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Abstract

In this project, I implement the important components of the BERT model, includ-
ing the Multi-head Self-attention mechanism, the Transformer Layer, and the Adam
optimizer. Then I explore the power of the minBERT model on three downstream
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity.
Extensions are then made to further improve the performance, including multi-task
training, loss function balancing, additional finetuning, hyperparameter tuning, the
gradient surgery technique, and supervised contrastive learning loss. Overall, my
best model achieves a decent performance in all three tasks, the prediction accuracy
(correlation) are 0.527, 0.811, 0.646 for sentiment analysis, paraphrase detection,
and semantic textual similarity on test datasets, respectively.

Mentor: Timothy Dai, External Collaborators: no, Sharing project: no

1 Introduction

In recent years, deep learning has demonstrated its ground-breaking power in natural language
processing. Among various different types of deep learning models, the Bidirectional Encoder Repre-
sentations from Transformers (BERT) model proposed by Devlin et al. (2018) is often recognized
as an efficient and powerful model for a wide range of downstream tasks. The BERT model is a
pre-trained model designed to learn deep bidirectional representations from unlabeled text, and one
can easily finetune it with a few additional layers to create a state-of-the-art model for downstream
tasks.

The purpose of this project is to implement several important components of the BERT model,
including the Multi-head Self-attention mechanism, the Transformer Layer, and the Adam optimizer.
With the basic model implemented, I will explore its performance on three downstream tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity. To fully exploit the power
of BERT representations in this multi-task setting, several extension techniques are applied to further
enhance the performance beyond simple finetuning, including multi-task joint training, loss function
balancing, additional finetuning, hyperparameter tuning, the gradient surgery technique Yu et al.
(2020), and supervised contrastive learning loss Khosla et al. (2020); Gao et al. (2021).

2 Related Work

BERT is a Transformer-based language model, which uses self-attention to capture the dependence
in long sequences. The transformer architecture is proposed in Vaswani et al. (2017), and has been
used as the fundamental building blocks of modern language models. Building on top of the original
BERT models, there are lots of attempts to make it more powerful and efficient, including model
distillation Sanh et al. (2019), weight pruning Gordon et al. (2020), and improved training Liu et al.
(2019).
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Figure 1: Architecture of task specific heads.

To further enhance the quality of learned features in BERT model, a supervised contrastive learning
approach is considered. Supervised contrastive learning is first proposed in Khosla et al. (2020)
for image classification tasks as an alternative of standard cross-entropy loss. It is first shown to
be powerful in Gao et al. (2021) in semantic textual similarity task with text data. There are many
other papers exploring the usage of contrastive learning in NLP. To name a few, Fang et al. (2020);
Hupkes et al. (2022); Suresh and Ong (2021) use contrastive learning for text classification tasks;
Chen et al. (2021); Qin et al. (2020) use contrastive learning for information extraction tasks; Pan
et al. (2021); Vamvas and Sennrich (2021) use contrastive learning for machine translation tasks;
and Qian et al. (2022); Su et al. (2022) use contrastive learning for text generation. In general, the
contrastive learning framework has been proven to be useful in various NLP tasks.

Training models on multiple tasks is often challenging as different tasks may conflict with each other.
To resolve this issue, gradient surgery is proposed in Yu et al. (2020) to project task gradient to each
other,

3 Approach

3.1 Model Configuration

To perform the three downstream tasks, I use the pre-trained BERT to produce embeddings of the
input, with task-specific additional layers on top of the embeddings to make predictions for each task.
The model configuration is shown in Figure 1. In particular, the output logits of the semantic textual
similarity task are taken to be the positive cosine similarity between two transformed embeddings,
i.e.,

Logits = max(0,Cosine(embedding 1, embedding 2)).

This is because two embeddings with cosine similarity equals -1 will be linear dependent in the em-
bedding space, and hence should be considered as strong similarity. Therefore, it is more appropriate
to cut off negative similarities and encourage dissimilar pairs to have orthogonal embeddings (i.e.,
cosine similarity = 0).

For the sentiment analysis task, the labels are 5 classes categorical variables and the loss function is
the cross entropy loss. For the paraphrase detection task, the labels are binary categorical variables
and the loss function is the binary cross entropy loss. For the semantic textual similarity task, the
labels are similarity levels (from 0-5) and the loss function is the mean square error loss between
predicted similarity (scaled by 5 since the output logits have a range of [0,1]) and the label.
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3.2 Baseline Model

I use the two baseline models, in Pretrained Baseline the BERT model is freezed and only the
task-specific heads are trained, and in Finetuned Baseline both the BERT model and task-specific
heads are trained. To perform multi-task learning, in each epoch the model is trained on SST, Para,
STS task in turn (i.e., three loops over the three dataloaders separately). At the end of each epoch, I
evaluate the model performance on all three tasks and save the model with the best sum performance.

3.3 Extension

To further improve the performance, I explore the following extensions:

3.3.1 Joint Training

The naive multitask training method in the baseline model has two drawbacks:

1. The datasets used in the multitask training have very different sizes (see Table 1 for details).
However, due to the memory limit, the maximum batch size is 8, meaning that in each epoch,
the optimizer updates about 1000 steps for sentiment analysis and semantic textual similarity
tasks and about 20000 steps for the paraphrase detection task. Therefore, the paraphrase
detection task dominates the training procedure and potentially hurts other tasks.

2. The model is trained on the three tasks one by one in each iteration, thus the model
performance will be biased towards the last task in each epoch.

Motivated by the two drawbacks mentioned above, I implemented a joint training method. In each
epoch, the model takes one batch from each dataset, evaluates their loss function and averages them
together. Thus for each optimizer step, the loss function is

Ljoint =
1

3
(Lsentiment + Lparaphrase + Lsimilarity) . (1)

This procedure will repeat in one epoch until the largest dataset is exhausted, and the other two
datasets will be cycled over and over again in this process. In our later comparison, it will be referred
as Joint Training.

3.3.2 Balanced loss

Furthermore, since we are using three different types of loss functions for the three tasks, their
numerical scales are also different. Therefore, I consider using the balanced loss function

Ljoint = ωsentimentLsentiment + ωparaphraseLparaphrase + ωsimilarityLsimilarity. (2)

where

ωtask =
Lsentiment + Lparaphrase + Lsimilarity

Ltask
, for task ∈ {sentiment, paraphrase, similarity}.

These weights are computed under torch.no_grad(), and they are only used to balance the scales
of different loss functions. In our later comparison, this method will be referred as Balance.

3.3.3 Gradient Surgery

The gradient direction computed on different tasks may conflict with each other, therefore multi-task
learning may hurt the performance on each task. To address this issue, Yu et al. (2020) proposed
to use a gradient surgery technique that projects the gradient of task i gi onto the normal plane of
another conflicting task’s gradient gj via

gi = gi −
gi · gj
∥gj∥2

gj .

This technique is often refered as projecting conflicting gradients (PCG), and it is implemented in
pytorch by Tseng (2020). I will directly use this implementation in the code.

3



3.3.4 Supervised Contrastive Learning

Contrastive Learning Chen et al. (2020); Khosla et al. (2020); Gao et al. (2021) aims to learn effective
representation by contrasting different samples, that is, maximizing the agreement between positive
pairs, and minimizing the agreement between negative pairs. Positive pairs are usually constructed to
be semantically related and negative pairs are usually constructed to be semantically unrelated. In
this project, I consider using the supervised contrastive learning for the sentiment analysis task as
described below:

Assume we have a dataset {xi, yi}mi=1, the first step is to generate augmented data {x1
i , x

2
i , yi}mi=1 by

data augmentation (following the suggestion in Gao et al. (2021) I use dropout as the augmentation).
In the supervised setting where label information is available, the positive instances for an augmented
data xj

i are all augmented data that is generated from the same class and the negative instances are all
augmented data generated from a different class. And the contrastive loss is written as

ℓi = − log

∑
k:yk=yi

∑2
j=1 e

sim(f(x1
i ),f(x

j
k))/τ∑

k:yk ̸=yi

∑2
j=1 e

sim(f(x1
i ),f(x

j
k))/τ

− log

∑
k:yk=yi

∑2
j=1 e

sim(f(x2
i ),f(x

j
k))/τ∑

k:yk ̸=yi

∑2
j=1 e

sim(f(x2
i ),f(x

j
k))/τ

;

where f(·) is the model that generates the embeddings, sim refers to a similarity measure and τ > 0 is
the temperature parameter. In my implementation, I use the supervised contrastive loss implemented
by Khosla et al. (2020), and use the minBERT backbone to generate the embeddings. To enhance
the training stability, I normalize each f(xj

i ) before computing the loss function. The similarity
measure is taken to be the inner produce and the temperature parameter is taken to be τ = 0.07
following the default choice of Khosla et al. (2020). During the training procedure, the loss function
for sentiment analysis will be the sum of this contrastive loss and standard cross-entropy loss. In our
later comparison, this method will be referred as CL.

3.3.5 Additional Training on STS

After comparing my results on dev datasets with top models on the dev leaderboard, I realized that the
main bottleneck of my model is on the STS dataset. Therefore, I attempt to improve the performance
on the STS dataset by simply adding another round of training on STS datasets at the end of each
epoch. In our later comparison, this method will be referred as additional STS.

3.3.6 Hyperparameter Tuning

As suggested in the provided code, the dropout technique is crucial to improving the empirical
performance. Therefore I also try different choices of dropout probability p to improve the model
performance. In our later comparison, this method will be referred as dropout=p.

4 Experiments

4.1 Data

Following the instructions, I used the Stanford Sentiment Treebank (SST) dataset and the CFIMDB
dataset to perform sentiment analysis for the first part of the project; and I used the SST dataset for
sentiment analysis, the Quora dataset for paraphrase detection, and SemEval STS dataset for semantic
textual similarity for the second part of the project. Some basic properties of the datasets are listed as
follows:

Dataset Name Train size Dev size Test size Input Output

SST 8544 1101 2210 Movie review Categorical labels (5 classes)
CFIMDB 1701 245 488 Movie review Binary labels

Quora 141506 20215 40431 Question Pair Binary labels
SemEval STS 6041 864 1726 Sentence Pair Similarity (0-5)

Table 1: Basic information of datasets being used in the project

4



4.2 Evaluation method

As suggested in the project instruction, for the sentiment analysis and the paraphrase detection task, I
use the classification accuracy as the metric; for the semantic textual similarity task, I use the Pearson
correlation as the metric. The Pearson correlation can adjust to different scales in the predicted
similarity, and therefore is a more appropriate metric here.

4.3 Experimental details

The details of model configuration have been described in Section 3.1. For the sentiment analysis in
part 1, I use a learning rate of 1e-3 for pretraining and a learning rate of 1e-5 for finetuning, the batch
size is set to be 8, the number of epochs is set to be 10 and the hidden dropout probability is set to be
0.3. For the multitask training in part 2, if not specially specified, I use a learning rate of 1e-5 and a
batch size of 8 to train the model for 10 epochs in total. The dropout probability is set to be 0.2 as a
default. For experiments with gradient surgery, I use a batch size of 4 due to the memory limit.

4.4 Results

For the first part of the project, the model performance on the two sentiment analysis datasets is listed
in Table 2.

Dataset Pretrain Finetune

SST 0.386 0.521
CFIMDB 0.759 0.967

Table 2: Model performance on the two sentiment analysis datasets

For the second part of the project, I tested the performance of the baseline models as well as the
combination of several extension techniques on the three tasks, and the performance on dev datasets
are listed in Table 3.

Model SST Dev Para Dev STS Dev

Pretrained Baseline 0.351 0.687 0.229
Finetuned Baseline 0.428 0.805 0.685
Finetuned + Joint Training 0.496 0.810 0.663
Finetuned + Joint Training + balance 0.507 0.802 0.635
Finetuned + Joint Training + balance + dropout=0.3 0.495 0.807 0.637
Finetuned + Joint Training + balance + dropout=0.4 0.506 0.788 0.659
Finetuned + Joint Training + PCG 0.508 0.802 0.586
Finetuned + Joint Training + CL 0.491 0.723 0.704
Finetuned + Joint Training + CL + balance 0.515 0.792 0.627
Finetuned + Joint Training + additional STS 0.500 0.782 0.598

Table 3: Model performance on dev datasets of the three tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity.

Overall the model performance is decent on all three tasks. In general, joint training is found to be
helpful to improve the model performance as expected. However, it is out of my expectation that the
PCG technique and the contrastive learning loss don’t help to improve the overall model performance.
It is also surprising to find that training with an additional training round for STS dataset even hurts
the model performance.

Then I choose the top three models according to their and evaluate them on Test datasets, the results
are summarized in Table 4.
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Model SST Test Para Test STS Test Overall Test Score

Finetuned + Joint Training 0.527 0.811 0.646 0.721
Finetuned + Joint Training + balance 0.521 0.803 0.623 0.712
Finetuned + Joint Training + CL + balance 0.517 0.795 0.605 0.705

Table 4: Model performance on test datasets of the three tasks: sentiment analysis, paraphrase
detection, and semantic textual similarity.

It is very surprising that although the Finetuned+Joint Training model achieve a much lower score on
SST dev dataset compared with the other two selected models, its performance on SST test dataset is
much better than the other two models, leading to the best overall test score. It suggests that the Joint
Training method is perhaps the only technique that can help to improve the model performance in the
multi-task setting.

5 Analysis

From the results shown in Table 3, clearly the joint training method outperforms naive training. This
coincides with our intuition that training the model on three tasks one by one will bias the model
toward specific tasks. Especially, there is a clear improvement on sentiment and paraphrase tasks
and a decreased performance on similarity task. This is because the model is purely trained on the
similarity task at the end of each epoch and therefore it hurts the performance on the other two tasks.

Following the above intuition, I propose to further improve the model performance on the STS dataset
by add an additional round of training. However, this technique will even severely hurt the model
performance on the STS dataset. The performance on three dev datasets is shown in Figure 2. It
demonstrates that the STS performance indeed drops with more training epochs. It is unclear why
this phenomena occurs, a possible explanation could be the optimization trajectory of this training
process has bad properties compared with standard Joint Training.

Figure 2: Performance of Finetuned + Joint Training + additional STS model on three dev datasets in
each training epoch

The contrastive learning method is found to achieve the best model performance on the SST dataset
(Finetuned + Joint Training + CL + balance), suggesting that the supervised contrastive method
improve the quality of embeddings. It is remarkable that the Finetuned + Joint Training + CL model
achieves the best performance on STS dataset even if the contrastive learning procedure doesn’t
explicitly use the STS datasets. It suggests that supervised contrastive learning have the ability to
learn embeddings that have good transferability to other tasks, but according to the performance on
Paraphrase Detection, this improvement is not universal. It is worthwhile to note that supervised
contrastive learning typically benefits from large batch size to create enough contrast pairs, for
example, Khosla et al. (2020) uses a batch size of 256 while I am using a batch size of 8.

Surprisingly, the gradient surgery technique doesn’t work in this setting. A possible explanation
is that although the gradient projection reconciles the conflicts of multi-task gradients, it may also
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lose information that is beneficial to learn useful features. Therefore, it may not help to improve
performance in a multi-task setting. Another potential issue is that due to the memory limit, a smaller
batch size is used for PCG training, which may possibly affect the training stability.

In general, I found that the training procedure is very unstable due to its multi-task learning nature
and the complexity of the optimization landscape of large language models. It is more reasonable
to compare different models via training multiple times with different random seeds. In fact, as
I observed in Table 3 and 4, there is a significant discrepancy even between the dev datasets and
test datasets. Unfortunately, due to the limits of computational resources, it is impossible to give a
thorough investigation in this project.

6 Conclusion

In this project, I evaluate the performance of minBERT embeddings in a multi-task setting. It is
shown that a better design of the training procedure can improve the overall performance. However,
some commonly used techniques such as gradient surgery and contrastive learning demonstrate
limited power in this setting. To enhance the model performance further, a future direction is to use a
larger batch size with advanced GPU, and explore the possibility of using unsupervised contrastive
learning to make the embeddings more transferable.
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