
Exokernel: An Operating System Architecture for
Application-Level Resource Management

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr.
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, U.S.Afengler, kaashoek, jamesg@lcs.mit.eduAbstract
Traditional operating systems limit the performance, flexibility, and
functionality of applications by fixing the interface and implemen-
tation of operating system abstractions such as interprocess com-
munication and virtual memory. The exokernel operating system
architecture addresses this problem by providing application-level
management of physical resources. In the exokernel architecture, a
small kernel securely exports all hardware resources through a low-
level interface to untrusted library operating systems. Library op-
erating systems use this interface to implement system objects and
policies. This separation of resource protection from management
allows application-specific customization of traditional operating
system abstractions by extending, specializing, or even replacing
libraries.

We have implemented a prototype exokernel operating system.
Measurements show that most primitive kernel operations (such
as exception handling and protected control transfer) are ten to 100
times faster than in Ultrix, a mature monolithic UNIX operating sys-
tem. In addition, we demonstrate that an exokernel allows applica-
tions to control machineresources in ways not possible in traditional
operating systems. For instance, virtual memory and interprocess
communication abstractions are implemented entirely within an
application-level library. Measurements show that application-level
virtual memory and interprocess communication primitives are five
to 40 times faster than Ultrix’s kernel primitives. Compared to
state-of-the-art implementations from the literature, the prototype
exokernel system is at least five times faster on operations such as
exception dispatching and interprocess communication.1 Introduction
Operating systems define the interface between applications and
physical resources. Unfortunately, this interface can significantly
limit the performance and implementation freedom of applications.
Traditionally, operating systems hide information about machine
resources behind high-level abstractions such as processes, files,
address spaces and interprocess communication. These abstrac-
tions define a virtual machine on which applications execute; their
implementation cannot be replaced or modified by untrusted appli-
cations. Hardcoding the implementations of these abstractions is

This research was supported in part by the Advanced Research Projects Agency under
contract N00014-94-1-0985 and by a NSF National Young Investigator Award.

Copyright c 1995 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and the full citation on the
first page. Copyrights for components of this WORK owned by others than ACM must
be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc., Fax +1 (212) 869-0481, or<permissions@acm.org>.

inappropriate for three main reasons: it denies applications the ad-
vantages of domain-specific optimizations, it discourages changes
to the implementations of existing abstractions, and it restricts the
flexibility of application builders, since new abstractions can only
be added by awkward emulation on top of existing ones (if they can
be added at all).

We believe these problems can be solved through application-
level (i.e., untrusted) resource management. To this end, we have
designed a new operating system architecture, exokernel, in which
traditional operating system abstractions, such as virtual memory
(VM) and interprocess communication (IPC), are implemented en-
tirely at application level by untrusted software. In this architecture,
a minimal kernel—which we call an exokernel—securely multi-
plexes available hardware resources. Library operating systems,
working above the exokernel interface, implement higher-level ab-
stractions. Application writers select libraries or implement their
own. New implementations of library operating systems are incor-
porated by simply relinking application executables.

Substantial evidence exists that applications can benefit greatly
from having more control over how machine resources are used
to implement higher-level abstractions. Appel and Li [5] reported
that the high cost of general-purpose virtual memory primitives
reduces the performance of persistent stores,garbage collectors,and
distributed shared memory systems. Cao et al. [10] reported that
application-level control over file caching can reduce application
running time by 45%. Harty and Cheriton [26] and Krueger et
al. [30] showed how application-specific virtual memory policies
can increase application performance. Stonebraker [47] argued
that inappropriate file-system implementation decisions can have a
dramatic impact on the performance of databases. Thekkath and
Levy [50] demonstrated that exceptions can be made an order of
magnitude faster by deferring signal handling to applications.

To provide applications control over machine resources, an ex-
okernel defines a low-level interface. The exokernel architecture is
founded on and motivated by a single, simple, and old observation:
the lower the level of a primitive, the more efficiently it can be
implemented, and the more latitude it grants to implementors of
higher-level abstractions.

To provide an interface that is as low-level as possible (ideally,
just the hardware interface), an exokernel designer has a single
overriding goal: to separate protection from management. For
instance, an exokernel should protect framebuffers without under-
standing windowing systems and disks without understanding file
systems. One approach is to give each application its own virtual
machine [17]. As we discuss in Section 8, virtual machines can
have severe performance penalties. Therefore, an exokernel uses a
different approach: it exports hardware resources rather than emu-
lating them, which allows an efficient and simple implementation.
An exokernel employs three techniques to export resources securely.
First, by using secure bindings, applications can securely bind to
machine resources and handle events. Second, by using visible re-

Appears in Proceedings of the Fifteenth Symposium on Operating Systems Principles, December 1995.



source revocation, applications participate in a resource revocation
protocol. Third, by using an abort protocol, an exokernel can break
secure bindings of uncooperative applications by force.

We have implemented a prototype exokernel system based on
secure bindings, visible revocation, and abort protocols. It includes
an exokernel (Aegis) and an untrusted library operating system
(ExOS). We use this system to demonstrate several important prop-
erties of the exokernel architecture: (1) exokernels can be made
efficient due to the limited number of simple primitives they must
provide; (2) low-level secure multiplexing of hardware resources
can be provided with low overhead; (3) traditional abstractions,
such as VM and IPC, can be implemented efficiently at application
level, where they can be easily extended, specialized, or replaced;
and (4) applications can create special-purpose implementations of
abstractions, tailored to their functionality and performance needs.

In practice, our prototype exokernel system provides applica-
tions with greater flexibility and better performance than mono-
lithic and microkernel systems. Aegis’s low-level interface allows
application-level software such as ExOS to manipulate resources
very efficiently. Aegis’s protected control transfer is almost seven
times faster than the best reported implementation [33]. Aegis’s
exception dispatch is five times faster than the best reported imple-
mentation [50]. On identical hardware, Aegis’s exception dispatch
and control transfer are roughly two orders of magnitude faster than
in Ultrix 4.2, a mature monolithic system.

Aegis also gives ExOS (and other application-level software)
flexibility that is not available in microkernel-based systems. For
instance, virtual memory is implemented at application level, where
it can be tightly integrated with distributed shared memory systems
and garbage collectors. Aegis’s efficient protected control trans-
fer allows applications to construct a wide array of efficient IPC
primitives by trading performance for additional functionality. In
contrast, microkernel systems such as Amoeba [48], Chorus [43],
Mach [2], and V [15] do not allow untrusted application software to
define specialized IPC primitives because virtual memory and mes-
sage passing services are implemented by the kernel and trusted
servers. Similarly, many other abstractions, such as page-table
structures and process abstractions, cannot be modified in micro-
kernels. Finally, many of the hardware resources in microker-
nel systems, such as the network, screen, and disk, are encapsu-
lated in heavyweight servers that cannot be bypassed or tailored
to application-specific needs. These heavyweight servers can be
viewed as fixed kernel subsystems that run in user-space.

This paper focuseson the exokernel architecture design and how
it can be implemented securely and efficiently. Section 2 provides
a more detailed case for exokernels. Section 3 discusses the issues
that arise in their design. Section 4 overviews the status of our proto-
type and explains our experimental methodology. Sections 5 and 6
present the implementation and summarize performance measure-
ments of Aegis and ExOS. Section 7 reports on experiments that
demonstrate the flexibility of the exokernel architecture. Section 8
summarizes related work and Section 9 concludes.2 Motivation for Exokernels
Traditionally, operating systems have centralized resource manage-
ment via a set of abstractions that cannot be specialized, extended,
or replaced. Whether provided by the kernel or by trusted user-
level servers (as in microkernel-based systems), these abstractions
are implemented by privileged software that must be used by all
applications, and therefore cannot be changed by untrusted soft-
ware. Typically, the abstractions include processes, files, address
spaces, and interprocess communication. In this section we discuss
the problems with general-purpose implementations of these ab-

stractions and show how the exokernel architecture addresses these
problems.2.1 The Cost of Fixed High-Level Abstractions
The essential observation about abstractions in traditional operating
systems is that they are overly general. Traditional operating sys-
tems attempt to provide all the features needed by all applications.
As previously noted by Lampson and Sproul [32], Anderson et
al. [4] and Massalin and Pu [36], general-purpose implementations
of abstractions force applications that do not need a given feature to
pay substantial overhead costs. This longstanding problem has be-
come more important with explosive improvements in raw hardware
performance and enormous growth in diversity of the application
software base. We argue that preventing the modification of the
implementation of these high-level abstractions can reduce the per-
formance, increase the complexity, and limit the functionality of
application programs.

Fixed high-level abstractions hurt application performance be-
cause there is no single way to abstract physical resources or to
implement an abstraction that is best for all applications. In im-
plementing an abstraction, an operating system is forced to make
trade-offs between support for sparse or dense address spaces,
read-intensive or write-intensive workloads, etc. Any such trade-
off penalizes some class of applications. For example, relational
databases and garbage collectors sometimes have very predictable
data access patterns, and their performance suffers when a general-
purpose page replacement strategy such as LRU is imposed by
the operating system. The performance improvements of such
application-specific policies can be substantial; Cao et al. [10] mea-
sured that application-controlled file caching can reduce application
running time by as much as 45%.

Fixed high-level abstractions hide information from applica-
tions. For instance, most current systems do not make low-level
exceptions, timer interrupts, or raw device I/O directly available to
application-level software. Unfortunately, hiding this information
makes it difficult or impossible for applications to implement their
own resource managementabstractions. For example, database im-
plementors must struggle to emulate random-access record storage
on top of file systems [47]. As another example, implementing
lightweight threads on top of heavyweight processes usually re-
quires compromises in correctness and performance, because the
operating system hides page faults and timer interrupts [4]. In such
cases, application complexity increases because of the difficulty of
getting good performance from high-level abstractions.

Fixed high-level abstractions limit the functionality of appli-
cations, because they are the only available interface between ap-
plications and hardware resources. Because all applications must
share one set of abstractions, changes to these abstractions occur
rarely, if ever. This may explain why few good ideas from the
last decade of operating systems research have been adopted into
widespread use: how many production operating systems support
scheduler activations [4], multiple protection domains within a sin-
gle address space [11], efficient IPC [33], or efficient and flexible
virtual memory primitives [5, 26, 30]?2.2 Exokernels: An End-to-End Argument
The familiar “end-to-end” argument applies as well to low-level
operating system software as it does to low-level communication
protocols [44]. Applications know better than operating systems
what the goal of their resource management decisions should be
and therefore, they should be given as much control as possible over

2



TLB Network Memory Disk

Exokernel

Hardware

DSM

VMIPC

Barnes−Hut

Traps

Secure bindings

Mosaic

WWW

POSIX TCP

Library operating systems

Applications

Frame buffer

Figure 1: An example exokernel-based system consisting of a thin
exokernel veneer that exports resources to library operating systems
through secure bindings. Each library operating system implements
its own system objects and policies. Applications link against stan-
dard libraries (e.g., WWW, POSIX, and TCP libraries for Web ap-
plications) or against specialized libraries (e.g., a distributed shared
memory library for parallel applications).

those decisions. Our solution is to allow traditional abstractions to
be implemented entirely at application level.

To provide the maximum opportunity for application-level re-
source management, the exokernel architecture consists of a thin
exokernel veneer that multiplexes and exports physical resources
securely through a set of low-level primitives. Library operating
systems, which use the low-level exokernel interface, implement
higher-level abstractions and can define special-purpose implemen-
tations that best meet the performance and functionality goals of
applications (see Figure 1). (For brevity, we sometimes refer to
“library operating system” as “application.”) This structure allows
the extension, specialization and even replacement of abstractions.
For instance, page-table structures can vary among library operat-
ing systems: an application can select a library with a particular
implementation of a page table that is most suitable to its needs.
To the best of our knowledge, no other secure operating system
architecture allows applications so much useful freedom.

This paper demonstrates that the exokernel architecture is an ef-
fective way to address the problems listed in Section 2.1. Many of
these problems are solved by simply moving the implementation of
abstractions to application level, since conflicts between application
needs and available abstractions can then be resolved without the
intervention of kernel architects. Furthermore, secure multiplexing
does not require complex algorithms; it mostly requires tables to
track ownership. Therefore, the implementation of an exokernel can
be simple. A simple kernel improves reliability and ease of main-
tenance, consumes few resources, and enables quick adaptation to
new requirements (e.g., gigabit networking). Additionally, as is
true with RISC instructions, the simplicity of exokernel operations
allows them to be implemented efficiently.2.3 Library Operating Systems
The implementations of abstractions in library operating systems
can be simpler and more specialized than in-kernel implementa-
tions, because library operating systems need not multiplex a re-
source among competing applications with widely different de-
mands. In addition, since libraries are not trusted by an exokernel,
they are free to trust the application. For example, if an application
passes the wrong arguments to a library, only that application will
be affected. Finally, the number of kernel crossings in an exokernel

system can be smaller, since most of the operating system runs in
the address space of the application.

Library operating systems can provide as much portability and
compatibility as is desirable. Applications that use an exokernel
interface directly will not be portable, because the interface will in-
clude hardware-specific information. Applications that use library
operating systems that implement standard interfaces (e.g., POSIX)
will be portable across any system that provides the same interface.
An application that runs on an exokernel can freely replace these
library operating systems without any special privileges, which sim-
plifies the addition and development of new standards and features.
We expect that most applications will use a handful of available
library operating systems that implement the popular interfaces;
only designers of more ambitious applications will develop new
library operating systems that fit their needs. Library operating
systems themselves can be made portable by designing them to use
a low-level machine-independent layer to hide hardware details.

Extending or specializing a library operating system might be
considerably simplified by modular design. It is possible that object-
oriented programming methods, overloading, and inheritance can
provide useful operating system service implementations that can
be easily specialized and extended, as in the VM++ library [30].
To reduce the space required by these libraries, support for shared
libraries and dynamic linking will be an essential part of a complete
exokernel-based system.

As in microkernel systems, an exokernel can provide backward
compatibility in three ways: one, binary emulation of the operating
system and its programs; two, by implementing its hardware ab-
straction layer on top of an exokernel; and three, re-implementing
the operating system’s abstractions on top of an exokernel.3 Exokernel Design
The challenge for an exokernel is to give library operating systems
maximum freedom in managing physicalresources while protecting
them from each other; a programming error in one library operat-
ing system should not affect another library operating system. To
achieve this goal, an exokernel separates protection from manage-
ment through a low-level interface.

In separating protection from management, an exokernel per-
forms three important tasks: (1) tracking ownership of resources,
(2) ensuring protection by guarding all resource usage or binding
points, and (3) revoking access to resources. To achieve these
tasks, an exokernel employs three techniques. First, using secure
bindings, library operating systems can securely bind to machine
resources. Second, visible revocation allows library operating sys-
tems to participate in a resource revocation protocol. Third, an
abort protocol is used by an exokernel to break secure bindings of
uncooperative library operating systems by force.

In this section, we enumerate the central design principles of
the exokernel architecture. Then, we discuss in detail the three
techniques that we use to separate protection from management.3.1 Design Principles
An exokernel specifies the details of the interface that library op-
erating systems use to claim, release, and use machine resources.
This section articulates some of the principles that have guided
our efforts to design an exokernel interface that provides library
operating systems the maximum degree of control.

Securely expose hardware. The central tenet of the exoker-
nel architecture is that the kernel should provide secure low-level

3



primitives that allow all hardware resources to be accessed as di-
rectly as possible. An exokernel designer therefore strives to safely
export all privileged instructions, hardware DMA capabilities, and
machine resources. The resources exported are those provided by
the underlying hardware: physical memory, the CPU, disk memory,
translation look-aside buffer (TLB), and addressing context iden-
tifiers. This principle extends to less tangible machine resources
such as interrupts, exceptions, and cross-domain calls. An exok-
ernel should not impose higher-level abstractions on these events
(e.g., Unix signal or RPC semantics). For improved flexibility,
most physical resources should be finely subdivided. The num-
ber, format, and current set of TLB mappings should be visible to
and replaceable by library operating systems, as should any “priv-
ileged” co-processor state. An exokernel must export privileged
instructions to library operating systems to enable them to imple-
ment traditional operating system abstractions such as processes
and address spaces. Each exported operation can be encapsulated
within a system call that checks the ownership of any resources
involved.

Phrased negatively, this principle states that an exokernel should
avoid resource management. It should only manage resources to
the extent required by protection (i.e., management of allocation,
revocation, and ownership). The motivation for this principle is our
belief that distributed, application-specific, resource management
is the best way to build efficient flexible systems. Subsequent
principles deal with the details of achieving this goal.

Expose allocation. An exokernel should allow library operat-
ing systems to request specific physical resources. For instance, if a
library operating system can request specific physical pages, it can
reduce cache conflicts among the pages in its working set [29]. Fur-
thermore, resources should not be implicitly allocated; the library
operating system should participate in every allocation decision.
The next principle aids the effectiveness of this participation.

Expose Names. An exokernel should export physical names.
Physicalnames are efficient, since they remove a level of indirection
otherwise required to translate between virtual and physical names.
Physicalnames also encodeuseful resourceattributes. For example,
in a system with physically-indexed direct-mapped caches, the name
of a physical page (i.e., its page number) determines which pages
it conflicts with. Additionally, an exokernel should export book-
keeping data structures such as freelists, disk arm positions, and
cached TLB entries so that applications can tailor their allocation
requests to available resources.

Expose Revocation. An exokernel should utilize a visible re-
source revocation protocol so that well-behaved library operating
systems can perform effective application-level resource manage-
ment. Visible revocation allows physical names to be used easily
and permits library operating systems to choose which instance of
a specific resource to relinquish.Policy
An exokernel hands over resource policy decisions to library op-
erating systems. Using this control over resources, an application
or collection of cooperating applications can make decisions about
how best to use these resources. However, as in all systems, an ex-
okernel must include policy to arbitrate between competing library
operating systems: it must determine the absolute importance of
different applications, their share of resources, etc. This situation
is no different than in traditional kernels. Appropriate mechanisms
are determined more by the environment than by the operating
system architecture. For instance, while an exokernel cedes man-
agement of resources over to library operating systems, it controls
the allocation and revocation of these resources. By deciding which

allocation requests to grant and from which applications to revoke
resources, an exokernel can enforce traditional partitioning strate-
gies, such as quotas or reservation schemes. Since policy conflicts
boil down to resource allocation decisions (e.g., allocation of seek
time, physical memory, or disk blocks), an exokernel handles them
in a similar manner.3.2 Secure Bindings
One of the primary tasks of an exokernel is to multiplex resources
securely, providing protection for mutually distrustful applications.
To implement protection an exokernelmust guard each resource. To
perform this task efficiently an exokernel allows library operating
systems to bind to resources using secure bindings.

A secure binding is a protection mechanism that decouples au-
thorization from the actual use of a resource. Secure bindings
improve performance in two ways. First, the protection checks
involved in enforcing a secure binding are expressed in terms of
simple operations that the kernel (or hardware) can implement
quickly. Second, a secure binding performs authorization only at
bind time, which allows management to be decoupled from protec-
tion. Application-level software is responsible for many resources
with complex semantics (e.g., network connections). By isolating
the need to understand these semantics to bind time, the kernel can
efficiently implement access checks at access time without under-
standing them. Simply put, a secure binding allows the kernel to
protect resources without understanding them.

Operationally, the one requirement needed to support secure
bindings is a set of primitives that application-level software can
use to express protection checks. The primitives can be imple-
mented either in hardware or software. A simple hardware secure
binding is a TLB entry: when a TLB fault occurs the complex map-
ping of virtual to physical addresses in a library operating system’s
page table is performed and then loaded into the kernel (bind time)
and then used multiple times (access time). Another example is the
packet filter [37], which allows predicates to be downloaded into
the kernel (bind time) and then run on every incoming packet to de-
termine which application the packet is for (access time). Without a
packet filter, the kernel would need to query every application or net-
work server on every packet reception to determine who the packet
was for. By separating protection (determining who the packet is
for) from authorization and management (setting up connections,
sessions, managing retransmissions, etc.) very fast network multi-
plexing is possible while still supporting complete application-level
flexibility.

We use three basic techniques to implement secure bindings:
hardware mechanisms, software caching, and downloading appli-
cation code.

Appropriate hardware support allows secure bindings to be
couched as low-level protection operations such that later oper-
ations can be efficiently checked without recourse to high-level
authorization information. For example, a file server can buffer
data in memory pages and grant access to authorized applications
by providing them with capabilities for the physical pages. An
exokernel would enforce capability checking without needing any
information about the file system’s authorization mechanisms. As
another example, some Silicon Graphics frame buffer hardware as-
sociates an ownership tag with each pixel. This mechanism can be
used by the window manager to set up a binding between a library
operating system and a portion of the frame buffer. The application
can access the frame buffer hardware directly, because the hardware
checks the ownership tag when I/O takes place.

Secure bindings can be cached in an exokernel. For instance,
an exokernel can use a large software TLB [7, 28] to cache address

4



translations that do not fit in the hardware TLB. The software TLB
can be viewed as a cache of frequently-used secure bindings.

Secure bindings can be implemented by downloading code into
the kernel. This code is invoked on every resource accessor event to
determine ownership and the actions that the kernel should perform.
Downloading code into the kernel allows an application thread of
control to be immediately executed on kernel events. The advan-
tages of downloading code are that potentially expensive crossings
can be avoided and that this code can run without requiring the
application itself to be scheduled. Type-safe languages [9, 42], in-
terpretation, and sandboxing [52] can be used to execute untrusted
application code safely [21].

We provide examples of each of these three techniques below
and discuss how secure bindings apply to the secure multiplexing
of physical memory and network devices.Multiplexing Physical Memory
Secure bindings to physical memory are implemented in our pro-
totype exokernel using self-authenticating capabilities [12] and ad-
dress translation hardware. When a library operating system al-
locates a physical memory page, the exokernel creates a secure
binding for that page by recording the owner and the read and write
capabilities specified by the library operating system. The owner
of a page has the power to change the capabilities associated with
it and to deallocate it.

To ensure protection, the exokernel guards every access to a
physical memory page by requiring that the capability be presented
by the library operating system requesting access. If the capability is
insufficient, the request is denied. Typically, the processor contains
a TLB, and the exokernel must check memory capabilities when a
library operating system attempts to enter a new virtual-to-physical
mapping. To improve library operating system performance by
reducing the number times secure bindings must be established,
an exokernel may cache virtual-to-physical mappings in a large
software TLB.

If the underlying hardware defines a page-table interface, then
an exokernel must guard the page table instead of the TLB. Although
the details of how to implement secure memory bindings will vary
depending on the details of the address translation hardware, the
basic principle is straightforward: privileged machine operations
such as TLB loads and DMA must be guarded by an exokernel. As
dictated by the exokernelprinciple of exposing kernelbook-keeping
structures, the page table should be visible (read only) at application
level.

Using capabilities to protect resources enables applications to
grant access rights to other applications without kernel interven-
tion. Applications can also use “well-known” capabilities to share
resources easily.

To break a secure binding, an exokernel must change the as-
sociated capabilities and mark the resource as free. In the case of
physical memory, an exokernel would flush all TLB mappings and
any queued DMA requests.Multiplexing the Network
Multiplexing the network efficiently is challenging, since protocol-
specific knowledge is required to interpret the contents of incoming
messages and identify the intended recipient.

Support for network demultiplexing can be provided either in
software or hardware. An example of a hardware-basedmechanism
is the use of the virtual circuit in ATM cells to securely bind streams
to applications [19].

Software support for message demultiplexing can be provided
by packet filters [37]. Packet filters can be viewed as an implemen-
tation of secure bindings in which application code—the filters—
are downloaded into the kernel. Protocol knowledge is limited to
the application, while the protection checks required to determine
packet ownership are couched in a language understood by the ker-
nel. Fault isolation is ensured by careful language design (to bound
runtime) and runtime checks (to protect against wild memory ref-
erences and unsafe operations).

Our prototype exokernel uses packet filters, because our cur-
rent network does not provide hardware mechanisms for message
demultiplexing. One challenge with a language-based approach is
to make running filters fast. Traditionally, packet filters have been
interpreted, making them less efficient than in-kernel demultiplex-
ing routines. One of the distinguishing features of the packet filter
engine used by our prototype exokernel is that it compiles packet
filters to machine code at runtime, increasing demultiplexing per-
formance by more than an order of magnitude [22].

The one problem with the use of a packet filter is ensuring that
that a filter does not “lie” and accept packets destined to another
process. Simple security precautions such as only allowing a trusted
server to install filters can be used to address this problem. On a
system that assumes no malicious processes, our language is simple
enough that in many cases even the use of a trusted server can be
avoided by statically checking a new filter to ensure that it cannot
accept packets belonging to another; by avoiding the use of any
central authority, extensibility is increased.

Sharing the network interface for outgoing messages is easy.
Messages are simply copied from application space into a transmit
buffer. In fact, with appropriate hardware support, transmission
buffers can be mapped into application space just as easily as phys-
ical memory pages [19].3.2.1 Downloading Code
In addition to implementing secure bindings, downloading code can
be used to improve performance. Downloading code into the kernel
has two main performance advantages. The first is obvious: elimi-
nation of kernel crossings. The secondis more subtle: the execution
time of downloaded code can be readily bounded [18]. The crucial
importance of “tamed” code is that it can be executed when the
application is not scheduled. This decoupling allows downloaded
code to be executed in situations where context switching to the
application itself is infeasible (e.g., when only a few microseconds
of free processing time is available). Packet filters are an example
of this feature: since the packet-filter runtime is bounded, the kernel
can use it to demultiplex messages irrespective of what application
is scheduled; without a packet filter the operating system would
have to schedule each potential consumer of the packet [37].

Application-specific Safe Handlers (ASHs) are a more inter-
esting example of downloading code into our prototype exokernel.
These application handlers can be downloaded into the kernel to
participate in message processing. An ASH is associated with a
packet filter and runs on packet reception. One of the key features
of an ASH is that it can initiate a message. Using this feature,
roundtrip latency can be greatly reduced, since replies can be trans-
mitted on the spot instead of being deferred until the application
is scheduled. ASHs have a number of other useful features (see
Section 6).

A salient issue in downloading code is the level at which the
code is specified. High-level languages have more semantic infor-
mation, which provides more information for optimizations. For
example, our packet-filter language is a high-level declarative lan-
guage. As a result packet filters can be merged [56] in situations

5



where merging a lower-level, imperative language would be infea-
sible. However, in cases where such optimizations are not done,
(e.g., in an exception handler) a low-level language is more in keep-
ing with the exokernel philosophy: it allows the broadest range
of application-level languages to be targeted to it and the simplest
implementation. ASHs are another example of this tradeoff: most
ASHs are imported into the kernel in the form of the object code
of the underlying machine; however, in the few key places where
higher level semantics are useful we have extended the instruction
set of the machine.3.3 Visible Resource Revocation
Once resources have been bound to applications, there must be a way
to reclaim them and break their secure bindings. Revocation can
either be visible or invisible to applications. Traditionally, operating
systems have performed revocation invisibly,deallocating resources
without application involvement. For example, with the exception
of some external pagers [2, 43], most operating systems deallocate
(and allocate) physical memory without informing applications.
This form of revocation has lower latency than visible revocation
since it requires no application involvement. Its disadvantages are
that library operating systems cannot guide deallocation and have
no knowledge that resources are scarce.

An exokernel uses visible revocation for most resources. Even
the processoris explicitly revoked at the end of a time slice; a library
operating system can react by saving only the required processor
state. For example, a library operating system could avoid saving
the floating point state or other registers that are not live. However,
since visible revocation requires interaction with a library operating
system, invisible revocation can perform better when revocations
occur very frequently. Processor addressing-context identifiers are
a stateless resource that may be revoked very frequently and are
best handled by invisible revocation.Revocation and Physical Naming
The use of physical resource names requires that an exokernel re-
veal each revocation to the relevant library operating system so that
it can relocate its physical names. For instance, a library operating
system that relinquishes physical page “5” should update any of its
page-table entries that refer to this page. This is easy for a library
operating system to do when it deallocates a resource in reaction to
an exokernel revocation request. An abort protocol (discussed be-
low) allows relocation to be performed when an exokernel forcibly
reclaims a resource.

We view the revocation process as a dialogue between an ex-
okernel and a library operating system. Library operating systems
should organize resource lists so that resources can be deallocated
quickly. For example, a library operating system could have a sim-
ple vector of physical pages that it owns: when the kernel indicates
that some page should be deallocated, the library operating system
selects one of its pages, writes it to disk, and frees it.3.4 The Abort Protocol
An exokernel must also be able to take resources from library operat-
ing systems that fail to respond satisfactorily to revocation requests.
An exokernel can define a second stage of the revocation protocol
in which the revocation request (“please return a memory page”)
becomes an imperative (“return a page within 50 microseconds”).
However, if a library operating system fails to respond quickly, the
secure bindings need to be broken “by force.” The actions taken
when a library operating system is recalcitrant are defined by the
abort protocol.

One possible abort protocol is to simply kill any library op-
erating system and its associated application that fails to respond
quickly to revocation requests. We rejected this method because
we believe that most programmers have great difficulty reasoning
about hard real-time bounds. Instead, if a library operating system
fails to comply with the revocation protocol, an exokernel simply
breaks all existing secure bindings to the resource and informs the
library operating system.

To record the forced loss of a resource, we use a repossession
vector. When an exokernel takes a resource from a library oper-
ating system, this fact is registered in the vector and the library
operating system receives a “repossession” exception so that it can
update any mappings that use the resource. For resources with
state, an exokernel can write the state into another memory or disk
resource. In preparation, the library operating system can pre-load
the repossession vector with a list of resources that can be used for
this purpose. For example, it could provide names and capabilities
for disk blocks that should be used as backing store for physical
memory pages.

Another complication is that an exokernel should not arbitrarily
choose the resource to repossess. A library operating system may
use some physicalmemory to store vital bootstrap information such
as exception handlers and page tables. The simplest way to deal with
this is to guarantee each library operating system a small number
of resources that will not be repossessed (e.g., five to ten physical
memory pages). If even those resources must be repossessed, some
emergency exception that tells a library operating system to submit
itself to a “swap server” is required.4 Status and Experimental Methodology
We have implemented two software systems that follow the exoker-
nel architecture: Aegis, an exokernel, and ExOS, a library operating
system. Another prototype exokernel, Glaze, is being built for an
experimental SPARC-based shared-memory multiprocessor [35],
along with PhOS, a parallel operating system library.

Aegis and ExOS are implemented on MIPS-based DECstations.
Aegis exports the processor, physical memory, TLB, exceptions,
and interrupts. In addition, it securely exports the network inter-
face using a packet filter system that employs dynamic code gen-
eration. ExOS implements processes, virtual memory, user-level
exceptions, various interprocess abstractions, and several network
protocols (ARP/RARP, IP, UDP, and NFS). A native extensible file
system that implements global buffer management is under devel-
opment. Currently, our prototype system has no real users, but is
used extensively for development and experimentation.

The next three sections describe the implementation of Aegis,
ExOS, and extensions to ExOS. Included in the discussion are ex-
periments that test the efficacy of the exokernel approach. These
experiments test four hypotheses:� Exokernels can be very efficient.� Low-level, secure multiplexing of hardware resources can be

implemented efficiently.� Traditional operating system abstractions can be implemented
efficiently at application level.� Applications can create special-purpose implementations of
these abstractions.

On identical hardware we compare the performance of Aegis
and ExOS with the performance of Ultrix4.2, a mature monolithic
UNIX operating system. It is important to note that Aegis and

6



Machine Processor SPEC rating MIPS
DEC2100 (12.5 MHz) R2000 8.7 SPECint89 � 11
DEC3100 (16.67 MHz) R3000 11.8 SPECint89 � 15
DEC5000/125 (25 MHz) R3000 16.1 SPECint92 � 25

Table 1: Experimental platforms.

ExOS do not offer the same level of functionality as Ultrix. We
do not expect these additions to cause large increases in our timing
measurements.

The comparisons with Ultrix serve two purposes. First, they
show that there is much overhead in today’s systems, which can
be easily removed by specialized implementations. Second, they
provide a well-known, easily-accessible point of reference for un-
derstanding Aegis’s and ExOS’s performance. Ultrix, despite its
poor performance relative to Aegis, is not a poorly tuned system; it
is a mature monolithic system that performs quite well in compari-
son to other operating systems [39]. For example, it performs two
to three times better than Mach 3.0 in a set of I/O benchmarks [38].
Also, its virtual memory performance is approximately twice that
of Mach 2.5 and three times that of Mach 3.0 [5].

In addition, we attempt to assess Aegis’s and ExOS’s perfor-
mance in the light of recent advances in operating systems research.
These advanceshave typically been evaluated on different hardware
and frequently use experimental software, making head-to-head
comparisons impossible. In these cases we base our comparisons
on relative SPECint ratings and instruction counts.

Table 1 shows the specific machine configurations used in the ex-
periments. For brevity, we refer to the DEC5000/125 as DEC5000.
The three machine configurations are used to get a tentative mea-
sure of the scalability of Aegis. All times are measured using the
“wall-clock.” We used clock on the Unix implementations and
a microsecond counter on Aegis. Aegis’s time quantum was set
at 15.625 milliseconds. All benchmarks were compiled using an
identical compiler and flags: gcc version 2.6.0 with optimization
flags “-O2.” None of the benchmarks use floating-point instruc-
tions; therefore, we do not save floating-point state. Both systems
were run in “single-user” mode and were isolated from the network.

The per-operation cost was obtained by repeating the operation a
large number of times and averaging. As a result, the measurements
do not consider cold start misses in the cache or TLB, and therefore
represent a “best case.” Because, Ultrix has a much larger cache
and virtual memory footprint than Aegis, this form of measurement
is more favorable to Ultrix. Because Ultrix was sensitive to the
instance of the type of machine it was run on, we took the best time
measured. The exokernel numbers are the median of three trials.

A few of our benchmarks are extremely sensitive to instruction
cache conflicts. In some cases the effects amounted to a factor of
three performance penalty. Changing the order in which ExOS’s
object files are linked was sufficient to remove most conflicts. A
happy side-effect of using application-level libraries is that object
code rearrangement is extremely straightforward (i.e., a “make-
file” edit). Furthermore, with instruction cache tools, conflicts
between application and library operating system code can be re-
moved automatically—an option not available to applications using
traditional operating systems. We believe that the large impact of
instruction cache conflicts is due to the fact that most Aegis opera-
tions are performed at near hardware speed; as a result, even minor
conflicts are noticeable.

System call Description
Yield Yield processor to named process
Scall Synchronous protected control transfer
Acall Asynchronous protected control transfer
Alloc Allocation of resources (e.g., physical page)
Dealloc Deallocation of resources

Table 2: A subset of the Aegis system call interface.

Primitive operations Description
TLBwr Insert mapping into TLB
FPUmod Enable/disable FPU
CIDswitch Install context identifier
TLBvadelete Delete virtual address from TLB

Table 3: A sample of Aegis’s primitive operations.5 Aegis: an Exokernel
This section describes the implementation and performance of
Aegis. The performance numbers demonstrate that Aegis and low-
level multiplexing can be implemented efficiently. We describe in
detail how Aegis multiplexes the processor, dispatches exceptions,
translates addresses, transfers control between address spaces, and
multiplexes the network.5.1 Aegis Overview

Table 2 lists a subset of the Aegis interface. We discuss the
implementation of most of the system calls in this section. Aegis
also supports a set of primitive operations that encapsulate privi-
leged instructions and are guaranteed not to alter application-visible
registers (see Table 3 for some typical examples). These primitive
operations can be viewed as pseudo-instructions (similar to the Al-
pha’s use of PALcode [45]). In this subsection we examine how
Aegis protects time slices and processor environments; other re-
sources are protected as described in Section 3.5.1.1 Processor Time Slices
Aegis represents the CPU as a linear vector, where each element
corresponds to a time slice. Time slices are partitioned at the clock
granularity and can be allocated in a manner similar to physical
memory. Scheduling is done “round robin” by cycling through
the vector of time slices. A crucial property of this representation
is position, which encodes an ordering and an approximate upper
bound on when the time slice will be run. Position can be used to
meet deadlines and to trade off latency for throughput. For example,
a long-running scientific application could allocate contiguous time
slices in order to minimize the overhead of context switching, while
an interactive application could allocate several equidistant time
slices to maximize responsiveness.

Timer interrupts denote the beginning and end of time slices,and
are delivered in a manner similar to exceptions (discussed below): a
register is saved in the “interrupt save area,” the exception program
counter is loaded, and Aegis jumps to user-specified interrupt han-
dling code with interrupts re-enabled. The application’s handlers
are responsible for general-purpose context switching: saving and
restoring live registers, releasing locks, etc. This framework gives
applications a large degree of control over context switching. For
example, it can be used to implement scheduler activations [4].

Fairness is achievedby bounding the time an application takes to
save its context: each subsequent timer interrupt (which demarcates
a time slice) is recorded in an excess time counter. Applications pay

7



for each excess time slice consumed by forfeiting a subsequent time
slice. If the excess time counter exceeds a predetermined threshold,
the environment is destroyed. In a more friendly implementation,
Aegis could perform a complete context switch for the application.

This simple scheduler can support a wide range of higher-level
scheduling policies. As we demonstrate in Section 7, an application
can enforce proportional sharing on a collection of sub-processes.5.1.2 Processor Environments
An Aegis processor environment is a structure that stores the in-
formation needed to deliver events to applications. All resource
consumption is associatedwith an environmentbecause Aegis must
deliver events associated with a resource (such as revocation excep-
tions) to its designated owner.

Four kinds of events are delivered by Aegis: exceptions, inter-
rupts, protected control transfers, and address translations. Proces-
sor environments contain the four contexts required to support these
events:

Exception context: for each exception an exception context
contains a program counter for where to jump to and a pointer to
physical memory for saving registers.

Interrupt context: for each interrupt an interrupt context in-
cludes a program counters and register-save region. In the case
of timer interrupts, the interrupt context specifies separate program
counters for start-time-slice and end-time-slice cases, as well as
status register values that control co-processor and interrupt-enable
flags.

Protected Entry context: a protected entry context specifies
program counters for synchronousand asynchronousprotected con-
trol transfers from other applications. Aegis allows any processor
environment to transfer control into any other; access control is
managed by the application itself.

Addressing context: an addressing context consists of a set
of guaranteed mappings. A TLB miss on a virtual address that is
mapped by a guaranteed mapping is handled by Aegis. Library
operating systems rely on guaranteed mappings for bootstrapping
page-tables, exception handling code, and exception stacks. The
addressing context also includes an address space identifier, a status
register, and a tag used to hash into the Aegis software TLB (see
Section 5.4). To switch from one environment to another, Aegis
must install these three values.

These are the event-handling contexts required to define a pro-
cess. Each context depends on the others for validity: for example,
an addressing context does not make sense without an exception
context, since it does not define any action to take when an excep-
tion or interrupt occurs.5.2 Base Costs
The base cost for null procedure and system calls are shown in
Table 4. The null procedure call shows that Aegis’s scheduling
flexibility does not add overhead to base operations. Aegis has two
system call paths: the first for system calls that do not require a
stack, the second for those that do. With the exception of protected
control transfers, which are treated as a special case for efficiency,
all Aegis system calls are vectored along one of these two paths.
Ultrix’s getpid is approximately an order of magnitude slower
than Aegis’s slowest system call path—this suggests that the base
cost of demultiplexing system calls is significantly higher in Ultrix.
Part of the reason Ultrix is so much less efficient on this basic oper-
ation is that it performs a more expensive demultiplexing operation.
For example, on a MIPS processor, kernel TLB faults are vectored

Machine OS Procedure call Syscall (getpid)
DEC2100 Ultrix 0.57 32.2
DEC2100 Aegis 0.56 3.2 / 4.7
DEC3100 Ultrix 0.42 33.7
DEC3100 Aegis 0.42 2.9 / 3.5
DEC5000 Ultrix 0.28 21.3
DEC5000 Aegis 0.28 1.6 / 2.3

Table 4: Time to perform null procedure and system calls. Two
numbers are listed for Aegis’s system calls: the first for system calls
that do not use a stack, the second for those that do. Times are in
microseconds.

Machine OS unalign overflow coproc prot
DEC2100 Ultrix n/a 208.0 n/a 238.0
DEC2100 Aegis 2.8 2.8 2.8 3.0
DEC3100 Ultrix n/a 151.0 n/a 177.0
DEC3100 Aegis 2.1 2.1 2.1 2.3
DEC5000 Ultrix n/a 130.0 n/a 154.0
DEC5000 Aegis 1.5 1.5 1.5 1.5

Table 5: Time to dispatch an exception in Aegis and Ultrix; times
are in microseconds.

through the same fault handler as system calls. Therefore, Ultrix
must take great care not to disturb any registers that will be required
to “patch up” an interrupted TLB miss. Because Aegis does not
map its data structures (and has no page tables) it can avoid such
intricacies. We expect this to be the common case with exokernels.5.3 Exceptions
Aegis dispatches all hardware exceptions to applications (save for
system calls) using techniques similar to those described in Thekkath
and Levy [50]. To dispatch an exception, Aegis performs the fol-
lowing actions:

1. It saves three scratch registers into an agreed-upon “save
area.” (To avoid TLB exceptions, Aegis does this operation
using physical addresses.)

2. It loads the exception program counter, the last virtual address
that failed to have a valid translation, and the cause of the
exception.

3. It uses the cause of the exception to perform an indirect jump
to an application-specified program counter value, where ex-
ecution resumes with the appropriate permissions set (i.e., in
user-mode with interrupts re-enabled).

After processing an exception,applications can immediately resume
execution without entering the kernel. Ensuring that applications
can return from their own exceptions (without kernel intervention)
requires that all exception state be available for user reconstruction.
This means that all registers that are saved must be in user-accessible
memory locations.

Currently, Aegis dispatches exceptions in 18 instructions. The
low-level nature of Aegis allows an extremely efficient implementa-
tion: the time for exception dispatching on a DECstation5000/125
is 1.5 microseconds. This time is over five times faster than the
most highly-tuned implementation in the literature (8 microsec-
onds on DECstation5000/200 [50], a machine that is 1.2 faster on
SPECint92 than our DECstation5000/125). Part of the reason for
this improvement is that Aegis does not use mapped data structures,
and so does not have to separate kernel TLB misses from the more

8



general class of exceptions in its exception demultiplexing rou-
tine. Fast exceptions enable a number of intriguing applications:
efficient page-protection traps can be used by applications such as
distributed shared memory systems, persistent object stores, and
garbage collectors [5, 50].

Table 5 shows exception dispatch times for unaligned pointer
accesses (unalign), arithmetic overflow (overflow), attempted use
of the floating point co-processor when it is disabled (coproc) and
access to protected pages (prot). The times for unalign are not
available under Ultrix since the kernel attempts to “fix up” an un-
aligned access and writes an error message to standard error. Addi-
tionally, Ultrix does not allow applications to disable co-processors,
and hence cannot utilize the coproc exception. Times are given in
Table 5. In each case, Aegis’s exception dispatch times are approx-
imately two orders of magnitude faster than Ultrix.5.4 Address Translations
This section looks at two problems in supporting application-level
virtual memory: bootstrapping and efficiency. An exokernel must
provide support for bootstrapping the virtual naming system (i.e., it
must support translation exceptions on both application page-tables
and exception code). Aegis provides a simple bootstrapping mech-
anism through the use of a small number of guaranteed mappings.
A miss on a guaranteed mapping will be handled automatically by
Aegis. This organization frees the application from dealing with
the intricacies of boot-strapping TLB miss and exception handlers,
which can take TLB misses. To implement guaranteed mappings
efficiently, an application’s virtual address space is partitioned into
two segments. The first segment holds normal application data and
code. Virtual addresses in the segment can be “pinned” using guar-
anteed mappings and typically holds exception handling code and
page-tables.

On a TLB miss, the following actions occur:

1. Aegis checks which segment the virtual address resides in. If
it is in the standard user segment, the exception is dispatched
directly to the application. If it is in the second region,
Aegis first checks to see if it is a guaranteed mapping. If so,
Aegis installs the TLB entry and continues; otherwise, Aegis
forwards it to the application.

2. The application looks up the virtual address in its page-table
structure and, if the access is not allowed raises the appro-
priate exception (e.g., “segmentation fault”). If the mapping
is valid, the application constructs the appropriate TLB en-
try and its associated capability and invokes the appropriate
Aegis system routine.

3. Aegis checks that the given capability corresponds to the
access rights requested by the application. If it does, the
mapping is installed in the TLB and control is returned to the
application. Otherwise an error is returned.

4. The application performs cleanup and resumes execution.

In order to support application-level virtual memory efficiently,
TLB refills must be fast. To this end, Aegis caches TLB entries
(a form of secure bindings) in the kernel by overlaying the hard-
ware TLB with a large software TLB (STLB) to absorb capacity
misses [7, 28]. On a TLB miss, Aegis first checks to see whether the
required mapping is in the STLB. If so, Aegis installs it and resumes
execution; otherwise, the miss is forwarded to the application.

The STLB contains 4096 entries of 8 bytes each. It is direct-
mapped and resides in unmapped physicalmemory. An STLB “hit”
takes 18 instructions (approximately one to two microseconds). In

OS Machine MHz Transfer cost
Aegis DEC2100 12.5MHz 2.9
Aegis DEC3100 16.67MHz 2.2
Aegis DEC5000 25MHz 1.4

L3 486 50MHz 9.3 (normalized)

Table 6: Time to perform a (unidirectional) protected control trans-
fer; times are in microseconds.

contrast, performing an upcall to application level on a TLB miss,
followed by a system call to install a new mapping is at least three
to six microseconds more expensive.

As dictated by the exokernel principle of exposing kernel book-
keeping structures, the STLB can be mapped using a well-known
capability, which allows applications to efficiently probe for entries.5.5 Protected Control Transfers
Aegis provides a protected control transfer mechanism as a substrate
for efficient implementations of IPC abstractions. Operationally, a
protected control transfer changesthe program counter to an agreed-
upon value in the callee, donates the current time slice to the callee’s
processor environment, and installs the required elements of the
callee’s processor context (addressing-context identifier, address-
space tag, and processor status word).

Aegis provides two forms of protected control transfers: syn-
chronous and asynchronous. The difference between the two is
what happens to the processor time slice. Asynchronous calls do-
nate only the remainder of the current time slice to the callee. Syn-
chronous calls donate the current time and all future instantiations
of it; the callee can return the time slice via a synchronous con-
trol transfer call back to the original caller. Both forms of control
transfer guarantee two important properties. First, to applications,
a protected control transfer is atomic: once initiated it will reach
the callee. Second, Aegis will not overwrite any application-visible
register. These two properties allow the large register sets of modern
processors to be used as a temporary message buffer [14].

Currently, our synchronous protected control transfer operation
takes 30 instructions. Roughly ten of these instructions are used to
distinguish the system call “exception” from other hardware excep-
tions on the MIPS architecture. Setting the status, co-processor, and
address-tag registers consumes the remaining 20 instructions, and
could benefit from additional optimizations. Because Aegis imple-
ments the minimum functionality required for any control transfer
mechanism, applications can efficiently construct their own IPC
abstractions. Sections 6 and 7 provide examples.

Table 6 shows the performance in microseconds of a “bare-
bone” protected control transfer. This time is derived by dividing
the time to perform a call and reply in half (i.e., we measure the time
to perform a unidirectional control transfer). Since the experiment
is intended to measure the cost of protected control transfer only, no
registers are saved and restored. However, due to our measurement
code, the time includes the overhead of incrementing a counter and
performing a branch.

We attempt a crude comparison of our protected control transfer
operation to the equivalent operation on L3 [33]. The L3 imple-
mentation is the fastest published result, but it runs on an Intel 486
DX-50 (50 MHz). For Table 6, we scaled the published L3 results
(5 microseconds) by the SPECint92 rating of Aegis’s DEC5000
and L3’s 486 (16.1 vs. 30.1). Aegis’s trusted control transfer
mechanism is 6.6 times faster than the scaled time for L3’s RPC
mechanism.

9



Filter Cold Cache Warm Cache
MPF 71.0 35.0
PATHFINDER 39.0 19.0
DPF 7.5 1.5

Table 7: Time on a DEC5000/200 to classify TCP/IP headers des-
tined for one of ten TCP/IP filters; times are in microseconds.

Architectural characteristics of the Intel 486 partially account
for Aegis’s better performance. L3 pays a heavy penalty to enter
and leave the kernel (71 and 36 cycles, respectively) and must flush
the TLB on a context switch.5.6 Dynamic Packet Filter (DPF)
Aegis’s network subsystem uses aggressive dynamic code gener-
ation techniques to provide efficient message demultiplexing and
handling. We briefly discuss some key features of this system. A
complete discussion can be found in [22].

Message demultiplexing is the process of determining which
application an incoming message should be delivered to. Packet
filters are a well-known technique used to implement extensible
kernel demultiplexing [6, 56]. Traditionally, packet filters are in-
terpreted, which entails a high computational cost. Aegis uses
Dynamic Packet Filter (DPF), a new packet filter system that is
over an order of magnitude more efficient than previous systems.

The key in our approach to making filters run fast is dynamic
code generation. Dynamic code generation is the creation of exe-
cutable code at runtime. DPF exploits dynamic code generation in
two ways: (1) by using it to eliminate interpretation overhead by
compiling packet filters to executable code when they are installed
into the kernel and (2) by using filter constants to aggressively
optimize this executable code. To gain portability, DPF compiles
filters using VCODE, a portable, very fast, dynamic code genera-
tion system [20]. VCODEgenerates machine code in approximately
10 instructions per generated instruction and runs on a number of
machines (e.g., MIPS, Alpha and SPARC).

We measured DPF’s time to classify packets destined for one
of ten TCP/IP filters, and compare its times to times for MPF [56]
(a widely used packet filter engine) and PATHFINDER [6] (the
fastest packet filter engine in the literature). Table 7 presents both
the “cold-cache” and “warm-cache” times to perform this message
classification. Warm cache refers to two properties. First, the
packet filter is in the processor cache. Second, both MPF and
PATHFINDER (but not DPF) maintain a cache of filters that recently
accepted messages. This experiment and the numbers for both MPF
and PATHFINDER are taken from [6].

To ensure meaningful comparisons between the systems, we
ran our DPF experiments on the same hardware (a DECstation
5000/200) in user space. For cold cache performance we ensure
that the filter code does not reside in the instruction cache by allo-
cating 64 contigous pages, placing the filter code at the beginning
of each page, and cycling through these pages in “round-robin”
order. Because the DECStation5000 has a physically-addressed,
direct-mapped cache and because Ultrix guarentees that contigous
virtual pages within a page-aligned 64K-region will not conflict,
this methodology is sufficient to ensure that the filter is not in the
instruction cache. It is unclear why the performance difference be-
tween warm and cold caches for MPF and PATHFINDER is only
a factor of two. Due to its use of dynamic code generation, DPF
is 10 to 20 times faster than MPF and five to 10 times faster than
PATHFINDER.

Machine OS pipe pipe’ shm lrpc
DEC2100 Ultrix 326.0 n/a 187.0 n/a
DEC2100 ExOS 30.9 24.8 12.4 13.9
DEC3100 Ultrix 243.0 n/a 139.0 n/a
DEC3100 ExOS 22.6 18.6 9.3 10.4
DEC5000 Ultrix 199.0 n/a 118.0 n/a
DEC5000 ExOS 14.2 10.7 5.7 6.3

Table 8: Time for IPC using pipes, shared memory, and LRPC
on ExOS and Ultrix; times are in microseconds. Pipe and shared
memory are unidirectional, while LRPC is bidirectional.5.7 Summary
The main conclusion we draw from these experiments is that an
exokernel can be implemented efficiently. The reasons for Aegis’s
good performance are the following. One, keeping track of owner-
ship is a simple task and can therefore be implemented efficiently.
Two, since the kernel provides very little functionality beyond low-
level multiplexing, it is small and lean: for instance, it keeps its
data structures in physical memory. Three, by caching secure bind-
ings in a software TLB, most hardware TLB misses can be handled
efficiently. Four, by downloading packets filters and by employing
dynamic code generation, secure binding to the network can be
implemented efficiently.6 ExOS: a Library Operating System
The most unusual aspect of ExOS is that it manages fundamental
operating system abstractions (e.g., virtual memory and process)
at application level, completely within the address space of the
application that is using it. This section demonstrates that basic
system abstractions can be implemented at application level in a
direct and efficient manner. Due to space constraints we focus on
IPC, virtual memory, and remote communication.6.1 IPC Abstractions
Fast interprocess communication is crucial for building efficient and
decoupled systems [8, 27, 33]. As described in Section 5, the Aegis
protected control transfer mechanism is an efficient substrate for
implementing IPC abstractions. This section describes experiments
used to measure the performance of ExOS’s IPC abstractions on
top of the Aegis primitives. The results of these experiments are
summarized in Table 8. The experiments are:

pipe: measures the latency of sending a word-sized message
from one process to another using pipes by “ping-ponging” a counter
between two processes. The Ultrix pipe implementation uses stan-
dard UNIX pipes. The ExOS pipe implementation uses a shared-
memory circular buffer. Writes to full buffers and reads from empty
ones cause the current time slice to be yielded by the current process
to the reader or writer of the buffer, respectively. We use two pipe
implementations: the first is a naive implementation (pipe), while
the second (pipe’) exploits the fact that this library exists in appli-
cation space by simply inlining the read and write calls. ExOS’s
unoptimized pipe implementation is an order of magnitude more
efficient than the equivalent operation under Ultrix.

shm: measures the time for two processes to “ping-pong” using
a shared counter. ExOS uses Aegis’s yield system call to switch
between partners. Ultrix does not provide a yield primitive, so
we synthesized it using signals. ExOS’s shm is 15 to 20 times faster
than Ultrix’s shm. ExOS’s shm is about twice as fast as its pipe
implementation, which must manipulate circular buffers.

10



Machine OS matrix
DEC2100 Ultrix 7.1
DEC2100 ExOS 7.0
DEC3100 Ultrix 5.2
DEC3100 ExOS 5.2
DEC5000 Ultrix 3.8
DEC5000 ExOS 3.7

Table 9: Time to perform a 150x150 matrix multiplication; time in
seconds.

lrpc: this experiment measures the time to perform an LRPC
into another address space, increment a counter and return its value.
ExOS’s LRPC is built on top of Aegis’s protected control transfer
mechanism. lrpc saves all general-purpose callee-saved registers.
The lrpc implementation assumes that only a single function is of
interest (e.g., it does not use the RPC number to index into a table)
and it does not check permissions. The implementation is also
single-threaded.

Because Ultrix is built around a set of fixed high-level abstrac-
tions, new primitives can be added only by emulating them on top of
existing ones. Specifically, implementations of lrpc must use pipes
or signals to transfer control. The cost of such emulation is high:
on Ultrix, lrpc using pipes costs 46 to 60 more than on ExOS and
using signals costs 26 to 37 more than on ExOS. These experiments
indicate that an Ultrix user either pays substantially in performance
for new functionality, or is forced to modify the kernel.6.2 Application-level Virtual Memory
ExOS provides a rudimentary virtual memory system (approxi-
mately 1000 lines of heavily commented code). Its two main limi-
tations are that it does not handle swapping and that page-tables are
implemented as a linear vector (address translations are looked up
in this structure using binary search). Barring these two limitations,
its interface is richer than other virtual memory systems we know
of. It provides flexible support for aliasing, sharing, disabling and
enabling of caching on a per-page basis, specific page-allocation,
and DMA.

The overhead of application-level memory is measured by per-
forming a 150 by 150 integer matrix multiplication. Because this
naive version of matrix multiply does not use any of the special
abilities of ExOS or Aegis (e.g., page-coloring to reduce cache
conflicts), we expect it to perform equivalently on both operating
systems. The times in Table 9 indicate that application-level virtual
memory does not add noticeable overhead to operations that have
reasonable virtual memory footprints. Of course, this is hardly a
conclusive proof.

Table 10 compares Aegis and ExOS to Ultrix on seven virtual
memory experiments based on those used by Appel and Li [5].
These experiments are of particular interest, since they measure
the cost of VM operations that are crucial for the construction of
ambitious systems, such as page-based distributed shared memory
systems and garbage collectors. Note that Ultrix’s VM perfor-
mance is quite good compared to other systems [5]. The operations
measured are the following:

dirty: time to query whether a page is “dirty.” Since it does not
require examination of the TLB, this experiment measures the base
cost of looking up a virtual address in ExOS’s page-table structure.
This operation is not provided by Ultrix.

prot1: time to change the protection of a single page.

prot100: time to “read-protect” 100 pages.

unprot100: time to remove read-protections on 100 pages.

trap: time to handle a page-protection trap.

appel1: time to access a random protected page and, in the
fault handler, protect some other page and unprotect the faulting
page (this benchmark is “prot1+trap+unprot” in Appel and Li [5]).

appel2: time to protect 100 pages, then access each page in a
random sequence and, in the fault-handler, unprotect the faulting
page (this benchmark is “protN+trap+unprot” in Appel and Li [5]).
Note that appel2 requires less time than appel1 since appel1 must
both unprotect and protect different pages in the fault handler.

The dirty benchmark measures the average time to parse the
page-table for a random entry. This operation illustrates two con-
sequences of the exokernel architecture. First, kernel transitions
can be eliminated by implementing abstractions at application level.
Second, application-level software can implement functionality that
is frequently not provided by traditional operating systems.

If we compare the time for dirty to the time for prot1, we see
that over half the time spent in prot1 is due to the overhead of
parsing the page table. As we show in Section 7.2, this overhead
can be reduced through the use of a data structure more tuned to
efficient lookup (e.g., a hash table). Even with this penalty, ExOS
performs prot1 almost twice as fast as Ultrix. The likely reason for
this difference is that, as shown in Table 4, Aegis dispatches system
calls an order of magnitude more efficiently than Ultrix.

In general, our exokernel-based system performs well on this
set of benchmarks. The exceptions are prot100 and unprot100.
Ultrix is extremely efficient in protecting and unprotecting contigu-
ous ranges of virtual addresses: it performs these operations 1.1
to 1.6 times faster than Aegis. One reason for this difference is
the immaturity of our implementation. Another is that changing
page protections in ExOS requires access to two data structures
(Aegis’s STLB and ExOS’s page-table). However, even with poor
performance on these two operations, the benchmark that uses this
operation (appel2) is close to an order of magnitude more efficient
on ExOS than on Ultrix. In fact, we can expect further improve-
ments in performance from more sophisticatedpage-table structures
and hand-coded assembly language for some operations. The use
of a high-level language (C) to handle exceptions adds overhead for
saving and restoring all caller-saved registers when a trap handler
starts and returns.6.3 Application-Speci�c Safe Handlers (ASH)
ExOS operates efficiently in spite of executing at application level
in part because the cost of crossing between kernel and user space is
extremely low in our prototype (18 instructions). Most application-
specific optimizations can therefore be implemented in libraries at
application level. However, in the context of networking, there are
two reasons for ExOS to download code: the first is technology
driven, while the second is more fundamental. First, the network
buffers on our machines cannot be easily mapped into application
space in a secure way. Therefore, by downloading code into the
kernel, applications can integrate operations such as checksum-
ming during the copy of the message from these buffers to user
space. Such integration can improve performance on a DECsta-
tion5000/200 by almost a factor of two [22]. Second, if the runtime
of downloaded code is bounded, it can be run in situations when
performing a full context switch to an unscheduled application is
impractical. Downloading code thus allows applications to decou-
ple latency-critical operations such as message reply from process
scheduling.

We examine these issues using application-specific handlers
(ASHs). ASHs are untrusted application-level message-handlers

11



Machine OS dirty prot1 prot100 unprot100 trap appel1 appel2
DEC2100 Ultrix n/a 51.6 175.0 175.0 240.0 383.0 335.0
DEC2100 ExOS 17.5 32.5 213.0 275.0 13.9 74.4 45.9
DEC3100 Ultrix n/a 39.0 133.0 133.0 185.0 302.0 267.0
DEC3100 ExOS 13.1 24.4 156.0 206.0 10.1 55.0 34.0
DEC5000 Ultrix n/a 32.0 102.0 102.0 161.0 262.0 232.0
DEC5000 ExOS 9.8 16.9 109.0 143.0 4.8 34.0 22.0

Table 10: Time to perform virtual memory operations on ExOS and Ultrix; times are in microseconds. The times for appel1 and appel2 are
per page.

Machine OS Roundtrip latency
DEC5000/125 ExOS/ASH 259
DEC5000/125 ExOS 320
DEC5000/125 Ultrix 3400
DEC5000/200 Ultrix/FRPC 340

Table 11: Roundtrip latency of a 60-byte packet over Ethernet using
ExOS with ASHs, ExOS without ASHs, Ultrix, and FRPC; times
are in microseconds.

that are downloaded into the kernel, made safe by a combination
of code inspection [18] and sandboxing [52], and executed upon
message arrival. The issues in other contexts (e.g., disk I/O) are
similar.

An ASH can perform general computation. We have augmented
this ability with a set of messageprimitives that enable the following
four useful abilities:

1. Direct, dynamic message vectoring. An ASH controls where
messages are copied in memory, and can therefore eliminate
all intermediate copies, which are the bane of fast networking
systems.

2. Dynamic integrated layer processing (ILP) [1, 16]. ASHs
can integrate data manipulations such as checksumming and
conversion into the data transfer engine itself. This integra-
tion is done at the level of pipes. A pipe is a computation
that acts on streaming data. Pipes contain sufficient semantic
information for the ASH compiler to integrate several pipes
into the message transfer engine at runtime, providing a large
degree of flexibility and modularity. Pipe integration allows
message traversals to be modularly aggregated to a single
point in time. To the best of our knowledge, ASH-based
ILP is the first to allow either dynamic pipe composition or
application-extended in-kernel ILP.

3. Message initiation. ASHs can initiate message sends, allow-
ing for low-latency message replies.

4. Control initiation. ASHs perform general computation. This
ability allows them to perform control operations at message
reception time, implementing such computational actions as
traditional active messages [51] or remote lock acquisition.

It is important to note the power of the ASH computational
model. It allows the vectoring process to be completely dynamic:
the application does not have to pre-specify that it is waiting for
a particular message, nor does it have to pre-bind buffer locations
for the message. Instead, it can defer these decisions until message
reception and use application-level data structures, system state,
and/or the message itself to determine where to place the message.
Capturing the same expressiveness within a statically defined pro-
tocol is difficult.

1 2 3 4 5 6 7 8 9 10

Number of Processes

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

R
ou

nd
tr

ip
 L

at
en

cy
 (

m
ic

ro
se

co
nd

s) ExOS with ASH
ExOS without ASH

Figure 2: Average roundtrip latency with increasing number of
active processes on receiver.

Table 11 shows the roundtrip latency over Ethernet of ASH-
based network messaging and compares it to ExOS without ASHs,
Ultrix, and FRPC [49] (the fastest RPC in the literature on compara-
ble hardware). Roundtrip latency for Aegis and Ultrix was measured
by ping-ponging a counter in a 60-byte UDP/IP packet 4096 times
between two processes in user-spaceon DECstation5000/125s. The
FRPC numbers are taken from the literature [49]. They were mea-
sured on a DECstation5000/200, which is approximately 1.2 times
faster than a DECstation5000/125 on SPECint92.

The message processing at each node consisted of reading the
60-byte message, incrementing the counter, copying the new value
and a precomputed message header into a transmission buffer, and
then sending the reply message. In comparison to a complete
application-level implementation, ASHs save 61 microseconds.

Despite being measured on a slower machine, ExOS/ASH is
81 microseconds faster than a high-performance implementation of
RPC for Ultrix (FRPC) running on DECstation5000/200sand using
a specialized transport protocol [49]. In fact, ExOS/ASH is only 6
microseconds slower than the lower bound for cross-machine com-
munication on Ethernet, measured on DECstation5000/200s [49].

ASHs can be used to decouple latency-critical operations such
as message reply from the scheduling of processes. To measure
the impact of this decoupling on average message roundtrip latency
we performed the same experiment as above while increasing the
number of active processes on the receiving host (see Figure 2).
With ASHs, the roundtrip latency stays constant. Without them,
the latency increases, since the reply can be sent only when the ap-
plication is scheduled. As the number of active processes increases,
it becomes less likely that the process is scheduled. Since processes

12



Machine lrpc tlrpc
DEC2100 13.9 8.6
DEC3100 10.4 6.4
DEC5000 6.3 2.9

Table 12: Time to perform untrusted (lrpc) and trusted (tlrpc)
LRPC extensions; times are in microseconds.

are scheduled in “round-robin” order, latency increases linearly. On
Ultrix, the increase in latency was more erratic, ranging from .5 to
4.5 milliseconds with 10 active processes. While the exact rate that
latency increases will vary depending on algorithm used to sched-
ule processes, the implication is clear: decoupling actions such as
message reception from scheduling of a process can dramatically
improve performance.7 Extensibility with ExOS
Library operating systems, which work above the exokernel inter-
face, implement higher-level abstractions and can define special-
purpose implementations that best meet the performance and func-
tionality goals of applications. We demonstrate the flexibility of the
exokernel architecture by showing how fundamental operating sys-
tem abstractions can be redefined by simply changing application-
level libraries. We show that these extensions can have dramatic
performance benefits. These different versions of ExOS can co-
exist on the same machine and are fully protected by Aegis.7.1 Extensible RPC

Most RPC systems do not trust the server to save and restore
registers [27]. We implemented a version of lrpc (see Section 6.1)
that trusts the server to save and restore callee-saved registers. We
call this version tlrpc (trusted LRPC). Table 12 compares tlrpc to
ExOS’s more general IPC mechanism,lrpc, which saves all general-
purpose callee-saved registers. Both implementations assume that
only a single function is of interest (e.g., neither uses the RPC
number to index into a table) and do not check permissions. Both
implementations are also single-threaded. The measurements show
that this simple optimization can improve performance by up to a
factor of two.7.2 Extensible Page-table Structures

We made a new version of ExOS that supports inverted page
tables. Applications that have a dense address space can use linear
page tables, while applications with a sparse address space can use
inverted ones. Table 13 shows the performance for this new version
of ExOS. The inverted page-table trades the performance of mod-
ifying protection on memory regions for the performance of faster
lookup. On the virtual memory benchmarks of Section 6.2, it is
over a factor of two more efficient on dirty, 37% faster on appel1,
and 17% faster on appel2. Because VM is implemented at appli-
cation level, applications can make such tradeoffs as appropriate.
This experiment emphasizes the degree of flexibility offered by an
exokernel architecture.7.3 Extensible Schedulers

Aegis includes a yield primitive to donate the remainder of a pro-
cess’ current time slice to another (specific) process. Applications
can use this simple mechanism to implement their own scheduling
algorithms. To demonstrate this, we have built an application-level
scheduler that implements stride scheduling [54], a deterministic,

0 10 20 30 40 50 60 70 80 90 100

Time (quanta)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

C
um

ul
at

iv
e 

It
er

at
io

ns
 (

th
ou

sa
nd

s) Ideal
Measured

Figure 3: Application-level stride scheduler.

proportional-share scheduling mechanism that improves on recent
work [53]. The ExOS implementation maintains a list of processes
for which it is responsible, along with the proportional share they
are to receive of its time slice(s). On every time slice wakeup, the
scheduler calculates which process is to be scheduled and yields to
it directly.

We measure the effectiveness of this scheduler by creating three
processes that increment counters in shared memory. The processes
are assigned a 3:2:1 relative allocation of the scheduler’s time slice
quanta. By plotting the cumulative values of the shared counters,
we can determine how closely this scheduling allocation is realized.
As can be seen in Figure 3, the achieved ratios are very close to
idealized ones.

It is important to note that there is nothing special about this
scheduler either in terms of privileges (any application can perform
identical actions) or in its complexity (the entire implementation is
less than 100 lines of code). As a result, any application can easily
manage processes. An important use of such fine-grained control
is to enhance the modularity of application design: previously,
applications that had subtasks of different/fluctuating priorities had
to internalize them in the form of schedulable threads. As a result,
the likelihood of software errors increased, and the complexity
of the design grew. By constructing a domain-specific scheduler,
these applications can now effectively and accurately schedule sub-
processes, greatly improving fault isolation and independence.8 Related work
Many early operating system papers discussed the need for ex-
tendible, flexible kernels [32, 42]. Lampson’s description of CAL-
TSS [31] and Brinch Hansen’s microkernel paper [24] are two clas-
sic rationales. Hydra was the most ambitious early system to have
the separation of kernel policy and mechanism as one of its central
tenets [55]. An exokernel takes the elimination of policy one step
further by removing “mechanism” wherever possible. This process
is motivated by the insight that mechanism is policy, albeit with one
less layer of indirection. For instance, a page-table is a very detailed
policy that controls how to translate, store and delete mappings and
what actions to take on invalid addresses and accesses.

VM/370 [17] exports the ideal exokernel interface: the hard-
ware interface. On top of this hardware interface, VM/370 supports
a number of virtual machines on top of which radically different
operating systems can be implemented. However, the important

13



Machine Method dirty prot1 prot100 unprot100 trap appel1 appel2
DEC2100 Originalpage-table 17.5 32.5 213. 275. 13.9 74.4 45.9
DEC2100 Inverted page-table 8.0 23.1 253. 325. 13.9 54.4 38.8
DEC3100 Original page-table 13.1 24.4 156. 206. 10.1 55.0 34.0
DEC3100 Inverted page-table 5.9 17.7 189. 243. 10.1 40.4 28.9

Table 13: Time to perform virtual memory operations on ExOS using two different page-table structures; times are in microseconds.

difference is that VM/370 provides this flexibility by virtualizing
the entire base-machine. Since the base machine can be quite com-
plicated, virtualization can be expensive and difficult. Often, this
approach requires additional hardware support [23, 40]. Addition-
ally, since much of the actual machine is intentionally hidden from
application-level software, such software has little control over the
actual resources and may manage the virtual resources in a counter-
productive way. For instance, the LRU policy of pagers on top of
the virtual machine can conflict with the paging strategy used by
the virtual machine monitor [23]. In short, while a virtual machine
can provide more control than many other operating systems, appli-
cation performance can suffer and actual control is lacking in key
areas.

Modern revisitations of microkernels have argued for kernel ex-
tensibility [2, 43, 48]. Like microkernels, exokernels are designed
to increase extensibility. Unlike traditional microkernels, an exok-
ernel pushes the kernel interface much closer to the hardware, which
allows for greater flexibility. An exokernel allows application-level
libraries to define virtual memory and IPC abstractions. In addition,
the exokernel architecture attempts to avoid shared servers (espe-
cially trusted shared servers), since they often limit extensibility.
For example, it is difficult to change the buffer management policy
of a shared file server. In many ways, servers can be viewed as fixed
kernel subsystems that run in user-space. Some newer microker-
nels push the kernel interface closer to the hardware [34], obtaining
better performance than previous microkernels. However, since
these systems do not employ secure bindings, visible resource re-
vocation, and abort protocols, they give less control of resources to
application-level software.

The SPIN project is building a microkernel system that allows
applications to make policy decisions [9] by safely downloading
extensions into the kernel. Unlike SPIN, the focus in the exoker-
nel architecture is to obtain flexibility and performance by securely
exposing low-level hardware primitives rather than extending a tra-
ditional operating system in a secure way. Because the exokernel
low-level primitives are simple compared to traditional kernel in-
terfaces, they can be made very fast. Therefore, the exokernel has
less use for kernel extensions.

Scout [25] and Vino [46] are other current extensible operating
systems. These systems are just beginning to be constructed, so it
is difficult to determine their relationship to exokernels in general
and Aegis in particular.

SPACE is a “submicro-kernel” that provides only low-level ker-
nel abstractions defined by the trap and architecture interface [41].
Its close coupling to the architecture makes it similar in many ways
to an exokernel, but we have not been able to make detailed com-
parisons because its design methodology and performance have not
yet been published.

Anderson [3] makes a clear argument for application-specific
library operating systems and proposes that the kernel concentrate
solely on the adjudication of hardware resources. The exokernel
design addresses how to provide secure multiplexing of physical
resources in such a system, and moves the kernel interface to a lower
level of abstraction. In addition, Aegis and ExOS demonstrate that
low-level secure multiplexing and library operating systems can
offer excellent performance.

Like Aegis, the Cache Kernel [13] provides a low-level kernel
that can support multiple application-level operating systems. To
the best of our knowledge ExOS and the Cache Kernel are the
first general-purpose library operating systems implemented in a
multiprogramming environment. The difference between the Cache
Kernel and Aegis is mainly one of high-level philosophy. The
Cache Kernel focuses primarily on reliability, rather than securely
exporting hardware resources to applications. As result, it is biased
towards a server-based system structure. For example, it supports
only 16 “application-level” kernels concurrently.9 Conclusion
In the exokernel architecture, an exokernel securely multiplexes
available hardware resources among applications. Library operat-
ing systems, which work above the low-level exokernel interface,
implement higher-level abstractions and can define special-purpose
implementations that best meet the performance and functional-
ity goals of applications. The exokernel architecture is motivated
by a simple observation: the lower the level of a primitive, the
more efficiently it can be implemented, and the more latitude it
grants to implementors of higher-level abstractions. To achieve
a low-level interface, the exokernel separates management from
protection. To make this separation efficient it uses secure bind-
ings, implemented using hardware mechanisms, software caches,
or downloading code.

Experiments using our Aegis and ExOS prototypes demonstrate
our four hypotheses. First, the simplicity and limited number of ex-
okernel primitives allows them to be implemented very efficiently.
Measurements of Aegis show that its basic primitives are substan-
tially more efficient than the general primitives provided by Ultrix.
In addition, Aegis’s performance is better than or on par with re-
cent high-performance implementations of exceptions dispatch and
control transfer primitives.

Second, because exokernel primitives are fast, low-level secure
multiplexing of hardware resources can be implemented efficiently.
For example, Aegis multiplexes resources such as the processor,
memory, and the network more efficiently than state-of-the-art im-
plementations.

Third, traditional operating system abstractions can be im-
plemented efficiently at application level. For instance, ExOS’s
application-level VM and IPC primitives are much faster than Ul-
trix’s corresponding primitives and than state-of-the-art implemen-
tations reported in the literature.

Fourth, applications can create special-purpose implementa-
tions of abstractions by merely modifying a library. We imple-
mented several variations of fundamental operating system abstrac-
tions such as interprocess communication, virtual memory, and
schedulers with substantial improvements in functionality and per-
formance. Many of these variations would require substantial kernel
alternations on today’s systems.

Based on the results of these experiments, we conclude that the
exokernel architecture is a viable structure for high-performance,
extensible operating systems.

14



Acknowledgments
We thank Henri Bal,Robert Bedichek,Matthew Frank,Greg Ganger,
Bob Gruber, Sandeep Gupta, Wilson Hsieh, Kirk Johnson, But-
ler Lampson, Ulana Legedza, Hank Levy (our shepherd), David
Mosberger-Tang, Massimiliano Poletto,Robbert van Renesse,Satya
(M. Satyanarayanan), Raymie Stata, Carl Waldspurger, and Debo-
rah Wallach for insightful discussions and careful reading of earlier
versions of this paper. We also thank the anonymous referees for
their valuable feedback. We thank Jochen Lietdke for his aid in
comparing the IPC mechanisms of Aegis and L3. We thank Ken
Mackenzie for many insights and discussions. In addition, we thank
Hector Briceno for porting NFS and SUN RPC; Sandeep Gupta for
developing an inverted page-table; Robert Grimm for porting a
disk driver; and Tom Pinckney for porting gdb and developing an
application-level file system. Finally, we thank Deborah Wallach
for her input on the design of ASHs, the software she developed to
evaluate them, and porting Aegis to the DECstation5000. Her help
was invaluable.References

[1] M. B. Abbot and L. L. Peterson. Increasing network through-
put by integrating protocol layers. IEEE/ACM Transactions
on Networking, 1(5):600–610, October 1993.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: a new kernel foundation
for UNIX development. In Proceedings of the Summer 1986
USENIX Conference, pages 93–112, July 1986.

[3] T.E. Anderson. The case for application-specific operating
systems. In Third Workshop on Workstation Operating Sys-
tems, pages 92–94, 1992.

[4] T.E. Anderson, B.N. Bershad,E.D. Lazowska, and H.M. Levy.
Scheduler activations: Effective kernel support for the user-
level management of parallelism. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles,
pages 95–109, October 1991.

[5] A.W. Appel and K. Li. Virtual memory primitives for user
programs. In Fourth International Conferenceon Architecture
Support for Programming Languagesand Operating Systems,
pages 96–107, Santa Clara, CA, April 1991.

[6] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and
P. Sarkar. PATHFINDER: A pattern-based packet classifier.
In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pages 115–123, November 1994.

[7] K. Bala, M.F. Kaashoek, and W.E. Weihl. Software prefetch-
ing and caching for translation lookaside buffers. In Proceed-
ings of the First Symposium on Operating Systems Design and
Implementation, pages 243–253, November 1994.

[8] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. ACM Transactions
on Computer Systems, 8(1):37–55, February 1990.

[9] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,
safety and performance in the SPIN operating system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, December 1995.

[10] P. Cao, E. W. Felten, and K. Li. Implementation and perfor-
mance of application-controlled file caching. In Proceedings
of the First Symposium on Operating Systems Design and
Implementation, pages 165–178, November 1994.

[11] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and protection in a single-address-space operating
system. ACM Transactions on Computer Systems, 12(4):271–
308, November 1994.

[12] D. L. Chaum and R. S. Fabry. Implementing capability-based
protection using encryption. Technical Report UCB/ERL
M78/46, University of California at Berkeley, July 1978.

[13] D. Cheriton and K. Duda. A caching model of operating
system kernel functionality. In Proceedings of the First Sym-
posium on Operating Systems Design and Implementation,
pages 179–193, November 1994.

[14] D. R. Cheriton. An experiment using registers for fast
message-based interprocess communication. Operating Sys-
tems Review, 18:12–20, October 1984.

[15] D. R. Cheriton. The V kernel: A software base for distributed
systems. IEEE Software, 1(2):19–42, April 1984.

[16] D. D. Clark and D. L. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In ACM Communica-
tion Architectures, Protocols, and Applications (SIGCOMM)
1990, September 1990.

[17] R. J. Creasy. The origin of the VM/370 time-sharing system.
IBM J. Research and Development, 25(5):483–490, Septem-
ber 1981.

[18] P. Deutsch and C. A. Grant. A flexible measurement tool for
software systems. Information Processing 71, 1971.

[19] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences
with a high-speed network adaptor: A software perspective.
In ACM Communication Architectures, Protocols, and Appli-
cations (SIGCOMM) 1994, pages 2–13, October 1994.

[20] D. R. Engler. VCODE: a very fast, retargetable, and extensible
dynamic code generation substrate. Technical Memorandum
MIT/LCS/TM534, MIT, July 1995.

[21] D. R. Engler, M. F. Kaashoek, and J. O’Toole. The operating
system kernel as a secure programmable machine. In Proceed-
ings of the Sixth SIGOPS European Workshop, pages 62–67,
September 1994.

[22] D. R. Engler, D. Wallach, and M. F. Kaashoek. Efficient, safe,
application-specific message processing. Technical Memo-
randum MIT/LCS/TM533, MIT, March 1995.

[23] R. P. Goldberg. Survey of virtual machine research. IEEE
Computer, pages 34–45, June 1974.

[24] P. Brinch Hansen. The nucleus of a multiprogramming system.
Communications of the ACM, 13(4):238–241, April 1970.

[25] J.H. Hartman, A.B. Montz, D. Mosberger, S.W. O’Malley,
L.L. Peterson, and T.A. Proebsting. Scout: A communication-
oriented operating system. Technical Report TR 94-20, Uni-
versity of Arizona, Tucson, AZ, June 1994.

[26] K. Harty and D.R. Cheriton. Application-controlled physi-
cal memory using external page-cache management. In Fifth
International Conference on Architecture Support for Pro-
gramming Languages and Operating Systems,pages 187–199,
October 1992.

15



[27] W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. The persistent
relevance of IPC performance: New techniques for reducing
the IPC penalty. In Fourth Workshop on Workstation Operat-
ing Systems, pages 186–190, October 1993.

[28] J. Huck and J. Hays. Architectural support for translation
table management in large address space machines. In Pro-
ceedings of the 19th International Symposium on Computer
Architecture, pages 39–51, May 1992.

[29] R. E. Kessler and M. D. Hill. Page placement algorithms
for large real-index caches. ACM Transactions on Computer
Systems, 10(4):338–359, November 1992.

[30] K. Krueger, D. Loftesness, A. Vahdat, and T. Anderson. Tools
for development of application-specific virtual memory man-
agement. In Conference on Object-Oriented Programming
Systems,Languages,and Applications (OOPSLA) 1993,pages
48–64, October 1993.

[31] B.W. Lampson. On reliable and extendable operating systems.
State of the Art Report, Infotech, 1, 1971.

[32] B.W. Lampson and R.F. Sproull. An open operating system
for a single-user machine. Proceedings of the Seventh ACM
Symposium on Operating Systems Principles, pages 98–105,
December 1979.

[33] J. Liedtke. Improving IPC by kernel design. In Proceedingsof
the Fourteenth ACM Symposium on Operating Systems Prin-
ciples, pages 175–188, December 1993.

[34] J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Princi-
ples, December 1995.

[35] K. Mackenzie, J. Kubiatowicz, A. Agarwal, and M. F.
Kaashoek. FUGU: Implementing translation and protection
in a multiuser, multimodel multiprocessor. Technical Memo-
randum MIT/LCS/TM503, MIT, October 1994.

[36] H. Massalin and C. Pu. Threads and input/output in the Syn-
thesis kernel. In Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, pages 191–201, 1989.

[37] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet fil-
ter: An efficient mechanism for user-level network code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39–51, November 1987.

[38] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and
R. Brown. Design tradeoffs for software-managed TLBs. In
20th Annual International Symposium on Computer Architec-
ture, pages 27–38, May 1993.

[39] J. K. Ousterhout. Why aren’t operating systems getting faster
as fast as hardware? In Proceedings of the Summer 1990
USENIX Conference, pages 247–256, June 1990.

[40] G. J. Popek and C. S. Kline. The PDP-11 virtual machine
architecture. In Proceedings of the Fifth ACM Symposium
on Operating Systems Principles, pages 97–105, November
1975.

[41] D. Probert, J.L. Bruno, and M. Karzaorman. SPACE: A new
approach to operating system abstraction. In International
Workshop on Object Orientation in Operating Systems, pages
133–137, October 1991.

[42] D.D. Redell, Y.K. Dalal, T.R. Horsley, H.C. Lauer, W.C.
Lynch, P.R. McJones, H.G. Murray, and S.C. Purcell. Pilot:
An operating system for a personal computer. Communica-
tions of the ACM, 23(2):81–92, February 1980.

[43] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,
P. Leonard, and W. Neuhauser. Chorus distributed operating
system. Computing Systems, 1(4):305–370, 1988.

[44] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments
in system design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[45] R. L. Sites. Alpha AXP architecture. Communications of the
ACM, 36(2), February 1993.

[46] C. Small and M. Seltzer. Vino: an integrated platform for
operating systems and database research. Technical Report
TR-30-94, Harvard, 1994.

[47] M. Stonebraker. Operating system support for database man-
agement. Communications of the ACM, 24(7):412–418, July
1981.

[48] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp,
S.J. Mullender, A. Jansen, and G. van Rossum. Experiences
with the Amoeba distributed operating system. Communica-
tions of the ACM, 33(12):46–63, December 1990.

[49] C. A. Thekkath and H. M. Levy. Limits to low-latency com-
munication on high-speed networks. ACM Transactions on
Computer Systems, 11(2):179–203, May 1993.

[50] C. A. Thekkath and H. M. Levy. Hardware and software
support for efficient exception handling. In Sixth Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems, pages 110–121, October
1994.

[51] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser.
Active messages: a mechanism for integrated communication
and computation. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 256–267, May
1992.

[52] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Princi-
ples, pages 203–216, December 1993.

[53] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flex-
ible proportional-share resource management. In Proceedings
of the First Symposium on Operating Systems Design and
Implementation, pages 1–11, November 1994.

[54] C. A. Waldspurger and W. E. Weihl. Stride scheduling: deter-
ministic proportional-share resource management. Technical
Memorandum MIT/LCS/TM528, MIT, June 1995.

[55] W. Wulf, E. Cohen,W. Corwin, A. Jones, R. Levin, C. Pierson,
and F. Pollack. HYDRA: The kernel of a multiprocessing
operating system. Communications of the ACM, 17(6):337–
345, July 1974.

[56] M. Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient
packet demultiplexing for multiple endpoints and large mes-
sages. In Proceedings of the Winter 1994 USENIX Conference,
1994.

16


