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Abstract

Textual inversion is a method of introducing new user-defined concepts a text-to-
image model by learning new “words” in the model’s textual embedding space,
allowing for personalized text-to-image generation. However, a limitation of this
method is difficulty in learning precise aspects of an image, as the method attempts
to incorporate all the semantic essence of a concept into a single learned “word.”
To address this challenge, drawing inspiration from recent work demonstrating
that textual inversion-based methods can be used to decompose image concepts
into consituent sub-concepts, we add additional control to textual inversion by
isolating the explicitly desired image sub-concept. Given a user-defined prompt
capturing the desired relation between sub-concepts of a set of images, our method
introduces new “words” representing those sub-concepts, which behave like natural
words and thus can be used to generate highly specifically personalized images. We
demonstrate that our method is able to successfully isolate desired sub-concepts
through a comparison to the naive baseline method using purely single-concept
textual inversion.
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2 Introduction

Recent large-scale text-to-image generative models (Ramesh et al., 2022; Saharia et al., 2022;
Ramesh et al., 2022) are incredibly powerful at synthesizing shockingly realistic and diverse images
given natural-language user prompts. However, out-of-the-box models do not necessarily contain
knowledge of personalized concepts that a user may be interested in generating (for example, if a
user wants to generate photos of themselves, the model will probably not know what they look like
out of the box). Hence, there is interest in modifying such image generation models to introduce new
personalized concepts, as retraining the entire model to introduce a new concept with a new dataset is
prohibitively expensive.

This modification task poses several challenges, with previous model fine-tuning approaches being
subject to forgetting prior knowledge (Kumar et al., 2022). One approach to this problem addressing
these challenges involves fixing the generative model and solving the task of textual inversion (Gal
et al., 2023). Concretely, given a text-to-image model and an image set depicting a visual concept,
we wish to find a word embedding representing this concept (that behaves like a natural word, so can
be used in prompts like “A photo of S∗”).

Stanford CS224N Natural Language Processing with Deep Learning



However, textual inversion is still subject to a key limitation, which is that if a user wishes to generate
personalized images focusing on a particular aspect or sub-concept of a visual concept, rather than
the entire visual concept (e.g. “A photo of the pattern found on S∗”, rather than “A photo of S∗”),
a single word S∗ may be insufficient to capture a particular sub-concept. Hence, we propose to
draw inspiration from Vinker et al. (2023), which demonstrates that textual inversion can be used to
optimize embeddings sub-concepts of an visual concept in addition to the parent concept. Our method
adapts Vinker et al. (2023) to the task of isolating specific concepts for the purpose of highly specific
and personalized image generation through user-defined prompts that define the desired sub-concept
to be extracted. We evaluate our method against the naive baseline of pure single-concept textual
inversion by means of quantitative image and text similarity metrics, and a user perceptual study. We
demontrate that while our method still exhibits some limitations, we are able to successfully isolate
plausible image sub-concepts guided by user prompts as desired, and generate personalized, specific
images.

3 Related Work

Large langugage-vision models

There have been many exciting advances in the field of language-vision models, which are now
capable of performing extremely sophiscated tasks, including convincing text-to-image generation
(Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022). A major paradigm for image
generation is latent diffusion models (LDMs) (Rombach et al., 2021). An LDM consists of a
pretrained image encoder and a diffusion model that can be conditioned on different inputs to guide
image generation. For our work, we focus on text-to-image generation, so the conditioning input
comes from a text encoder.

Personalization and inversion

Multiple different approaches have been taken to the problem of personalizing image generation
(Hu et al., 2022; Gal et al., 2023; Ruiz et al., 2023). In particular, Gal et al. (2023) seeks to invert
text-to-image generation by constructing a textual embedding corresponding to a given visual concept
(represented by a set of images) by optimizing embeddings in the shared latent space of a given
text-to-image model, drawing inspiration from similar GAN inversion methods (Abdal et al., 2019;
Gu et al., 2020). We choose an approach most similar to Gal et al. (2023) because unlike some
other methods, it does not modify the weights of the underlying network. This is much less memory-
intensive, as it does not require a separate model for each personalization (and perhaps also suits the
contents of the class a bit better). However, a single word embedding as is optimized in Gal et al.
(2023) is may not be sufficient to capture particular desired sub-aspects of an image, which our work
seeks to address.

Concept decomposition

Vinker et al. (2023) extend textual inversion (Gal et al., 2023) to the problem of decomposing the
parent concept represented by a set of images into constituent sub-concepts. Namely, they seek to
optimize not just a single embedding v∗p as in (Gal et al., 2023) but multiple embeddings v∗l , v∗r
corresponding to subconcepts Sl and Sr of the parent concept Sp represented by the set of images.
Similar to Vinker et al. (2023), we decompose an image set into sub-concepts using textual inversion.
However, our work differs in several key ways. Unlike Vinker et al. (2023), we focus on the specific
task of personalization in highly specific and guided fashion, and perform evaluations to assess our
method on this particular task. Due to this difference, Vinker et al. (2023) does not explicitly specify
the relation between sub-concepts on the user end, while we guide the choice of sub-concepts through
a user-defined prompt. This warrants several modifications to the concept decomposition method,
which are described in Section 4.

4 Approach

Our goal is to improve upon the controllability of the textual inversion method introduced in Gal
et al. (2023) by isolating separate visual concepts or objects present in a set of images. Precisely,
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we wish take a set of images representing multiple visual concepts Sl, Sr (with a given relation)
and a text-to-image latent diffusion model (LDM), and obtain personalized word embeddings v∗l , v∗r
corresponding to the visual sub-concepts that can be used as natural words to generate images via the
LDM, e.g. “A car in the style of Sl”.

To this end, we build upon Vinker et al. (2023), who demonstrate that a textual inversion can
decompose a concept Sp into sub-concepts Sl, Sr by performing textual inversion by conditioning
during the training process on prompts of the form “A photograph of Sl Sr”. We first modify this
approach to suit our specific personalization task by instead conditioning on prompts that capture the
explicit, user-specified relation between desired concepts within the images, such a “A photograph of
Sl with a Sr pattern”. Given

• cθ a model mapping a conditioning input y (here, text encoding) into a conditioning vector
• the timestep t

• zt the latent noised to time t

• ϵ the unscaled noise sample
• ϵθ the denoising network
• E an encoder mapping images x to a latent code z

the standard LDM loss is

L = Ex∼E(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cθ(y))∥22

]
. (1)

Our optimization objective is

{vl, vr} = argmin
v

Ex∼E(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cθ(y))∥22

]
, (2)

fixing cθ and ϵθ.

Vinker et al. (2023) additionally performs a consistency test allowing for the selection of the most
coherent sub-concepts. The consistency between two sets of images Ia, Ib is defined as

C(Ia, Ib) = mean
Ia
i ∈Ia,Ib

j∈Ib,Ia
i ̸=Ib

j

(sim(CLIP(Iai ),CLIP(I
b
j ))) (3)

where sim is the cosine similarity sim(x, y) = x·y
∥x∥∥y∥ from a pretrained CLIP encoder. The

consistency test is performed by choosing the optimized embeddings v∗l , v
∗
r from a set Vs such that

{v∗l , v∗r} = argmax
{vi

l ,v
i
r ∈Vs}

[(Ci
l + Ci

r) + (min(Ci
l )− C(Iv

i
l , Iv

i
r ))] (4)

where Ci
l = C(Ivi

l , Iv
i
l ) and Ci

r = C(Ivi
r , Iv

i
r ). The first term encourages a choice of embeddings

vil , v
i
r which maximizes the self-consistency of each concept, and the second term discourages

sub-concepts from being too similar to each other.

For our method, we hypothesize that a user-defined prompt can sufficiently specify the relation
between Sl and Sr. We modify the consistency test in Eq. 4 to obtain:

{v∗l , v∗r} = argmax
{vi

l ,v
i
r ∈Vs}

[(Ci
l + Ci

r)−max(C(Iv
i
l , Iv

i
p), C(Iv

i
r , Iv

i
p))] (5)

where each vip is an embedding corresponding to the parent concept Sp derived from vil , v
i
r, and

the user-defined prompt relating Sl and Sr (e.g. “Sl with a Sr pattern”). The first term, as before,
encourages, a choice of embeddings which maximizes the self-consistency of each concept. Unlike
Vinker et al. (2023), which does not explicitly specify the relationship between the sub-concepts, our
method takes as input a user-defined prompt that specifies the relation between Sl and Sr; hence,
we do not need to explicitly discourage the the concepts to be dissimilar, so we remove the second
term of Eq. 4. We additionally assume that the user of our method likely wishes to isolate particular
sub-concept(s) of Sp, rather than being interested in concepts close to Sp. Hence, Sl and Sr should
be relatively dissimilar to Sp, which is encouraged by our second term in Eq. 5.

We build upon and modify the existing released codebases of Vinker et al. (2023). To summarize, we
make the following additions/modifications to the code:
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• Add functionality to allow specification of user-defined relations between concepts, rather
than just the default presumed “Sl Sr” (which assumes something like an adjective-noun
relationship between Sl and Sr, which may not apply to the concepts in an image set).

• Modify the consistency score to reflect Eq. 5.

• Implement the CLIP image and text similarity metrics described in Section 5.2.

• Fix existing bugs in the existing codebase which caused the code to crash out-of-the-box at
the seed selection step.

5 Experiments

5.1 Data

We currently use the datasets released by Gal et al. (2023), which are found here. To be clear, our
task inputs and outputs can be described as

• Input: A set of images representing multiple visual concepts (with a user-defined relation)
and a generative LDM, and

• Output: A “word” corresonding to the visual sub-concepts that can be used as a natural
word in prompts to generate images from the LDM.

Each dataset is used as an instance of the set of images representing multiple visual concepts in the
input.

5.2 Evaluation method

Taking inspiration from Gal et al. (2023), to evaluate the ability of our method to replicate a desired
target sub-concept, we measure image similarity between a set of images of a learned sub-concept and
generated images, using a naive method as a baseline. The naive method of specifying a sub-concept
is simply trying to describe the sub-concept through words e.g. “The pattern found on Sp”, where
Sp is the parent concept. Therefore, concretely, for each dataset, we generate 64 images using the
following prompts:

(1) “A photo of S∗”, where S∗ is a subconcept S∗ ∈ {Sl, Sr}. This represents our method.

(2) “A photo of S′
p”, where S′

p is a string describing the sub-concept S∗ of the parent concept
Sp through words. For example, if Sp = “Sl with a Sr pattern”, S∗ = Sr, then S′

p = “the
pattern found on Sp”. This serves as our baseline.

We then compute the semantic CLIP-space distances between the images generated by each prompt
with a set of images corresonding to S∗.

Again taking inspiration from Gal et al. (2023), to evaluate the fidelity to the surrounding textual
prompt (and hence the editing capability), we measure text similarity between a set of images of a
learned sub-concept and generated images using a naive method as a baseline. Concretely, for each
dataset, we consider a set of varying prompts e.g. “A photo of a car", “A photo of a lunchbox”. For
each such prompt S, we generate a set of 64 images using the following:

(1) The prompt modified with S∗, e.g. “A photo of a S∗ car”. This represents our method.

(2) The prompt modified with S′
p, e.g. “A photo of a car with the pattern of S′

p”. This serves as
our baseline.

We then compute the semantic CLIP-space distance between the images generated by each of these
prompts with a set of images generated by S.

In addition, we conduct a user study asking participants to rate the quality of generated images
on several metrics compared to the naive baseline. An example question on the study is shown in
Figure 1. The study consisted of 6 such questions.
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Figure 1: Example survey question for user study.

5.3 Experimental details

For our experiments, we use Stable Diffusion (Rombach et al., 2021) as our LDM. To optimize the
textual embedding, we use the Adam optimizer with an initial learning rate of 5× 10−4. To select
the best sub-concepts according to Eq. 5, we optimize embeddings for 4 chosen seeds for 200 epochs,
perform the consistency test on these 4 seeds, and further optimize the chosen seed for another 800
epochs. The entire process end-to-end for a single image set takes around 1.5 hours on a NVIDIA
GeForce RTX 3090 GPU. The prompts used to decompose each dataset concept are listed in Table 1.

Dataset Prompt
mug-buildings “Sl with a Sr pattern”
canada-bear “Sl with a Sr print”
physics-mug “Sl with a Sr design”
elephant “Sl made of Sr”
red-teapot “red Sl with a Sr pattern”
cat-sculpture “Sl in the style of Sr”

Table 1: Decomposition promopts. Prompt used for each dataset for concept decomposition.

5.4 Results

In Figure 2 we qualitatively show example comparisons of our method to the naive method described
in Section 5.2. For each dataset, we show an example sub-concept learned with our method, and
an attempt to naively capture that same concept using single-concept textual inversion and textual
description. We perform further analysis of each dataset and limitations in Section 6, but we can see
that our method is able to specify certain sub-aspects of a visual concept that the naive method is not
able to.

In Table 2 we show the quantitative results of the image similarity and text similarity metrics described
in Section 5.2. We see that on all datasets, our method achieves the higher image similarity than
the baseline naive method. This indicates that as desired, our method is more effective at isolating
specific sub-concepts of a set of images than the naive method trying to isolate a concept purely
through textual description (e.g. “The pattern found on Sp”). Additionally, our method achieves
higher text similarity on most of the datasets, with a higher average text similarity. This indicates
that general, our learned sub-concepts remain as editable and as capable of expressing more complex
ideas found in user prompts as the learned parent concepts from the naive textual inversion method.

In Table 3 we show the results of the user perceptual study described in Section 5.2. 33 participants
responded to the survey. For each dataset, we show the percentage of participants who preferred the
result from our method over the result from the baseline naive method. Participants preferred our
method for the majority of datasets. However, several datasets exhibited notable failure cases. We
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OursParent concept Sp

“The pattern found on Sp”

Naïve baseline Sp’

“The print found on Sp”

“The design found on Sp”

“The material of Sp”

“The pattern found on Sp”

“The pattern found on Sp”

OursParent concept Sp Naïve baseline Sp’

Figure 2: Baseline comparison. For each dataset, we show an example sub-concept learned with our
method, and an attempt to naively capture that same concept using single-concept textual inversion.
Our method is able to specify certain sub-aspects of a parent concept that the naive method is not
able to.

Ours Baseline
Dataset Image sim. (↑) Text sim. (↑) Image sim. (↑) Text sim. (↑)
mug-buildings 0.828 0.230 0.822 0.199
canada-bear 0.826 0.214 0.822 0.219
physics-mug 0.720 0.220 0.705 0.243
elephant 0.889 0.245 0.888 0.245
red-teapot 0.831 0.213 0.744 0.207
cat-sculpture 0.827 0.213 0.741 0.207
Average 0.820 0.222 0.787 0.220

Table 2: Baseline comparison. The baseline we compare to is the naive textual inversion method
described in Section 5.2. For each method, we show the image similarity and text similarity. Our
method achieves higher image and text similarity, indicating higher expressivity and comparable
editability to the baseline.

also notice that the datasets that participants do not prefer, they do so by an overwhelming amount.
This indicates that the limitations are due to a choice of sub-concept decomposition, possibly at the
consistency test stage. In Section 6, we further exhibit and discuss visual examples of sub-concepts
learned from each dataset, and analyze the reasons for the failure cases seen here.

Dataset Preference for ours (↑)
mug-buildings 70%
canada-bear 0 %
physics-mug 66%
elephant 67%
red-teapot 81%
cat-sculpture 9%

Table 3: User perceptual study. For each dataset, we show the percentage of participants who
preferred the result from our method over the result from the baseline naive method. Participants
preferred our method for the majority of datasets.
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6 Analysis

In Figure 3 we show example concept decompositions from our method for each dataset. In column 1
we show a representative image from each dataset, and in columns 2 and 3 we show sub-concepts
learned from each dataset using the prompts in Table 1. In column 4 we show generated images from
example prompts to the resulting personalized generative model from our method, showing that the
sub-concepts we learn can be used naturally in prompts to the generative image model. In general,
the generated images appear faithful to the depicted sub-concept while still expressing the desired
prompt. In general, qualitatively, our method is able to isolate plausible sub-concepts according to
the decomposition prompts; notably in rows 1 and 3.

However, the method still exhibits some limitations. For example, in row 2, our method seems to
decompose the print into a concept representing a pattern and a concept representing wood block
prints in general. This could be due to our choice of consistency test (Eq. 5)—since we penalize
sub-concepts comprising a large majority of the parent concept, and the bear print is the focal point
of the image, our method is too heavily incentivized to serparate sub-concepts within the bear print.
A limitation can also be seen in row 5. In the corresponding prompt (Table 1), we attempted to
disentangle the color of the teapot from the sub-concepts. We can see in column 3 of this row that
while the images still have some red, in general, sub-concept represents a much more gold-colored
pattern, which is promising. However, in column 2 of this row, we see a sub-concept that seems
unnatural for this image. This could be due to the increased complexity of the decomposition prompt
compared to the other datasets. In row 6 we can also see some additional limitations. Similar to row
5, the sub-concept in column 2 is not very natural, as it seems the “style” of the sculpture in column
3 gets interpreted as encompassing the “cat"-like aspects of the sculpture, while column 2 is left to
capture the idea of a 3D object. This could be due to a similar issue as in row 2 described above, or
due to the lack of specificity in the decomposition prompt, since it may be unclear exactly to what the
word “style” refers.

7 Conclusion

In this work, we presented a method for highly specific personalized image generation inspired by
concept decomposition via textual inversion. Our method allows users to isolate specific desired
sub-concepts from a larger visual concept of their choice, and generate images incorporating the
desired sub-concept using natural-language prompts. We evaluate our method by comparing with the
baseline naive method of involving only single-concept textual inversion and find that we are more
successfully able to express desired sub-concepts of visual concepts for personalization.

Future work could address the existing limitations of our method. Namely, we have reason to believe
the consistency test we propose may too strongly incentivize sub-concepts that comprise smaller
proportions of the larger parent concept, even when this is not appropriate, resulting in unnatural
sub-concept choices. Devising a better consistency metric, whether it is revising the relative weights
on the current consistency test terms or proposing another metric entirely could be a direction for
future work. Additionally, the method performs poorly on multi-object concepts e.g. decomposing
“Sl next to Sr”. This may be because it is difficult to obtain enough varying object poses (which Gal
et al. (2023) shows helps with reconstruction quality) while having the model still understand the
spatial arrangement of objects. Future work could also aim to improve in this direction.
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Sub-concept Sl Sub-concept SrParent concept Sp “A backpack with a Sr design”

“Elmo as a Sl” 

“A car with a Sr design”

“A house made of Sr”

“A door with a Sr pattern”

“A lunchbox in the style of Sr”

Figure 3: Textual inversion on sub-concepts. For each dataset we show sub-concepts learned
according to the decomposition prompts in Table 1 and generated images from example prompts.
Our method is able to isolate some plausible sub-concepts that can be used in further prompts.
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