
Exploring Pretraining, Finetuning and Regularization
for Multitask Learning of minBERT

Stanford CS224N Default Project

Brian Song∗, Xinyu Hu∗, Zhiyin Pan∗

Department of Computer Science
Stanford University

{wsong20, huxinyu, zhiyinp}@stanford.edu

Mentor: Timothy Dai, No external collaborators or project sharing

Abstract

Fine-tuning a large, pre-trained model like BERT (Devlin et al., 2019) is the con-
vention for doing downstream natural language understanding tasks. However,
effectively adapting a single base model for multiple tasks presents challenges, as
the optimal parameters for one task may conflict with those of another, leading
to potential performance degradation. In this project, we explored a combina-
tion of techniques to enhance model performance and adaptability across tasks.
We implemented a multi-task learning baseline with BERT and investigated con-
trastive sentence embedding (SimCSE), projected attention layers (PALs), and
SMART regularization as its extensions. Our findings demonstrate that PALs
consistently improved performance, showcasing their ability to learn task-specific
representations. While SimCSE did not yield significant gains in this context,
SMART regularization successfully provided a performance boost by introducing
less aggressive updates. Finally, strategically ensembling models led to further
advancements in our multi-task NLU results by improving the generalization. We
achieved our best average dev set accuracy of 0.786 using a 7 model ensemble.

1 Introduction

Since Vaswani et al. (2017) introduced the Transformer architecture for natural language processing
(NLP), the paradigm of pretraining and subsequently fine-tuning large pre-trained models, such
as BERT (Devlin et al., 2019), has established itself as a cornerstone for achieving state-of-the-art
(SOTA) results across a multitude of NLP tasks. Notably, benchmarks like the Stanford Sentiment
Treebank (Socher et al., 2013) have witnessed remarkable performance enhancements through the
task-specific tuning of these large-scale models. Yet, the prospect of employing a singular model
across multiple tasks presents a compelling avenue for exploration, primarily due to its potential to
maximize a model’s generalization capabilities. A critical question arises: Can tuning a single model
deliver near-SOTA results across various tasks? This inquiry brings numerous technical challenges,
such as hard-sharing model weights leads to overfitting to specific tasks. This project endeavors
to navigate the end-to-end process of training a BERT model, aiming to identify and address these
challenges.

In the domain of enhancing sentence embeddings, the SimCSE approach introduced by Gao et al.
(2021) employs contrastive learning methods during the pretraining phase to boost model performance.
The PAL methodology, as elucidated by Stickland and Murray (2019), integrates additional task-
specific weights into the original BERT self-attention mechanism, thereby optimizing the model’s
multitasking finesse during fine-tuning. Furthermore, the SMART regularization technique proposed
by Jiang et al. (2020) presents a robust mechanism to counteract the issue of overfitting associated
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with hard-shared weights. By integrating the SimCSE strategy in the pretraining phase, applying
PAL during fine-tuning, and implementing SMART throughout the model training process, we posit
that these combined interventions will effectively address the technical challenges at hand, thereby
facilitating significantly enhanced outcomes.

2 Related Work

SimCSE(Gao et al., 2021)
Learning universal sentence embeddings is a fundamental problem in natural language processing.
Contractive learning seeks to develop effective representation by bringing semantically similar
neighbors closer and pushing apart non-neighbors. Wang and Isola (2020) highlight two essential
properties of contrastive learning—alignment and uniformity—and propose their use in evaluating
representation quality. According to their framework, positive instances should remain close, while
the embeddings of random instances should be distributed uniformly across the hypersphere.

SMART (Jiang et al., 2020)
Due to the scarcity of data from downstream tasks and the vast capacity of pre-trained models,
aggressive fine-tuning frequently results in overfitting and loss of knowledge acquired during pre-
training. The SMART paper (Jiang et al., 2020) proposes a new framework aimed at fine-tuning
pre-trained language models in a robust and efficient manner. With correct hyperparameter settings,
it serves a strong regularizer, preventing overfitting during multitask training.

PALs (Stickland and Murray, 2019)
Stickland and Murray (2019) explored how to adapt a single large base model to work with multiple
tasks by adding low-dimensional multi-head attention layers (PALs) in parallel with the standard
BERT layers, tailored to each task. This approach enables task-specific global attention without a
significant increase in the number of parameters. They also introduced a novel method for scheduling
training, where they sample tasks proportional to their training set size at first, and de-emphasize
training set size as training proceeds. PALs achieved comparable performance to that of individually
fine-tuned BERT models on the GLUE benchmark while utilizing approximately 7x fewer parameters.

Model Soup (Wortsman et al., 2022)
Ensemble methods (Dietterich, 2000) have long been a established paradigm in Machine Learning.
Wortsman et al. (2022) applied similar ensemble techniques to a collection of fine-tuned attention-
based vision models, achiving state-of-the-art results on ImageNet (Deng et al., 2009) classification
tasks. We want to adpot this methodology and see if is also works for language models.

3 Approach

3.1 Main Approach

In the initial phase of our project, we aimed to establish a performance baseline using multi-task
classifiers built on a shared BERT model. We added three task-specific classifiers, each comprising of
two feed forward layers with GELU (Hendrycks and Gimpel, 2016) activation function. The size of
the intermediate layer was set to match the BERT base layer, at 768 units. For the final output layer,
we utilized an additional linear layer to produce logits corresponding to the tasks’ labels. One thing
worth noting is that, we concatenated the embeddings of sentence 1 and sentence 2 for paraphrase
detection and semantic textual similarity tasks. We believe that the concatenation can help to let the
model refers both sentences during training.

In the second phase, we evaluated the impact of three extensions (PAL, SimCSE, and SMART) on
downstream tasks, experimenting with various combinations of these methods. Our exploration
included tailored modifications to adapt these extensions more effectively.

For the final stage of this project, we ensembled multiple models together to create a more robust
system capable of performing well across all three tasks. Note that each models has been fine-tuned
on all three tasks, despite differences in hyperparameters and model structures. We had assigned prior
probability weights to different models, treating these weights as hyperparameters to be optimized
through experimentation. For model selection, we employed a greedy-based approach, as introduced
by Wortsman et al. (2022). This method involves ranking the models by their accuracy for each task
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and incorporating them into the ensemble if they contribute to an overall improvement in accuracy.
(See the appendix for pseudocode.) For the ensembling methods:

Weighted average f =
∑k

i=1 Wif(x; θi)/
∑k

i=1 Wi

Weighted majority vote f = Cj , where
∑

f(x;θj)=Cj
Wj >

∑
f(x;θi)=Ci

Wi for other class i

3.2 Extensions

SimCSE Unsupervised
We implemented unsupervised SimCSE as described in (Gao et al., 2021), to evaluate the downstream
performance of the three classifiers with BERT embeddings vs. SimCSE pre-trained embeddings. The
idea of unsupervised SimCSE is extremely simple: we take a collection of sentences and duplicate
them. Then we feed these sentences into BERT model to get two embeddings. Due to applying
different dropout masks, these two embeddings are similar but not the same; The network is then
trained with the following objective function:

ℓi = − log
esim(hi,h

′
i)/τ∑N

j=1 e
sim(hi,hj)/τ +

∑N
j=1 e

sim(hi,h′
j)/τ

(1)

We experimented with various datasets, including 1 million wiki sentences as per Tianyu Gao (2022),
and also all the sentences in the training data + normalized 1m wiki sentences with the same sentence
length (256+ characters).

SMART (Jiang et al., 2020)
The scarcity of training data could result in aggressive updates for our model during fine tuning,
leading to overfitting. SMART provides a strong regularization effect on model updates through
two main strategies: The first involves Smoothness-Inducing Adversarial Regularization: Introduces
small perturbations to, and encourage the output to not change too much. This is aimed at smoothing
the output function f across the neighborhoods of all input xi. Specifically, this is eqivalent to solving
the following optimization for fine-tuning:

minθF(θ) = L(θ) + λsRs(θ) (2)

, where L(θ) is the original loss function, and Rs(θ) is the SMART loss term defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ)) (3)

Here, ℓs stands for the symmetrized KL-divergence for classification task, and squared loss for
regression task. The second strategy uses Bregman Proximal Point Approximation to solve (2).
This method also serves as a strong regularizer to prevent aggressive updates each step when the
regularization parameter µ is large. The Vanilla Bregman Proximal Point methods is:

θt+1 = argminθF(θ) + µDBreg(θ, θ̃t) (4)

The implementations we have integrated are based on the original implementation 1 and this GitHub
repository2. (Jiang et al., 2020)

PALs (Stickland and Murray, 2019)
As described in the Related Work section, Stickland and Murray (2019) proposed projected attention
layers (PALs) to improve the accuracy of multi-task learning of a single base model. The main idea
behind PALs is to add low-dimensional multi-head attention layers in parallel to the standard BERT
layers, specific to each task. We implemented this architecture from scratch, but referenced their
original code that is available in this3 GitHub repository.

For original BERT architecture, the input hidden states h to each BERT layer undergo a multi-headed
self-attention operation SA, a residual connection, and layer normalization LN to get hatt. This is
then passed through a feed-forward network FFN, followed by another residual connection and layer
normalization LN to get the final output of each BERT layer, represented as BL by the equationss:

hatt = LN(h+ SA(h)), BL(h) = LN(hatt + FFN(hatt)) (5)
1https://github.com/namisan/mt-dnn
2https://github.com/archinetai/smart-pytorch
3https://github.com/AsaCooperStickland/Bert-n-Pals
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PALs add low-dimensional multi-head attention layers in parallel to the standard BERT layers. The
input hidden states h undergo a lower dimension projection by an encoder matrix VE , a multi-headed
self-attention operation SA and an upper dimension projection by a decoder matrix VD to obtain the
task-specific functions TS. TS is added in parallel to the standard BERT layers to get the final output,
represented as PAL by the following equations.

TS(h) = VD(SA(VE(h))),PAL(h) = LN(hatt + FFN(hatt) + TS(h)) (6)

By stacking 12 layers of the modified BERT layer with PAL on top of each other, similar to the
original BERT model, the modified BERT model with PALs is completed.

PAL Scheduling Stickland and Murray (2019)
We also implemented the PAL scheduling as introduced by Stickland and Murray (2019). The
scheduling approach involves initially sampling tasks proportional to their training set size and
gradually de-emphasizing training set size as training progresses. We sample each task i with a
probability pi which is proportional to the task’s training set size N raised to the power α. The value
of α is introduced so that we can de-emphasize training set size as training proceeds because it is
beneficial to train on tasks more equally towards the end of training. The value of α changes with
each epoch e and E (the total number of epochs).

pi ∝ Nα, α = 1− 0.8
e− 1

E − 1
(7)

3.3 Original Explorations

SimCSE Unsupervised Gao et al. (2021)
We want to evaluate the impact of sentence length for SimCSE (Gao et al., 2021), considering the
same sentence always has the same length and BERT encodes sentence length. In addition, we are
curious about how different training data would have impacted downstream performance. We trained
and evaluated the following variances: 1) 1 million wiki sentences Tianyu Gao (2022); 2) a subset of
the 1 million wiki dataset that are longer than 256 and normalized those sentences to have a length
256; 3) all training sentences from these datasets: a) Stanford Sentiment Treebank (SST) (Socher
et al., 2013). b) Quora dataset. c) SemEval STS Benchmark dataset (Agirre et al., 2013).

Frozen BERT with PALs Training (Stickland and Murray, 2019)
One limitation of PALs Training is that it only concentrated on training all the parameters instead of
freezing the base BERT parameters and only fine-tuning the PALs’ parameters. In our project, we
explored this as one of our originalities. We also observe some potential weight interference during
fine-tuning between different task training with the original PALs. Consequently, we conducted this
experiment, which froze the BERT weights and exclusively trained task-specific PALs and classifiers
to mitigate such interference. We documented the experiment results in the next section, and it is a
valuable component of our ensemble model as it helps mitigate weight interference between tasks.

4 Experiments

4.1 Data

We trained our models on the provided datasets from the default final project handout: 1) Stanford
Sentiment Treebank (Socher et al., 2013) dataset for training sentiment analysis task (SST). 2) The
Quora dataset for training paraphrase detection task (Para). 3) SemEval STS Benchmark dataset for
training semantic textual similarity task (STS). 4) 1 million sentences from Wiki (Tianyu Gao, 2022),
which is the SimCSE training dataset included by the original paper. (Gao et al., 2021)

4.2 Evaluation method

We use the accuracy on the SST dev/test dataset, the accuracy on the Quora dev/test dataset, and the
Pearson score on the SemEval STS Benchmark dev/test dataset, as well as an aggregate score across
all three tasks to evaluate how well our model is performing.
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4.3 Experimental details

Base Model Tuning We investigated the impact of the number of hidden layers and the size of hidden
states in classifiers on model performance. Our findings indicated a general decline in performance
compared to the baseline. This suggests that simply increasing model complexity does not necessarily
enhance performance and may, in fact, lead to overfitting.
In examining various classifier architectures, we discovered that for paraphrase detection and semantic
textual similarity tasks, concatenating the embeddings of sentences 1 and 2 proved most effective.
We believe this is because embeddings concatenation allows the model to reference both sentences
during training, facilitating a better understanding of their relationship.
We observed that the dataset for paraphrase detection was disproportionately larger than those for the
other two tasks. To address this, we experimented with adding an SST training run in end of each
epoch. This adjustment led to improved model performance, suggesting that imbalanced training data
among tasks sharing weights can negatively affect overall performance, as measured by our specific
evaluation method.
We further tuned hyperparameters including dropout rate and weight decay, etc. It resulted in some
model performance improvements.

Model SST Paraphrase STS Dev Score

Fine tune Initial base model 0.425 0.742 0.861 0.699

Fine tune∗ 0.499 0.862 0.860 0.764

Table 1: Baseline Performance Tuning without Extensions

SimCSE We implemented unsupervised SimCSE described in (Gao et al., 2021), and explore the
following datasets: 1) 1 million wiki sentences Tianyu Gao (2022); training time: 6 hours per
epoch. 2) a subset of 1m wiki dataset that are longer than 256 characters, and normalized those
sentences to be 256; training time: 2 hours per epoch, 3) 303,617 sentences extracted from training
sets: a) Stanford Sentiment Treebank (SST) (Socher et al., 2013); b) Quora dataset; c) SemEval
STS Benchmark dataset Agirre et al. (2013); training time: 2 hours per epoch. We explored some
hyperparameter tuning including: 1) attention dropout probability (0.1 and 0.3) 2) pooling methods
(last hidden state and Cls), with learning rate 1e-5 and weight decay 0.01, 0.05, 0.1.

SMART The hyperparameters we used for the SMART framework are: S = 1, Tx̃ = 1, perturbation
norm parameter ϵ = 10−6, perturbation standard deviation σ = 10−6/10−5, µ = 0.02/2, and
λs = 1. The optimizer we use is AdamW, with β1 = 0.9, and β2 = 0.999. Overall optimizer
learning rate is 10−5. We have been running fine-tuning with SMART implementation on top of
PALs and SimCSE pre-trained embeddings for 10 epochs. Each epoch takes 1.5h to complete.

PALs The hyperparameters for PALs are what recommended by Stickland and Murray (2019): the
size of each PALs attention layer is ds = 204, with 12 attention heads per PAL layer.

Ensembling We have pre-trained and fine-tuned various models across all three tasks, employing a
greedy-based strategy for model ensembling. We have done 2-model, 5-model and 7-model ensemble
for dev & test set evaluation.

4.4 Results

SimCSE
We expected SimCSE to help improve the downstream task results. However, adding SimCSE results
in a 0.001 accuracy drop against the baseline, which shows that adding SimCSE embeddings has
no obvious impact. We expected training SimCSE with normalized sentence length to improve
embeddings distribution and thus help the downstream tasks’ performance. Our experiments resulted
in a 0.035 accuracy drop against the baseline, showing normalized sentence length SimCSE does not
improve our accuracy.
We were curious about the impact of training SimCSE with adapted data from SST, STS, Paraphrase
datasets. We were worried about overfitting, as the test dataset sentences won’t have the same

*Performance gain comes from a combination of 1) adding one more SST training per epoch; 2) changing
paraphrase model architecture; 3) hyper parameters tuning (dropout, weight decay).
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pre-processing. Our experiments show that indeed overfitting happened, as the downstream classifier
performance went down.

Model SST Paraphrase STS Dev Score

Pretrain base model 0.454 0.625 0.546 0.617
Finetune base model 0.499 0.862 0.860 0.764

+ SimCSE 0.501 0.852 0.870 0.763
+ SimCSE normalized sentence length 0.519 0.745 0.849 0.729

+ PALs 0.513 0.862 0.871 0.770
+ PALs + PAL scheduling 0.517 0.860 0.862 0.769
+ Frozen BERT with PALs training 0.506 0.625 0.797 0.676

+ SMART (weak) 0.510 0.861 0.864 0.768

Combination Models

+ SimCSE + PALs 0.526 0.867 0.867 0.775
+ SimCSE + PALs + SMART (weak) 0.505 0.863 0.847 0.764

Best Single Model

+ SimCSE + PALs + SMART (strong) 0.531 0.869 0.864 0.778

Table 2: Extension Performance Comparisons

PALs
PALs enhanced our base model’s performance across tasks, yielding a 0.006 accuracy increase as
expected. The improvement comes from PALs storing task-specific weights, improving robustness.
Although we expected PALs with PAL scheduling to further enhance the paraphrase detection task
considering its very large dataset, it unexpectedly led to a 0.001 accuracy decrease compared to
the base PALs model. This discrepancy may stem from potential imbalances within the paraphrase
detection dataset, despite its size, affecting the effectiveness of PAL scheduling.
Regarding frozen BERT weights with PALs training, we anticipated it to improve upon the pre-trained
version but not surpass the fine-tuned variation. Our experiments confirmed this expectation, with a
performance of 0.676 compared to 0.617 and 0.764 for the base pre-trained and fine-tuned models,
respectively. While PALs during pre-training can enhance multi-task capabilities, fine-tuning allows
all of BERT’s layers to adapt to target tasks’ nuances, resulting in superior performance.

SMART
We expected SMART to provide good regularization results and boost performance. Adding SMART
with weak regularization settings showed a near-neutral 0.002 performance boost from the base
fine-tuned model while a strong regularization combined with other techniques produced our best
single model (+0.014 from the baseline). Our findings align with our expectations.

Ensembling results
We have run 2-model, 5-model, and 7-model ensemble on many variation of our base models trained
on all three tasks. We could observe from the above table that the model performance improves
gradually as we incorporates more models into the ensemble for the weighted average method.
Comparing table 3 to table 2, ensembling boosts our overall performance on all three tasks. Our best
overall performance among ensembled models (and also single models) are achieved by a 7-class
ensemble with overall accuracy 0.785.

Ensemble Model Spec SST Paraphrase STS Dev Score

2-model Weighted Average 0.533 0.873 0.872 0.781
2-model Majority Vote 0.507 0.870 0.872 0.771

5-model Weighted Average 0.537 0.872 0.879 0.783
5-model Majority Vote 0.505 0.497 0.879 0.647

7-model Weighted Average 0.542 0.876 0.882 0.786
7-model Majority Vote 0.538 0.869 0.882 0.783

Table 3: Model ensembling Performance Comparisons
Observe that for paraphrase and SST, using majority vote approch actually shows significant per-
formance drop, despite the same config for ensembling. The 5-class majority vote method results
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in a drastic 0.373 accuracy drop in paraphrase detection. This might indicate that by incorporating
majority vote we are actually forcing a hard boundary for the prediction result and might not provide
a good estimation on the real distribution.

5 Analysis

SimCSE: Observed no Positive Impact
1) Our experiments showed no obvious downstream task performance impact using SimCSE
pre-trained weights on 1 million wiki sentences for 3 epochs. We think training for more epochs
might help improving sentence embeddings. 2) We expected training SimCSE with normalized
sentence length would improve our embeddings distribution and thus boost the downstream classifier
performance. However, our experiments did not support our speculation. We infer that our particular
method might be to blame, as limiting the sentences to be longer than 256 characters reduced the
training data to 1/3. Further analysis would be necessary.
Negative Impact We were curious about the impact of training SimCSE with adapted data from SST,
STS, and Paraphrase datasets. We are concerned with overfitting, as the test dataset sentences won’t
have the same pre-processing. Our experiments show degraded performance on downstream tasks,
indicating potential overfitting.

PALs: Our experiments revealed several key insights into the strengths and limitations of PALs within
our multi-task learning system. Firstly, the addition of PALs consistently improved performance
across tasks compared to the baseline model. This suggests that PALs effectively capture task-specific
knowledge and attention patterns. However, our anticipation that PALs with PAL scheduling
would further refine the paraphrase detection task’s accuracy was contradicted by our findings.
Despite the plentiful training data available for this task, the efficacy of PAL scheduling seemed
hindered by potential imbalances within the dataset, suggesting that variations in the quality or
diversity of paraphrases may have impeded its effectiveness. Lastly, while frozen BERT with PALs
showed improvement over the pre-trained baseline, it predictably underperformed compared to the
fine-tuned model. This reinforces the importance of full model adaptability for optimal task-specific
performance, even though PALs can enhance the pretrained model’s multitasking capabilities.

SMART analysis: Our results shows SMART regularization framework is providing model perfor-
mance boost when we set a reasonable hyperparameter. We think it boosts our model performance
by introducing less aggressive updates. Previously we had a problem that sentiment analysis task
converging to the best result in 2-3 epochs, and often observes a performance drop when the epoch
goes up. However, when we set a reasonable parameter and enable the SMART framework, we
actually observed less aggressive updates to the model weight and the sentiment classification dev
accuracy was able to converge later and achieve a higher result.

(a) Sentiment Analysis Dev Accuracy (b) Sentiment Analysis Dev Loss

Figure 1: Sentiment Analysis dev result with multi-task SMART setting, purple represents
ϵ = 10−6, λs ∗ µ = 0.2 and green represents ϵ = 10−5, λs ∗ µ = 2.

From the above graph, we could see that sentiment analysis accuracy still peaks at epoch 2-3 for
a weaker SMART setting. However when we increase the SMART regularization strength, we
actually see train loss decrease much slower, while dev accuracy gradually increases, peaking at
epoch 9-10. This shows SMART is indeed providing a strong regularization effect with the correct
settings. This matches the result finding from the paper: "We only observed slight differences in
model performance when λs ∈ [1, 10], µ ∈ [1, 10] and ϵ ∈ [10−5, 10−4]; when λs ≤ 0.1, µ ≤ 0.1 or
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ϵ ≤ 106, the regularization is unreasonably weak." (Jiang et al., 2020)

Ensembling Analysis with PCA and t-SNE Incorporating multiple base models significantly
enhances our model’s performance, and we aim to empirically understand the reasons behind this
improvement. To achieve this, we extract the BERT output embeddings and employ PCA and
t-SNE for unsupervised dimensionality reduction, reducing the embedding dimension from 768 to 2.
These reduced dimensions serve as the base 2-D coordinates. Subsequently, we depict the sentiment
prediction results by varying the height. This visualization is performed for our single model, as well
as for our 2-model and 5-model ensembles, yielding the results presented below:

(a) Single model (b) 2-model ensemble (c) 5-model ensemble

Figure 2: Sentiment Analysis result plot with PCA and t-SNE

The above figures suggest that ensembles comprised of five models occupy a larger volume in the
embedded space compared to ensembles with one or two models. This observation aligns with
the notion that while individual models may excel in capturing specific regions of the prediction
landscape, ensembles effectively integrate diverse predictive areas. Consequently, the resulting
ensemble model exhibits a more robust performance.

6 Conclusion

Achievements We successfully implemented a multi-task learning baseline with BERT. We explored
and evaluated the effectiveness of SimCSE, PALs, and SMART regularization for multi-task
learning. We demonstrated the benefits of PALs and SMART regularization in improving multi-task
performance.

Key Findings
1) Increased model complexity alone may not always guarantee better performance. Our initial
exploration with larger hidden layers in classifiers resulted in a performance decline and led to
potential overfitting.
2) SimCSE did not significantly improve downstream tasks. While we explored different training
datasets and hyperparameters, SimCSE did not lead to consistent improvements.
3) PALs effectively captured task-specific knowledge and improved performance. Models with PALs
consistently outperformed the baseline across all tasks. PAL scheduling did not show significant
benefits for paraphrase detection. The potential imbalances within the paraphrase dataset might
have hindered its effectiveness. Frozen BERT with PALs training offered some improvement but it
underperformed compared to fine-tuning. This reinforces the importance of full model adaptability
for optimal performance.
4) SMART regularization provided a performance boost. By introducing less aggressive updates,
SMART helped the sentiment analysis task achieve a higher accuracy later in training.
5) Ensemble effectively integrate the predictions/classifications from various models, resulting in a
stronger model and a more reliable outcome.

Limitations and Future Work 1) Explore alternative methods, such as supervised SimCSE, for pre-
training sentence embeddings, potentially with larger datasets or longer training times. 2) Experiment
with different combinations of SimCSE, PALs, and SMART, and explore their impact on a wider range
of multi-tasking scenarios. 3) The effectiveness of PAL scheduling requires further investigation,
particularly regarding dataset quality and diversity. Further investigate PAL scheduling, particularly
regarding dataset quality and diversity. 4) Further investigate interference reduction from training on
separate tasks. Gradient surgery can be a natural extension to further improvement.
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7 Appendix (optional)

Algorithm 1 Greedy model soup

1: procedure GREEDY MODEL SOUP(θ1, . . . , θk)
2: Potential soup ingredients Cand = {θ1, . . . , θk}
3: Soup prior probability Weight = {w1, . . . , wk}
4: Final soup ingredients Fin = {}
5: for i = 1 to k do
6: if Accuracy(average(Fin ∪ wiθi)) > Accuracy(average(Fin)) then
7: Fin = Fin ∪ θi
8: end if
9: end for

10: return Fin.
11: end procedure
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Figure 3: SimCSE Model structureGao et al. (2021)
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