triangle Counting Count the number of triangles in a graph.
Node Classification Classify the category of a given node in a graph.

Table 2: We split GraphQA into GraphQA (Easy) and GraphQA (Hard). Each split contains 6 tasks.

We use 4 graph generation algorithms and 9 text encoding methods 4. Notably, we use 4 types of
graph generators rather than 7 as done in Fatemi et al. (2023) because we find that some types of
graphs are limited in their diversity, leading to train-test contamination. The 3 types of graphs we
exclude are star, path, and complete graphs. Other combinations of graph generation algorithms and
text encodings also lead to some duplicate questions. Therefore, we remove duplicates while ensuring
an even split of questions across graph types and text encodings. Finally, we check that each question
in the final dataset is unique. Additional information about the dataset can be found in Table 3.

Graphs
Per Generator

Graphs
Generated

QA-Pairs
(Single Task)

QA-Pairs
(Easy / Hard)

Tokens
(Questions)

Tokens
(Answers)

Tokens
(Explanations)

Multiplying
Factor N/A

4
Graph

Generators

9
Encoding
Methods

6
Tasks

per Split

290.5
Avg Tokens
per Question

5.6
Avg Tokens
per Answer

100.9
Avg Tokens

per Explanation

Train 800 3,200 28,800 172,800 49.6 / 49.4M 1.0 / 0.9M 8.3 / 25.9M
Validation 100 400 3,600 21,600 7.0 / 6.7M .13 / .12M 1.2 / 3.7M

Test 100 400 3,600 21,600 6.4 / 6.4M .13 / .12M 1.1 / 3.4M

Easy / Hard 1,000 4,000 36,000 216,000 63 / 62.5M 1.3 /1.1M 10.6 / 33M
Total 2,000 8,000 72,000 432,000 125.5M 2.4M 43.6M

Table 3: Number of graphs generated, question-answer pairs, and number of tokens in GraphQA
(Easy) and GraphQA (Hard). We adapt the graph generation code from Fatemi et al. (2023) to
create these datasets. The number of graphs generated depends on the number of graph generators
(4) and a choice of number of graphs per graph generation algorithm. Then, for each task, (9)
question-answer pairs are generated for each graph, one for each type of graph encoding methods.
The number of question-answer pairs is multiplied by the number of tasks (6). We use the Gemma
tokenizer to count the number of tokens.

3.2 Prompting

We prompt the language model as follows:

{<bos><start_of_turn>user\n{question}<end_of_turn>\n<start_of_turn>model\n}

where {question} contains both the graph representation in text and the task-specific question. This
follows the standard instruction-prompting method for Gemma-2B-it 5.

On an earlier version of the dataset, we experimented with variations in the prompting method, such
as removing the <bos> token and also only using {question} as the prompt, each in a zero-shot

4Four graph generation algorithms: Erdős–Rényi, scale-free networks, Barabási–Albert, stochastic block
model. Nine text encoding methods: adjacency, incident, friendship, co-authorship, South Park, Game of
Thrones, social network, politician, expert

5https://ai.google.dev/gemma/docs/formatting

4

https://ai.google.dev/gemma/docs/formatting

and chain-of-thought setting. Although the presence of the <bos> token seemed to have a negligible
impact on performance, we decide to include it for best practices 6. We found that stripping the entire
Gemma instructions degraded performance in both the zero-shot and chain-of-thought settings, the
two heuristics identified as most effective in Fatemi et al. (2023). On the other hand, the inclusion of
the Gemma instructions in a zero-shot setting led to comparable performance compared to chain-of-
thought prompting, with and without instructions. The full results of this experiment are in Appendix
A.

3.3 Fine-tuning Gemma

We fine-tune Gemma with the language modeling objective separately on question-answer pairs
from GraphQA (Easy) and GraphQA (Hard) to produce GRAPHGEM (E) and GRAPHGEM (H),
respectively. We also experiment with concatenating the explanation to the answer. GRAPHGEM
models trained with explanations in addition to the answer are denoted with the suffix “-R.” for
reasoning.

We use Unsloth 7, bitsandbytes8, and the Huggingface Transformers, TRL, and PEFT libraries (Wolf
et al., 2020; Mangrulkar et al., 2022; von Werra et al., 2020) for training. In the style of QLoRA
(Dettmers et al., 2023), we load Gemma-2B-it, quantized to 4-bit precision using the NF4 data type,
and train a LoRA module in bfloat16 applied to all parameters to reduce memory usage. We use
LoRA rank=16, alpha=16. For hyperparameters, we use batch size=8, learning rate=1e-5, cosine
learning rate scheduler, 500 warm-up steps, and the 8-bit AdamW optimizer. Training one model on
a single A100 took less than 12 hours on average.

3.4 Curriculum Fine-tuning

We want to take advantage of the fact that graph problems are easy to generate and answers are quick
to verify. Our idea is simple: at some interval, evaluate the model’s performance, and generate more
problems for areas where the model struggles, and generate less problems for areas where the model
does well. More formally, we evaluate the model performance on the validation set at every interval i,
starting from a base model, and create a dataset of size |S| with the following distribution over tasks
T , graph generation algorithms G, and text encodings E:

αt,g,e,i+1 =
1−At,g,e,i∑6

t=1

∑4
g=1

∑9
e=1 1−At,g,e,i

, where (t, g, e) ∈ (T ×G× E)

and αt,g,e,i+1 · |S| represents the number of examples with task t, graph generator g, and encoding e
in the i+ 1 training set, and 1−At,g,e represents the model’s accuracy at interval i on the (t, g, e)
subset of the validation set.

In practice, we set i to be 2,160, which is one-tenth of the steps for training on GraphQA (Hard),
and |S| to be 17,280, which is one-tenth of the size of GraphQA (Hard).

4 Results

4.1 GraphQA (Easy)

We evaluate Gemma-2B-it and GRAPHGEM (E) on GraphQA (Easy). We use the reported results
from Fatemi et al. (2023); Perozzi et al. (2024) for PaLM and Flan-it with GraphToken. However,
the test set may slightly differ due to our concerns around train-test contamination and consequent
exclusion of the star, path, and complete graph types. We report our results in Table 9.

In the zero-shot setting, GRAPHGEM-R (E) improves on average by 45.7% compared to Gemma.
The greatest gains in accuracy are in the edge existence, node degree, and connected nodes tasks,
while the smallest gains are in the edge count and cycle check tasks. We find that Gemma-2B-it,
surprisingly, already demonstrates high accuracy in the cycle check task, leaving little room for

6https://unsloth.ai/blog/gemma-bugs
7https://github.com/unslothai/unsloth
8https://github.com/TimDettmers/bitsandbytes?tab=readme-ov-file

5

https://unsloth.ai/blog/gemma-bugs
https://github.com/unslothai/unsloth
https://github.com/TimDettmers/bitsandbytes?tab=readme-ov-file

Model Method Edge
Exist.

Node
Degree

Node
Count

Edge
Count

Conn.
Nodes

Cycle
Check

Avg.

PaLM 2-XXS* 0-shot 47.2 11.3 8.7 6.4 7.2 61.5 23.7
PaLM 2-XXS* COT 50.6 24.7 22.8 9.3 13.3 77.0 32.9
PaLM 62B* 0-shot 44.5 14.0 21.7 12.4 14.7 76.0 30.6
PaLM 62B* COT 42.8 29.2 27.6 12.8 13.1 58.0 30.6

Gemma-2B-it 0-shot 42.1 28.7 16.0 6.4 11.1 91.0 32.6
Gemma-2B-it COT 50.8 25.7 18.7 9.2 11.1 75.6 31.8

Flan-it
(PaLM 2 S)* GraphToken 73.8 96.2 99.6 42.6 26.4 95.6 72.4

GRAPHGEM (E) 0-shot 99.1 87.8 57.7 23.7 86.4 98.9 75.6
GRAPHGEM-R (E) 0-shot 99.4 90.2 67.8 24.9 88.7 99.0 78.3

Table 4: Performance comparison of PaLM, Flan-it, Gemma-2B-it, and GRAPHGEM based on
accuracy on GraphQA (Easy). Results for models marked with an asterisk (*) were reported in a
previous study. The highest accuracies on each task are bolded / underlined (with / without training
on GraphQA (Easy)).

improvement. However, upon closer inspection, the cycle check task is heavily skewed towards
graphs with cycles. In fact, 91% of the questions for the cycle check task contain a cycle, and Gemma
always responds that there is a cycle in the graph, leading to exactly 91% accuracy.

4.2 GraphQA (Hard)

Similarly, we evaluate Gemma-2B-it and GRAPHGEM (H) on GraphQA (Hard) and use the reported
results from Perozzi et al. (2024) for Flan-it with GraphToken.

Model Method Disconn.
Nodes

Max.
Flow

Node
Class.

Reach-
ability

Shortest
Path

Triangle
Count.

Avg.

Gemma-2B-it 0-shot 5.2 7.7 53.4 86.8 11.8 4.6 28.2
Gemma-2B-it COT 5.0 11.8 60.7 37.3 33.2 14.0 27.0

Flan-it
(PaLM 2 S)* GraphToken - - - 93.2 63.8 34.8 63.9

GRAPHGEM (H) 0-shot 64.8 14.5 99.8 99.7 91.2 33.8 67.3
GRAPHGEM-R (H) 0-shot 74.8 15.6 99.8 99.7 96.1 37.9 70.6

Table 5: Performance comparison of Flan-it, Gemma-2B-it, and GRAPHGEM based on accuracy on
GraphQA (Hard). Results for models marked with an asterisk (*) were reported in a previous study.
The highest accuracies on each task are bolded / underlined (with / without training on GraphQA
(Hard)).

In the zero-shot setting, GRAPHGEM-R (H) improves on average by 42.4% compared to Gemma.
The greatest gains in accuracy are in the disconnected nodes, node classification, and shortest path
tasks, with a 84.3% improvement in the shortest path task. Maximum flow and triangle counting are
the most difficult tasks. Similar to the connected nodes task in GraphQA (Easy), the reachability
task in GraphQA (Hard)is heavily skewed towards questions in which there does exist a path.

We find that fine-tuning with reasoning improves performance across all tasks.

Additionally, in Figure 1, we explore the effect of the scale of training data on GRAPHGEM-R (H)
performance over each of the 6 tasks in GraphQA (Hard). The sharpness of the curve may indicate
how difficult a task is to learn or how much knowledge the base model, Gemma-2B-it, already has
about a given task.

For example, since performance increases dramatically on the disconnected nodes task as training
data increases, it may indicate that the model may be gaining new knowledge about this task in the
training process. Conversely, for the shortest path task, given that performance on the shortest path

6

Figure 1: Fraction of training data used vs GRAPHGEM-R (H) accuracy.

task increases greatly with just 10% of the data and plateaus after, fine-tuning may serve to help the
model understand the style of the questions in the dataset rather than teach it how to find the shortest
path through a graph. For the maximum flow task, where the performance is stagnant even as the
amount of training data increases, it may indicate that the task is difficult or that the explanation may
not be written in a way that induces learning.

4.3 Curriculum Fine-tuning

% of Training Data Curriculum FT FT

10% 55.3 57.4
20% 61.9 61.8
30% 65.1 66.3

Table 6: GRAPHGEM-R (H) average per-
formance on GraphQA (Hard) with various
amounts of training data with and without cur-
riculum fine-tuning (FT).

We apply curriculum fine-tuning to GRAPHGEM-
R (H) over 3 iterations: 10%, 20%, and 30%. We
report our results in Table 6.

We find that curriculum fine-tuning has a negligi-
ble impact on model performance over 3 iterations.
We posit that this could be due to applying cur-
riculum fine-tuning early in the training process.
Since the model has room to improve on all tasks
at the beginning, curriculum fine-tuning does little
to change the distribution of graph problems in the
training set. However, had we applied curriculum
fine-tuning towards the end of training, we might
have expected the training data to be more skewed
towards harder tasks.

4.4 Transfer Learning

Finally, we explore whether training on one split of GraphQA (Easy / Hard) transfers to improved
performance on the other split and if training on graph-related tasks improves model performance on
GSM8K. We report our findings in Table 7.

We find that training on GraphQA (Hard) indeed improves performance on GraphQA (Easy).
Notably, training with reasoning leads to a much greater gain in performance than training without.
On the other hand, training on GraphQA (Easy) surprisingly degrades performance on GraphQA
(Hard), even with reasoning.

7

Model GraphQA (Easy) GraphQA (Hard) GSM8K

Gemma-2B-it 32.6 28.2 10.0
GRAPHGEM (E) - 16.0 24.1
GRAPHGEM-R (E) - 20.0 11.2
GRAPHGEM (H) 33.8 - 27.5
GRAPHGEM-R (H) 40.0 - 18.4

Table 7: Effect of training on GraphQA (Easy / Hard) on unseen graph problems and GSM8K.
Evaluation is done in a 0-shot setting, and we take the average performance across tasks for GraphQA
(Easy) and GraphQA (Hard). Evaluation on test sets that are in-distribution are omitted for clarity.

Training on either GraphQA (Easy) or GraphQA (Hard) improves 0-shot performance on GSM8K,
despite never seeing any problems in GSM8K. The biggest gain is training on GraphQA (Hard),
which improves task performance by 17.5%. Training with reasoning actually worsens performance
compared to training with just the answer, although still improves performance compared to Gemma-
2B-it. This may be because learning to reason over graph problems may not directly transfer to
answering more accurately on math problems.

5 Future Work

We explored fine-tuning Gemma-2B-it on synthetic graph data to improve its graph reasoning
capabilities. We examined the effect of scale on model performance and whether training on one set
of tasks led to better performance on unseen graph and math problems.

For future work, promising directions include balancing the positive and negative class for the cycle
check and reachability tasks, applying curriculum fine-tuning for more iterations, and examining
GRAPHGEM out-of-distribution performance on more datasets.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient
finetuning of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 2023. Talk like a graph: Encoding graphs for
large language models.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive representation learning on large
graphs.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional
networks.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190.

8

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2310.04560
http://arxiv.org/abs/2310.04560
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.c
om/huggingface/peft.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. 2024. Let your graph do the talking: Encoding structured data for llms.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
2024. Can language models solve graph problems in natural language?

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Transformer reinforcement learning. https://github
.com/huggingface/trl.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for
Computational Linguistics.

9

https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2402.05862
http://arxiv.org/abs/2305.10037
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Prompting

Eval Mode Prompt Edge Existence Node Degree Node Count Edge Count Connected Nodes Cycle Check

ZERO-SHOT
Question Only 39.3 32.1 34.4 21.0 20.7 45.1

Conversation Format 46.0 31.8 21.4 18.9 16.5 65.9
<bos> + Conversation Format 45.2 34.9 15.8 14.8 16.9 65.9

COT
Question Only 50.8 29.1 17.8 13.9 15.0 61.8

Conversation Format 49.5 28.5 12.6 7.4 14.5 65.2
<bos> + Conversation Format 50.1 29.6 11.1 8.9 11.8 65.2

Table 8: Prompting on GraphQA (Easy)

B Ablations

SFT Method Edge Existence Node Degree Node Count Edge Count Connected Nodes Cycle Check Average

Base SFT 0.952 1.0 0.429 0.825 1.0 0.73 0.823
No gradient accumulation 1.0 1.0 0.429 0.905 1.0 0.714 0.841
Query-key LoRA 1.0 1.0 0.429 0.794 1.0 0.714 0.823
4e-4 lr 0.984 1.0 0.429 0.825 1.0 0.635 0.812
1e-4 lr 1.0 1.0 0.429 0.857 1.0 0.698 0.831
2e-5 lr 0.968 1.0 0.429 0.921 1.0 0.762 0.847
1e-5 lr 0.984 1.0 0.429 0.889 1.0 0.73 0.839
1e-5 lr, 2 epochs 0.984 1.0 0.762 0.825 1.0 0.841 0.902
1e-5 lr, 3 epochs 0.984 1.0 0.937 0.873 1.0 0.873 0.945

Table 9: Ablations on a base SFT run on GraphQA (Easy)using a training dataset with 30,420 QA
pairs. The results are calculated on a small validation set of 378 examples to save time. The base
SFT run uses learning rate (lr) = 2e-4, linear learning rate schedule, gradient accumulation steps = 4,
per device train batch size = 2 (effective batch size of 8), max sequence length = 2048, LoRA for
all modules, LoRA r = 16, LoRA alpha = 16, and LoRA gradient checkpointing. Additionally, the
model is loaded in 4-bit and uses an 8-bit AdamW optimizer and the bfloat16 data type for LoRA.

C Stratified Performance

Method Disconn. Nodes Max. Flow Node Class. Reach- ability Shortest Path Triangle Count.

Overall 99.4 90.2 67.8 24.9 88.7 99.0

G
ra

ph
G

en
er

at
or

Adjacency 99.0 94.5 95.8 36.5 96.5 99.0
Incident 99.5 93.5 99.8 17.2 99.5 99.0

Co-authorship 99.8 89.2 70.8 24.2 89.5 99.2
Friendship 100.0 90.0 73.2 24.8 88.8 99.2

SP 99.8 89.0 47.0 26.8 83.0 99.0
GOT 99.0 91.0 52.0 27.5 82.8 99.0

Social Network 99.5 86.8 65.5 23.8 88.0 99.0
Politician 99.5 94.0 53.0 25.2 78.5 98.5

Expert 99.0 83.8 53.0 18.2 91.8 99.2

E
nc

od
in

g ER 99.4 89.2 70.1 24.6 86.6 97.6
BA 99.4 88.4 63.7 15.6 90.2 100.0

SBM 99.7 87.2 72.0 25.7 83.3 98.6
SFN 99.2 95.9 65.3 33.9 94.7 100.0

Table 10: GRAPHGEM-R (E) performance across graph generators and encodings.

10

Method Disconn. Nodes Max. Flow Node Class. Reach- ability Shortest Path Triangle Count.

Overall 74.8 15.6 99.8 99.7 96.1 37.9

G
ra

ph
G

en
er

at
or

Adjacency 73.5 17.5 99.5 99.8 96.2 37.0
Incident 81.2 15.2 99.8 99.8 96.2 32.8

Co-authorship 76.2 14.0 100.0 99.5 96.8 41.8
Friendship 77.2 15.0 99.8 99.5 96.0 39.5

SP 71.0 14.5 99.8 99.8 96.8 38.8
GOT 70.0 16.2 100.0 99.8 97.2 40.0

Social Network 76.2 14.5 99.8 99.8 96.2 38.0
Politician 71.5 15.8 99.8 99.5 95.2 38.2

Expert 76.5 15.0 99.8 99.8 94.0 34.5

E
nc

od
in

g ER 67.1 22.1 99.7 99.1 93.9 28.9
BA 75.3 9.8 99.7 100.0 97.3 25.3

SBM 68.6 13.0 100.0 99.7 96.3 27.0
SFN 88.3 16.3 99.8 99.9 96.8 70.1

Table 11: GRAPHGEM-R (H) performance across graph generators and encodings.

11

	Introduction
	Related Work
	Large Language Models
	Machine Learning for Graphs
	LLMs and Graph Reasoning

	Methodology
	Dataset
	Prompting
	Fine-tuning Gemma
	Curriculum Fine-tuning

	Results
	GraphQA (Easy)
	GraphQA (Hard)
	Curriculum Fine-tuning
	Transfer Learning

	Future Work
	Prompting
	Ablations
	Stratified Performance

