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Abstract

Modern file systems associate the deletion of a file with the
immediate release of storage, and file writes with the irrevo-
cable change of file contents. We argue that this behavior is
a relic of the past, when disk storage was a scarce resource.
Today, large cheap disks make it possible for the file system
to protect valuable data from accidental delete or overwrite.

This paper describes the design, implementation, and
performance of the Elephant file system, which automatically
retains all important versions of user files. Users name previ-
ous file versions by combining a traditional pathname with a
time when the desired version of a file or directory existed.
Storage in Elephant is managed by the system using file-
grain user-specified retention policies. This approach con-
trasts with checkpointing file systems such as Plan-9, AFS,
and WAFL that periodically generate efficient checkpoints of
entire file systems and thus restrict retention to be guided by
a single policy for all files within that file system.

Elephant is implemented as a new Virtual File System in
the FreeBSD kernel.

1 Introduction

Disks are becoming ever cheaper and larger. Human produc-
tivity, however, remains constant. This affords system de-
signers an opportunity to re-examine the way file systems
use disk stores. In particular, the current model of user-
controlled storage management may no longer be ideal.

In a traditional file system, users control what is stored
on disk by explicitly creating, writing, and deleting files. The
key weakness of this model is that user actions have an im-
mediate and irrevocable effect on disk storage. If a user mis-
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takenly deletes or overwrites a valuable file, the data it stores
is immediately lost and, unless a backup copy of the file ex-
ists, lost forever.

Over the years, a main focus of file system research has
been to protect data from failure. Excellent solutions exist
to protect data from a wide variety of network, system, and
media failures. Users of an appropriately configured file sys-
tem can now rest assured that their valuable data is safe and
available, protected from all forms of failure; all, that is, but
failures of their own making. As soon as users modify or
delete a file, none of the carefully engineered protections in
the file system can save them from themselves or from the ap-
plications they run. Some partial solutions and coping mech-
anisms do exist, but none adequately solves the problem.

Some early file systems such as Cedar provided a degree
of protection from accidental overwrite, but not delete, by au-
tomatically retaining the last few versions of a file in copy-
on-write fashion [20, 1, 13]. Limited storage space, however,
meant that only a few versions could be retained. The choice
of which version to prune was either left to the user or the
oldest versions were deleted. In either case, valuable file ver-
sions could easily be lost.

Personal computer operating systems provide a degree of
protection from accidental delete, but not overwrite, using
the “trash can” metaphor, which requires a two step process
to really delete a file. The trash can, however, provides only
limited undo capability. Eventually storage becomes con-
strained and the trash can must be emptied. File deletions
that occur shortly before the empty are afforded only a very
limited period in which they can be undone.

In most well-maintained file systems, off-line backup
storage is used to protect users from system failures, me-
dia failures, and their own mistakes. Checkpointing file sys-
tems such as Plan-9, AFS, and WAFL build this support into
the file system using copy-on-write techniques to create pe-
riodic file-system checkpoints [16, 5, 6]. These checkpoints
are available online and they allow users to access out-dated
versions that were captured by a checkpoint. Changes that
occur between checkpoints (or backups), however, are not re-
coverable. Furthermore, the fact that checkpointing occurs at
the granularity of the entire file system limits the number and
frequency of checkpoints.

The lack of file system support has required users and
application developers to devise various coping mechanisms
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to protect their data. A user who wants to maintain older
versions of files must explicitly make and maintain multiple
copies. A savvy user tends to be conservative, making many
copies of data and avoiding deletes whenever possible. File-
editing applications often provide operation-grain undo ca-
pability and perform live editing in a copy of the original file
that replaces the file in an atomic operation when users com-
mit changes.

Today, information is valuable and storage is cheap. It
thus makes sense for the file system to use some of this cheap
storage to ensure that valuable files are never lost due to the
failure of a user to make a copy (or make the right copy) be-
fore modifying them, or because of the accidental or unin-
formed deletion of a file that is in fact valuable.

Furthermore, we believe that the amount of storage ded-
icated to files that are modified by users is growing slowly
compared to the total amount of data stored in the file sys-
tem. As the capacity of a single inexpensive disk approaches
50 GB, only a small fraction of this space will be occupied by
files that require protection from user mistakes. The rest will
be temporary, derived, and cached data that can be ignored,
re-created, or re-fetched if lost.

This paper describes the design, implementation, and
performance of the Elephant file system. In Elephant, old
versions of files are automatically retained and storage is
managed by the file system. Users specify retention policies
for individual files, groups of files, or directories. The goal
of Elephant is to allow users to retain important old versions
of all of their files. User actions such as delete and file write
are thus easily revocable by rolling back a file system, a di-
rectory, or an individual file to an earlier point in time.

2 Issues for storage management

A file system that protects users from their mistakes must
separate storage management from the common file-system
operations available to users (e.g., open, write, close, and
delete). Deleting a file must not release its storage and file
updates must not overwrite existing file data. To achieve this
goal, the file system must retain sufficient information to be
able to reconstruct old versions of files and directories. To
undo an update, the previous content must be retained. To
undo a delete, both the file’s name and content must be re-
tained.

It is obviously not feasible, however, to retain every ver-
sion of every file. The system or user must decide what his-
toric data can be discarded and when it should be freed. The
key question is what are the respective roles of the system
and the user in making this decision?

There are two competing factors to consider. First, in-
creasing direct user control of reclamation tends to decrease
the protection the user has from their mistakes. Storage recla-
mation is, by definition, an irreversible process. On the other
hand, if the system controls reclamation, how do we ensure
that the decisions it makes respect user needs? Only the user
knows which versions of file data are important.

Solving this dilemma requires a compromise between the
competing needs of user protection and user control. To un-
derstand how best to strike this compromise it is useful to

review in more detail the different types of data users store
in a file system, the different ways they access this data, and
how these factors impact the question of what sort of history
information the file system should retain. The remainder of
this section summarizes our observations taken from several
UNIX file system traces [14, 3, 18].

2.1 Not all files are created equal

The first key observation is that a file system stores many dif-
ferent types of files that each require different levels of ver-
sioning. The following simplified taxonomy demonstrates
these differences.

� Read-only files such as application executables, li-
braries, header files, etc. have no version history.

� Derived files such as object files require no history or
undo capability as they can be regenerated from their
original sources.

� Cached files such as those maintained by a web
browser require no versioning or history.

� Temporary files have short lifetimes and, while they
may benefit from short-term histories for undo pur-
poses if they are modified by users, long-term histories
are not necessary.

� User-modified files may require histories, but even
these files need varying degrees of versioning.

Clearly, a variety of file retention policies are required.
User control can be achieved by allowing users to associate a
policy with each of their files. User protection can be assured
by placing the mechanism that implements these policies in-
side of the file system. In this way, a user can indicate that
versioning is not required for some files and, for other files,
the user can indicate what type of versioning is required. The
next key question is thus what different types of versioning
are possible and useful?

2.2 Goals: undo and long-term history

We break down the goal of protecting users from their mis-
takes into two related issues: (1) providing users the ability
to undo a recent change and (2) maintaining a long-term his-
tory of important versions. The two differ in the amount of
time they cover and in the completeness of the history they
retain.

Undo requires that a complete history be retained, but
only for a limited period of time. The history must be com-
plete, because there is typicallyno good way to predict which
actions a user might later want to undo. Limiting the amount
of storage needed to support undo thus requires restricting
the period of time in which an undo is possible. The system
might, for example, allow the user an hour, a day, or a week to
realize that an operation was in error. Within that interval, the
user can reverse any delete or overwrite. Once that second-
chance interval passes, however, changes become perma-
nent.
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Long-term history serves a different purpose. Once the
undo period has passed, it may still be necessary to retain cer-
tain important versions of a file. It is typically not appropri-
ate or useful to retain every version of the file. Instead, users
select key landmark versions to be retained long term. In a
software revision control system [17, 24], for example, users
select landmark versions by checking them into a repository.
Intermediate changes the user makes in their working direc-
tory are not retained.

These two goals are closely related. It may be useful to
have intermediate regimes in which some undo’s become im-
possible, but more versions are retained than just the land-
mark versions. Additionally, the importance of a landmark
version may degrade over time to the point where some old
landmarks can be deleted.

2.3 Pruning the long-term file history

The final remaining issue is how to prune the long-term his-
tory and how to identify landmark versions. To understand
this issue it is helpful to review how users use current file sys-
tems and how increasing disk storage capacity impacts the
decisions they make.

As stated previously, users cope with the fragility of cur-
rent file systems by making frequent copies of important
data. Data that is changed frequently is copied frequently.
Furthermore, users are reluctant to delete files, because do-
ing so permanently removes them from the file system.

Ironically, as storage becomes larger, it becomes more
difficult for users to manage the versions they create. When
storage is fairly constrained, users are required to frequently
assess the files that they are maintaining, and to delete those
that are no longer necessary. Typically, the ability of the user
to make this assessment effectively deteriorates over time.
After a few weeks or months, the user is unlikely to remem-
ber why certain versions are being maintained. While there
may be value in maintaining these old versions, it becomes
more and more difficult to make sense of them.

When it becomes necessary to delete something, what
strategy should the user employ? Unless they have care-
fully remembered what version is what, their probable strat-
egy is to delete the oldest versions. This, however, is often
the wrong strategy because a version history typically con-
tains certain landmark versions surrounded by other versions
whose time frame of interest is much shorter. Unfortunately,
the user may have no good way to tell which old version is
important.

Any solution that relies solely on the user to identify
landmark versions is problematic, because failure to identify
an important version as a landmark can result in the loss of
important data. It is thus important for the file system to as-
sist the user in detecting landmark versions.

Fortunately, it is often possible to detect landmark ver-
sions by looking at a time line of the updates to a file. In our
study of UNIX file-system traces, we have seen that for many
files, these updates are grouped into short barrages of edits
separated by longer periods of stability. A good heuristic is
to treat the newest version of each group as a landmark, in
addition to any landmarks explicitly identified by the user.

Another option is to treat as a landmark any version with a
large delta to the subsequent version, i.e., where the amount
of work involved to recover the older version would be large.

2.4 Summary

In summary, the following issues are key to the implemen-
tation of a file-system storage management mechanism that
protects users from their mistakes.

� Storage reclamation must be separated from file write
and delete.

� Files require a variety of retention policies.

� Policies must be specified by the user, but implemented
by the system.

� Undo requires complete history for a limited period of
time.

� Long-term histories should not retain all versions.

� The file system must assist the user in deciding what
versions to retain in the long-term history.

3 The Elephant file system

This section describes the design of the Elephant File System
and the file retention policies it uses to manage storage.

3.1 Design overview

The key design principle of Elephant is to separate storage
management from the common file system operations avail-
able to users (e.g., open, write, close, and delete). The file
system, not users, handles storage reclamation. Deleting a
file does not release its storage and file writes are handled in a
copy-on-write fashion, creating a new version of a file block
when it is written.

File versions are named by combining the file’s pathname
with a date and time. Versions are indexed by their creation
time (i.e., the file’s modification time) and versioning is ex-
tended to directories as well as files; only the current ver-
sion of a file can be modified. The system interprets the
pathname-time pair to locate the version that existed at the
specified time. A file version thus does not have a unique
name; any time in the interval in which a version was current
can be used to name the version.

By rolling a directory back in time, a user can see the di-
rectory exactly as it existed at that earlier time, including any
files that the user subsequently deleted. Delete thus becomes
a reversible name-space management operation.

Storage is managed by the system using retention poli-
cies associated with each file. Users can specify policies for
a file, a group of files, or for a directory; newly created files
by default inherit the policy of the directory in which they are
created. Periodically, a file system cleaner process examines
the file system and uses these policies to decide when and
which disk blocks to reclaim, compress, or move to tertiary
storage. This approach allows users to indicate which files
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require versioning and what sort of versioning they require.
As a result, the majority of files can be handled by keeping a
single version with no history, as is done today, while provid-
ing detailed history information for only the files that require
it.

3.2 File retention policies

We have identified the following four file retention policies
for Elephant and have implemented these policies in our pro-
totype.

� Keep One

� Keep All

� Keep Safe

� Keep Landmarks

Keep One provides the non-versioned semantics of a
standard file system. Keep All retains every version of the
file. Keep Safe provides versioning for undo but does not re-
tain any long-term history. Keep Landmarks enhances Keep
Safe to also retain a long-term history of landmark versions.
The remainder of this section discusses the details of these
policies.

3.3 Keep One: no versioning

Keep One provides semantics identical to a standard file sys-
tem, retaining only the current version of a file. Deleting a
Keep-One file removes the file immediately. Writing a Keep-
One file updates the file in place; copy-on-write is not used.
An important property of Keep One is that it is the only pol-
icy that allows users to directly control storage reclamation.

There are many classes of files that this policy suits well.
Files that are unimportant (e.g., files in /tmp, core files, etc.)
or files that are easily recreated (e.g., object files, files in a
Web browser cache, etc.) are good candidates for Keep-One
retention.

We anticipate, however, that most files that users modify
directly, even temporary files, will have at least Keep Safe
semantics.

3.4 Keep All: complete versioning

Keep All retains every version of every file. On each open
a new version of the file is created, and on each close that
version is finalized. While we do not believe that there are
many files that require every version to be retained, Keep All
is available if necessary.

In addition, Keep All is the basis of the Keep Safe and
Keep Landmarks policies, as file versions are created in ex-
actly the same way as in Keep All; these policies differ only
in when versions are forgotten.

3.5 Keep Safe: undo protection

Keep Safe protects users from their mistakes but retains no
long-term history. The policy is parameterized by the length
of the second-chance interval. The system guarantees that all
file-system operations can be undone for a period defined by
this parameter. A second-chance interval of seven days, for
example, means that the user can rollback any change that oc-
curred within the past seven days. Any change that occurred
more than seven days ago, however, becomes permanent.

Implementing Keep Safe requires that every version of a
file be retained until it is no longer needed for rollback. No-
tice that simply retaining a version until it is older than the
second-chance interval is not sufficient. Instead, a version
must be retained until a younger version, or the file’s dele-
tion, becomes permanent. For example, if a file with a year-
old version is modified or deleted, the year-old version must
be retained until the second-chance interval for that modifi-
cation or deletion expires.

3.6 Keep Landmarks: long-term history

Files that store important user information often require his-
tories. For these files, in addition to the protections of Keep
Safe, the system also maintains a long-term history.

Keep Landmarks retains only landmark versions in a
file’s history; non-landmark versions are freed as necessary
to reclaim storage. The key issue, however, is how to de-
termine which versions are landmarks. We follow a com-
bined approach that provides users with direct control, but
also seeks to protect users from their mistakes. A user can
specify any version as a landmark. In addition, the system
uses a heuristic to conservatively tag other versions as possi-
ble landmarks. The cleaner frees only versions that the Keep-
Landmarks policy determines are unlikely to be landmarks.

This landmark-designation heuristic is based on the as-
sumption that as versions of files get older without being
accessed, the ability of the user to distinguish between two
neighboring versions decreases. For example, we might des-
ignate every version of a file generated in the past week as a
landmark. For versions that are a month old, however, we
might assume that versions generated within one minute of
each other are now indistinguishable to the user. If so, we
can designate only the newest version of any such collection
of versions to be a landmark, possibly freeing some versions
for deletion.

Freeing non-landmark versions introduces discontinu-
ities in a file’s history. A user may request the freed version of
the file. The presence of these discontinuities is important in-
formation to the user. We thus retain information about freed
versions of a file in its history and allow the user to examine
the history for discontinuities. This information is important,
for example, for the user to roll back a set of files to a con-
sistent point in the past. The user can only be certain that the
specified point is consistent if the histories of all files are con-
tinuous at that point in time.

Finally, the Keep-Landmarks policy allows the user to
group files for consideration by the policy. Grouping is im-
portant for inter-dependent files whose consistency requires
viewing all files as of the same point in time. When this
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type of inter-dependency exists, the files are inconsistent if
a discontinuity exists in any of the files, because the missing
version is required for a consistent view. Keep-Landmarks
solves this problem by ensuring that no file in a group has a
discontinuity that overlaps a landmark version of any other
file in the group. This grouping can be done at a number of
granularities ranging from explicitly indicating which files
are interdependent to specifying directories or entire subtrees
that should be treated as a group.

4 Prototype implementation

We have implemented a complete prototype of Elephant in
FreeBSD 2.2.8, which is a freely available version of BSD
for personal computers. Elephant is fully integrated into the
FreeBSD kernel and uses BSD’s VFS/vnode interface. The
standard UNIX file interface is augmented with a new API to
access the advanced features of Elephant, but all UNIX util-
ities work unmodified on current as well as older versions of
files.

This section describes the design and implementation of
our prototype, detailing the file system’s meta data, versioned
directory structure, enhanced kernel interface, storage recla-
mation mechanism, and user-mode tools.

4.1 Overview of versioning

Elephant versions all files except those assigned the Keep-
One policy. Disk blocks of versioned files are protected by
copy-on-write and only the current version of a file can be
modified. Keep-One files can be updated in place, following
the same procedure as a standard UNIX file system.

A version is defined by the updates bracketed between an
open and a close. The first write to a versioned file follow-
ing an open causes its inode to be duplicated, creating a new
version of the file. The first time an existing block is written
after an open, the modified block is given a new physical disk
address and the new inode is updated accordingly. This copy-
on-write is avoided for writes that only append to the file. All
subsequent writes to a modified block before the close are
performed in place. When the file is closed, the inode is ap-
pended to an inode log maintained for that file. This inode
log constitutes the file’s history and is indexed by the time
each inode in the log was last modified. Concurrent sharing
of a file is supported by performing copy-on-write on the first
open and updating the inode log on the last close.

To economize disk space, files that have no history are
stored in a standard inode instead of an inode log. The sys-
tem adaptively switches between an inode and inode log as
necessary. For example, a newly created Keep-Safe file is
stored in a single inode. When the file is modified, an inode
log is created for the file to store both the original and new
versions of the file. When the current version is sufficiently
old, the cleaner frees all historicversions and the system frees
the file’s inode log and replaces it with a single inode.

Note that the inode log maintains version history based
on a file’s inode and not its name. This level of versioning
does not easily capture namespace changes such as those that
occur when a file is created, deleted or renamed. Renaming

a file, for example, changes its name but not its inode. To
simplify namespace journaling, Elephant stores directories
as name logs. Name logs are used in conjunction with in-
ode logs to provide users with an alternative view of a file’s
history based on file name. Name histories lists all versions
associated with a name, even those that belong to different
inodes (or inode logs).

Name histories are useful, for example, for programs
such as Emacs that overwrite files by writing to a new in-
ode that is then renamed to the original name. Using this ap-
proach, every new version of a file is stored in a different in-
ode (or inode log) and thus the file’s history is available only
in the name-centric view. While we believe that this style
of access is likely to disappear once versioning file systems
such as Elephant become widespread, the current prototype
does allow users to view both inode and name histories for
any file. The file retention policies implemented in the pro-
totype, however, use only inode histories.

4.2 Meta data

Traditional file systems have one inode per name (but the re-
verse does not hold). Files can thus be uniquely and unam-
biguously named by their inumber, an index to their inode’s
disk address. Elephant departs from this model, because files
can have multiple inodes, one for each version of the file. To
maintain the important naming properties of inumbers, Ele-
phant redefines inumbers to index an imap.

4.2.1 The imap

imap inode file

inode log

inode
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Figure 1. Meta data: the imap, inode logs, and the in-
ode file.

As depicted in Figure 1, the imap provides a level of in-
direction between an inumber and the disk address of a file’s
inode or inode log. There is an entry in the imap for every
file. Each entry is 16 bytes, storing the file’s inode or inode
log pointer, temperature, policy, and policyGroup. The imap
is stored on disk and cached in memory; its disk address is
recorded at a fixed location on disk.

The meta-data pointer has two parts: type and address.
Type indicates whether the file is stored in an inode or an in-
ode log. For inodes, address is the offset of the inode in the
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inode file and, for inode logs, address is the disk block num-
ber of the file’s inode log. The inode file and inode logs are
described in detail below.

Temperature is a heuristic used to guide the system
cleaner to files likely to have the most reclaimable storage.
The temperature encodes a value and an expiration date; the
system artificially raises the value of an expired temperature
to ensure that the cleaner re-examines the file. A file’s tem-
perature is increased by the system when the a new version is
created by an amount dependent on the number of blocks that
were copied-on-write. It is reset by the file’s policy module
when the cleaner examines the file, since at that instant there
should be no reclaimable storage in the file. Policy mod-
ules that base their reclamation decisions on elapsed time use
the timeout value to expire obsolete temperature estimations.
For example, the Keep Safe policy will want to re-examine a
file when its second-oldest version is as old as the retention
period is long.

Finally, policy names the file’s storage retention policy
and policyGroup organizes files that are grouped by this pol-
icy as described in Section 3.6. The imap entries for a group’s
files are linked into a circular list; policyGroup stores the
inumber of the next file in the group.

4.2.2 Non-versioned inodes

Elephant stores inodes for non-versioned files in a distin-
guished file called the inode file. This approach differs from
traditional UNIX file systems, which pre-allocate inodes at
fixed disk locations. The inode file itself is stored in an in-
ode log, not an inode, in order to avoid circularity. Our ap-
proach has the advantage that inode storage space need not
be pre-allocated when the file system is initialized. The in-
ode file can grow and shrink as easily as any other file. A
new inode is allocated by picking a random entry in the in-
ode file and scanning forward until a free inode is found. If
a free slot is not found after scanning a bounded number of
inodes, a new block is added to the inode file and the inode
is allocated there. The inode file can be compacted by mov-
ing inodes to create empty blocks and then removing those
blocks from the file.

4.2.3 Inode logs

Inode logs are allocated and named at the granularity of disk
blocks and they thus consume considerably more storage
than a single inode, which consumes only 168 bytes. An in-
ode log stores the versions of a file as an ordered list of in-
odes. If the log spans multiple blocks, the blocks are linked
together in descending-chronological order, with the block
containing the current inode at the head of the list. The file’s
imap entry stores the address if this block and the block stores
the offset to the current inode. Reading the inode of the cur-
rent version of a file is thus as efficient as reading the inode
of a non-versioned file in Elephant or any standard UNIX file
system. Older versions are located by a linear scan of the log.

The inode log also uses inodes to record information
about reclaimed versions and to record a file’s deletion time.
Recall that we retain information about reclaimed versions so

that users can detect discontinuities in a file’s history. To do
this, the system replaces reclaimed inodes with an inode that
describes the discontinuous interval they leave behind. Sim-
ilarly, when a file is deleted, an inode is added to the end of
the log to record the delete time. The delete time is needed
by the Keep-Safe policy, for example, to determine when the
delete becomes permanent.

4.3 Directories

active partition

name, inumber, ... , created, deletedinode

inode history partition (if needed)

name, inumber, ... , created, deleted

inode file

Figure 2. Directory structure.

Directories map names to inumbers. They differ in their
usage from files in that files are explicitly opened and closed
whereas directory modifications are implicit side effects of
other system calls. For this reason Elephant handles the ver-
sioning of directories differently from that of ordinary files.

Elephant directories store versioning information explic-
itly, and so are implemented using standard inodes, not in-
ode logs. Each directory entry stores a name’s creation time
and, if deleted, its deletion time. It is possible for multiple
instances of the same name to co-exist in a directory, pro-
vided that no two of them existed at the same time. A name
remains in a directory as long as at least one version of the
file it names remains in the file system. Directory layout is
depicted in Figure 2.

Initially a directory is stored in a single inode. If a di-
rectory accumulates a sufficiently large number of deleted
names, a second inode is allocated to store the deleted names.
As necessary, the system periodically moves deleted names
from the active inode to the history inode and compacts the
active inode. A name lookup on the current version of a di-
rectory scans only the active node, while a lookup on an past
version of the directory scans both inodes. This partitioning
thus ensures that the history information stored in a direc-
tory does not significantly slow the common case operation
of looking up a name in the current version of the directory.

An alternative to keeping versioning information in di-
rectories would have been to treat directories in the same
fashion as versioned files. The result, however, would be
wasteful of inodes and data blocks, because each name cre-
ation or deletion would require a new data block and thus a
new inode for the directory. Copying a large directory, for
example, would create a new directory inode for every name
in the directory.

4.4 System interface

Elephant allows users to add a timestamp tag to any
pathname they present to the file system. If this tag
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setCurrentEpoch (timestamp)
getHistory (file) ) history
setLandmark (file)
unsetLandmark (file)
setPolicy (file, policyID)
groupFiles (fileA, fileB)
ungroupFile (file)

Table 1. Kernel interface for user-mode applications.

mapImap (pathname) ) mntPt
lockFile (mntPt, iNumber)
unlockFile (mntPt, iNumber)
readBlock (mntPt, block)
writeBlock (mntPt, block)
freeBlock (mntPt, block)

Table 2. Kernel interface for the cleaner process.

is present, Elephant accesses the version of the file
that existed at the specified time. If a user types “cd
.@12-nov-1999:11:30”, for example, their working
directory is changed to the version that existed at the
specified date and time.

If a timestamp tag is not specified, the selected version is
determined by either the timestamp of the current workingdi-
rectory, if a relative pathname is specified (e.g., “file”), or
the process’s current epoch, if a complete pathname is spec-
ified (e.g., “/file”). Users can change a process’s current
epoch as described next and child processes inherit their par-
ent’s current epoch when they are created.

Table 1 shows the seven new system calls added for Ele-
phant. The setCurrentEpoch operation changes the current
epoch of the calling process. The getHistory operation re-
turns a digest of the inodes in a file’s inode log, including
key fields such as the timestamp of each inode. The setLand-
mark operation designates the specified file version to be a
landmark so that the Keep-Landmarks policy will never re-
move the version; unsetLandmark removes this designa-
tion. The setPolicy operation assigns a retention policy to
a file. The groupFiles operation places fileA and fileB in
the same group for treatment by their retention policy, as de-
scribed in Section 3.6. The new group contains the transi-
tive closure of any files previously grouped with either of the
two files. The current prototype requires that the user explic-
itly create file groups by naming each file. We are consider-
ing more flexible group creation schemes where directories
or subtrees could be grouped together. The ungroupFile op-
eration removes file from its group, if one exists.

4.5 Storage reclamation

Storage reclamation is handled by a system cleaner that im-
plements the per-file retention policies described in Sec-
tion 3.2. The cleaner is a privileged and trusted user-mode
process that uses a customized kernel interface to interact
with the Elephant file system.

Table 2 details the kernel interface used by the cleaner.
The mapImap call maps the inode map for the Elephant file

system named by pathname into the cleaner’s virtual ad-
dress space. Also, it returns mntPt, the file system’s mount-
point id, which the cleaner uses on subsequent calls to the
kernel. The mount-point id is necessary to allow multiple
Elephant file systems to co-exist on one system.

The lockFile and unlockFile operations lock and unlock
the selected file’s inode log; no other process is permitted
to operate on the file while the cleaner has it locked. The
cleaner reads and synchronously writes the inode log directly
using the readBlock and writeBlock calls; blocks are named
by mount point and relative disk address. Finally, freeBlock
frees the specified physical block.

The cleaner process runs in the background, scanning the
memory-cached imap for a high-temperature file. When it
selects a file, it calls lockFile and then uses readBlock to
read the file’s inode log into memory. It then scans the log to
build a binary tree of the physical blocks allocated to the file
and counts the number of inodes that reference each block.
If the policyGroup field in the imap indicates that the file is
part of a policy group, it repeats this process for every file in
the group. To avoid deadlock, if the cleaner encounters a file
that is already locked, it immediately releases all of its locks
and skips the group.

The cleaner proceeds by invoking the file’s policy to pick
zero or more inodes for deletion. It deletes each inode by up-
dating the in-memory inode log and decrementing the block-
list reference counts for each of the inode’s blocks. Finally, it
calls writeBlock to write the modified inode log to disk, calls
freeBlock to free any block in the block list with a reference
count of zero, and calls unlockFile to release its lock on the
file’s inode log.

The cleaner protects the file system from failures that oc-
cur during cleaning by ordering disk writes to ensure that a
block is not freed if any inode on disk stores a reference to
it. A recovery procedure reclaims disk blocks that are un-
reachable from any inode. If the cleaner process fails in-
dependently of the rest of the system, locked inodes are in-
accessible and partially freed disk blocks are not reclaimed.
The system detects and recovers from cleaner failure by ter-
minating the cleaner process, releasing all inode-log locks it
holds, scheduling the recovery procedure, and restarting the
cleaner.

Finally, it is important to distinguish the Elephant cleaner
from the cleaner of a Log Structured File System [19, 22, 9].
An LFS cleaner serves two roles: it frees obsolete blocks and
it coalesces free space. In contrast, the Elephant cleaner’s
role is simply to free obsolete blocks. As a result, the Ele-
phant cleaner has significantly lower overhead than an LFS
cleaner, because Elephant’s cleaning is performed without
reading any file data blocks, only the inode log need be ac-
cessed. In contrast, the LFS cleaner must typically read ev-
ery data block at least once, even obsolete blocks, and it may
read and write active blocks multiple times.

4.6 Tools

We have augmented the standard set of UNIX file manipula-
tion tools to add several new tools that manage the file sys-
tem’s new temporal dimension. The tls tool is similar to ls,
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registerPolicy (pathname) ) policyID
unregisterPolicy (policyID)
lookupPolicy (policyID) ) pathname

Table 3. Kernel interface for registering application-
defined policies modules.

cleanFile (fileHistory) ) (verList, newTemp)

Table 4. Interface exported by application policy mod-
ules; called by the system cleaner.

but instead outputsa list of a file’s history, including informa-
tion about deleted versions. The tool allows users to select a
history of a specified inumber or name; name histories may
include versions from multiple files with different inumbers.
Similarly, tgrep searches for patterns in every version of a
file in much the same way that grep searches a list of files.
Finally, tview provides a graphical view of the individual or
combined histories of a group of files.

5 Application defined retention policies

Elephant allows applications to define and implement their
own file retention policies to augment the system defined
policies described in Section 3.2. An application defined pol-
icy can be used, for example, where the user wishes to use
a different definition of landmark versions — perhaps one
based on how much file data changed between versions rather
than on the timeline of those changes. Application-defined
policies run as non-privileged and untrusted processes that
communicate with the privileged system cleaner.

5.1 Registering an application policy

Application-defined policy modules must be registered with
the kernel before they can be used. When registered, the
kernel assigns a unique number to the policy and users call
the standard setPolicy operation to assign this policy to files.
The system cleaner invokes application-defined policies in
much the same way it invokes the system-defined policies.

Table 3 shows the kernel interface for registering
application-defined policy modules. Applications call reg-
isterPolicy to register the program specified by pathname
as a new policy and they call unregisterPolicy to remove
a policy. Policies can be unregistered only by a system
administrator or by the user that registered the policy. The
kernel assigns a unique policyID to all policies and stores
the registration persistently.

The system cleaner calls lookupPolicy to locate the path-
name of the policy module for a given policyID. If the policy
has been unregistered, lookupPolicy returns an error and the
file’s policy defaults to the Keep All system policy.

5.2 Operation of application policies

Application-defined policy modules export the single clean-
File operation shown in Table 4. When the system cleaner

encounters a high-temperature file handled by an application-
defined policy, it forks the appropriate policy-module pro-
gram, unless it is already running, and calls the process’s
cleanFile operation. This process runs with the privileges of
the target file’s owner. To amortize the overhead of starting
the policy-module program, the cleaner maintains a pool of
recently accessed processes. It limits the total number of pro-
cesses, terminating the least-recently accessed process when
this limit is reached.

Before calling cleanFile, the system cleaner locks the
target file’s inode log, reads its inode log into memory, and
builds its allocated-block list, as described in Section 4.5. In
the call to cleanFile, the cleaner provides the policy mod-
ule with a digest of the file’s history that includes block-
allocation information.

In response to the cleanFile call, the application policy
module examines the file’s history and builds a list of the zero
or more versions of the file it wishes to delete. It computes
a new temperature for the file and returns the verList and
newTemp to the system cleaner. This procedure is the only
way that an application-defined policy can change a file’s
temperature. Unlike system policies, application policies do
not get control when a file is closed and thus they can not af-
fect the file’s temperature at that time.

Upon successful completion of a cleanFile call, the sys-
tem cleaner deletes the versions listed in verList, frees the as-
sociated disk blocks, updates the file’s temperature, and un-
locks its inode log, as described in Section 4.5. If cleanFile
fails to return within a prescribed timeout interval, the sys-
tem cleaner cancels the call, and unlocks the file’s inode log.
This timeout protects the system from policy-module failure.

6 Performance and evaluation

This section assesses the feasibility of our design. First, we
compare the performance of our Elephant prototype to the
standard FreeBSD FFS file system. Second, we examine the
types of files stored by a large file system to estimate what
portion of its files would be versioned. Third, we analyze
file-system trace data to estimate how much extra storage an
Elephant file system might consume for history information.
Finally, we describe a key feature of the Elephant prototype
that allows it to shadow an NFS server and we report on the
results of two short-term user studies conducted using this
feature.

6.1 Prototype performance

Our experimental setup consists of a 200 MHz Pentium
MMX with 64 MB of RAM and a 3 GB IDE disk. Our
prototype is a modified FreeBSD 2.2.8 kernel. We com-
pare the performance of the prototype to an unmodified
FreeBSD 2.2.8 kernel, which uses the UNIX fast file sys-
tem (FFS) [11]. Both file systems were configured with a 4
KB block size. The measurements were taken by configur-
ing each file system in the same disk slice to normalize for
the effects of disk geometry.

In the following tables, FFS refers to the fast file system,
EFS-O refers to files using the Keep-One policy whose in-
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Operation EFS-V EFS-O FFS
(�s) (�s) (�s)

open (current) 134 133 132
open (20th ver) 140 — —
open (75th ver) 160 — —
write (4 KB) 58.7 54.5 47.3
close (upd) 35.8 34.5 34.9
close (upd 24th ver) 121 — —
create (0 KB) 5040 3750 3930
delete (0 KB) 452 2154 3010
delete (64 KB) 446 4522 4732

Table 5. Performance of basic file system operations.

odes are stored in the inode file, and EFS-V refers to files
using the Keep-All policy whose inodes are stored in inode
logs (the performance of Keep Safe and Keep Landmarks is
identical to Keep All).

6.1.1 Micro-benchmarks

Table 5 summarizes the performance of the basic file system
operations. All measurements were taken by running a user-
mode program and using the Pentium cycle counter to mea-
sure the elapsed time each system call spends in the kernel.
The times do not include the overhead of entering and exit-
ing the kernel. Each number represents the median of 10,000
trials.

The first three lines of Table 5 show the time to open a
file when its inode (or inode log) is cached in memory. The
first line shows that the time to open a file’s current version
is virtually the same in Elephant and in FFS. This is also true
if the inode and inode logs are not cached; in this case, both
EFS and FFS are slowed by the latency of a single-block disk
read. The next two lines show the cost of opening an older
version, which requires scanning the inode log and possi-
bly reading additional inode-log blocks; each 4 KB inode-
log block stores 24 inodes. Opening the 20th version is 6 �s
slower than opening the current version, 0.3 �s for each in-
ode scanned. Opening the 75th version is 26 �s slower. If
the inode and inode-log blocks are not cached in memory,
open (20th ver) requires one disk read and open (75th ver)
requires four, one for each inode-log block it must scan.

The cost of the first write of a 4 KB block after an open
is 58.7 �s in EFS-V and 47.3 �s in FFS, including the time
to schedule an asynchronous disk write. EFS-V is 11 �s
slower due to the copy-on-write operation required for this
first write. The performance of subsequent writes to the
block before the close is the same as in EFS-O. EFS-O is
7.2 �s slower than FFS, because the prototype currently per-
forms a modified copy-on-write for these writes as well. This
use of copy-on-write is an artifact of the way our prototype
evolved; it is not required for versioning and could be re-
placed with an update-in-place scheme with the same perfor-
mance as FFS.

The next two lines of Table 5 show the time to close a
modified file. For EFS-V, the close produces a new version
of the file. If the file’s new inode fits in the current inode-log
block (i.e., close (upd)) the performance of EFS-V is virtu-

ally the same as EFS-O and FFS. If it does not fit (i.e., close
(upd 24th ver)) a new inode-log block is allocated and over-
head increases by 85.2 �s. All EFS and FFS close operations
require a single disk write; in the times reported, this write is
handled asynchronously. Finally, if the inode or inode log is
not cached in memory, all EFS and FFS close operations re-
quire one disk read. Closing a read-only file is the same in
EFS and FFS.

The last three lines of Table 5 show the time to create
and delete a file. Creating an empty versioned file requires
5.04 ms. This time is 1.11 ms slower than FFS, because EFS
must allocate a new inode log for the file and write it to disk.
Deleting a versioned file in EFS is considerably faster than
FFS, both because an EFS delete does not release the file
or its disk blocks and because EFS writes some meta data
asynchronously. The actual release of storage in EFS is per-
formed by the cleaner process, and Section 6.1.4 reports on
its performance.

Finally, we measured the performance impact of ver-
sioned directories. Recall that an Elephant directory stores
both active and deleted names and that a second inode is used
to archive deleted names. The system periodically moves
deleted names to the archive and compacts the active names;
the overhead of this operation is 0.22 �s per name in the ac-
tive inode. Name lookup in the current version of a directory
is slowed by the number of deleted names in the active in-
ode that must be skipped. Currently, we trigger compaction
when the active inode has 20% deleted names. The impact
on name-lookup time, however, is much less than 20%, be-
cause a deleted entry can be skipped without performing a
name comparison, the operation that dominates lookup over-
head.

6.1.2 The Andrew file system benchmark

We ran the modified Andrew File System Benchmark for
EFS-V, EFS-O, and FFS. This standard benchmark is de-
signed to represent the actions of a typical UNIX user. It cre-
ates a directory hierarchy, copies 70 source files totaling 200
KB into the hierarchy, traverses the hierarchy to examine the
status of every file, reads every byte of every file, and com-
piles and links the files.

To be conservative, we modified the prototype to force all
EFS-V files to be stored in an inode log. We did this because
Andrew does not overwrite or delete files and thus the EFS
adaptive meta-data allocation scheme would normally store
these single-version files in an inode, not an inode log.

The benchmark’s elapsed time was 19 s for EFS-V and
EFS-O, and 18 s for FFS. FFS was one second faster in the
compile-and-link phase of the benchmark. The total meta
data consumed by files was 18 KB for EFS-O and FFS and
444 KB for EFS-V. EFS-V consumed 426 KB more space,
because it stored files in 4 KB inode logs instead of 168 B
inodes.

6.1.3 Copying a large directory

We also measured the performance of copying a directory
that is substantially larger than that used in the Andrew
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Benchmark. For this experiment, we copied the FreeBSD-
kernel source tree, which consists of 1525 files totaling 20
MB. Again, we forced all EFS-V files to use an inode log.

We measured an elapsed time of 49 s for EFS-V, 56 s for
EFS-O, and 115 s for FFS. EFS is faster than FFS because it
performs meta-data writes asynchronously and because EFS
can place a newly created inode or inode log anywhere on
disk and is thus able to group meta-data and data writes more
effectively than FFS. The total meta-data consumed in EFS-
O and FFS was 0.24 MB; EFS-V consumed 5.9 MB.

6.1.4 Cleaner performance

To measure the ability of the cleaner to free disk blocks, we
created three versions of 1000 different files. Each version
modified every block of a file. File sizes ranged between 1
KB and 1 MB, with most of the files less than 4 KB; the mean
file size was 145 KB. The Keep-Safe policy was assigned to
each file and the cleaner was triggered when the changes be-
came permanent. The cleaner then removed two versions of
each file for a total of 284 MB.

In this experiment, the cleaner was able to release storage
at a rate of 5.6 MB/s. The cleaner spent roughly 70% of its
time calling freeBlock, once for each block it frees. An op-
timization that allowed blocks to be freed in bulk would thus
substantially improve cleaner throughput.

6.2 File system profile

We have examined the profiles of the files stored in the home-
directory file system of a large workgroup server within HP
Labs. The server currently supports approximately a dozen
active researchers, who use it for development, document
preparation, email, etc. This single file system contains ap-
proximately 15 GB of data in 360,000 files and 27,000 direc-
tories.

Using rough heuristics based on the file extension and the
results of the UNIX file command, we divided these files into
the following major categories.

� Source includes program source files, i.e., C, C++,
perl, shell scripts, etc.

� Document includes files used for general document
preparation, typically plain text, HTML, word proces-
sor files, and mail files.

� Derived includes files that are derived from other files,
and which can presumably be easily re-created. These
include object, library, executable, postscript, and PDF
files.

� Archive includes those files that are typically used for
archival purposes, such as tar and compressed files and
data files containing experimental results etc.

� Temporary includes files with extensions like .tmp and
Netscape cache files.

� Other includes all other files. Unfortunately, it was im-
possible to categorize all files effectively (there were

File Type Files (%) Bytes (%)
Source 14.6 3.4
Documents 22.6 11.0
Derived 20.6 53.3
Archive 3.9 28.5
Temporary 13.0 3.0
Other 25.2 0.8

Table 6. File distribution of 15 GB HPL server home
directories.

over 4,000 distinct file name extensions present in the
file system).

Table 6 shows the distribution of files into these six cate-
gories. It is reasonable to assume that most Derived and Tem-
porary files would use the Keep-One policy, most Archive
files would use the Keep-Safe policy, and that the remainder
might use the Keep-Landmarks policy. If these assumptions
hold, then the distribution of files to policies breaks down as
follows:

� Keep One: 33.6% of files – 56.3% of bytes

� Keep Safe: 3.9% of files – 28.5% of bytes

� Keep Landmarks: 62.4% of files – 15.2% of bytes

These results are conservative, as it is likely that many of
the files we assigned to the Keep-Safe and Keep-Landmark
categories would actually be in Keep One. A small sampling
of these files reveals that many of them are part of packages
from other sources (e.g. gcc distributions) that are essentially
read-only.

A larger scale study of file-system contents on a variety
of machines at Microsoft [2] reveals results similar to those
above. Using the file name extension information they pro-
vide, and making an assignment of extension type to policy,
we determine that approximately 12% of the bytes in their
file systems would probably be under the Keep Landmarks
policy.

Another interesting result of the Microsoft study is their
observation that file systems are, on average, using only 50%
of the available disk capacity. This implies that modern sys-
tems have sufficient free capacity to keep numerous versions
of many files.

6.3 Trace studies

We also collected file-system trace data from the same server
at HP labs that we used for our file-system profile. Using an
HP-UX system call tracing facility, we recorded all file sys-
tem activity that occurred between August 29 and October
8, 1999. In particular, we recorded all open, close, read and
write events on all files in the system.

We have used these traces to try to provide an approxi-
mate upper bound on the growth of an Elephant file system.
We processed the traces by generating a list of modified or
updated files, and categorizing these into one of our three pol-
icy categories using the same heuristic as we used for the file-
system profile described in Section 6.2.
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Policy Files Bytes Writes
(%) (%) (% Bytes)

Keep One 33.6 56.3 98.7
Keep Safe 3.9 28.5 0.6
Keep Landmarks 62.4 15.2 0.7

Table 7. Estimated distribution of files and file-writes to
Elephant policies.

Using trace data for the week of Monday, September 27
through Friday, October 1, we calculated the distribution of
writes into each of these categories. The average amount of
data written each day was 112,219 KB, of which the vast ma-
jority, 110,793 KB (98.7%), was to files in the Keep One cat-
egory, 662 KB (0.6%) was to Keep Safe category files, and
764 KB (0.7%) was to Keep Landmark files. Table 7 sum-
marizes the results of both the profile and trace studies.

These results are very promising, for three reasons. First,
the amount of data needing some form of versioning per day
(1.4 MB) is not large: it is only a small percentage of mod-
ern disk drive capacity. Second, this is a conservative figure.
Several of the files included in the final traces would not be
versioned in an Elephant system, as they were copies of other
existing files (e.g. from source packages downloaded from
the internet). Finally, the analysis above does not account for
file deletion or overwrites. It is certain that these operations
would reduce the amount of storage growth, as Elephant for-
got some of the file versions.

6.3.1 Impact on the buffer cache

A potential drawback of Elephant is that it reduces the effec-
tiveness of buffer-cache write absorption and thus increases
the number of disk writes. In most UNIX systems, two
writes to the same file system block within a certain time pe-
riod (typically thirty seconds) will be absorbed by the buffer
cache, and will result in only a single disk write. In addition,
writes that occur shortly before a delete need not be written to
disk. For Elephant versioned files, however, if there is an in-
tervening close between the file system writes, then two sep-
arate disk writes are required. Similarly, writes to a deleted
versioned file must be written to disk.

We examined our file system traces to determine the po-
tential increase in write traffic. Only a very small propor-
tion (less than 5%) of the overall writes are to blocks that are
overwritten, or to files that are are deleted, within 30 seconds
of that write. Factoring in our observation that only 1.3%
of writes are to potentially versioned files, we conclude that
their impact on disk write traffic should be minimal. A qual-
itative analysis of a subset of the traces showed that the few
writes in this category were typically to files being actively
edited, where the user had performed two or more “save” op-
erations in a short space of time.

6.4 NFS shadowing and user studies

Convincing people to trust their valuable data to a research
file system is a daunting task at best, and for a good reason.

A key part of the evaluation of our ideas, however, requires
that people use the system to do real work.

To solve this dilemma, we modified our prototype to
shadow NFS traffic on our local network. The modified pro-
totype snoops NFS traffic between clients and NFS servers
and duplicates all file and directory creations and deletions
and all file writes in an Elephant file system. To collect in-
formation about how users access old files, the prototypelogs
each time an old version of a file is accessed.

As a result, people can keep their files on an NFS server
and perform all updates over NFS, while being able to view
the history and change the retention policy of the shadowed
copy of their files stored by Elephant. Furthermore, we can
gain confidence in the robustness of the prototype by exer-
cising it with a real, high-volume workload.

The NFS-shadowing implementation was complicated
by the fact that NFS clients do not inform the NFS server
when a file is closed. This information is critical, however,
because closes determine when a new version is created. To
solve this problem, we used a heuristic that assumes a file was
closed if a pair of writes is separated by more than 10 sec-
onds.

We have conducted two preliminary user studies using
this technique, one with a group of eight graduate-students in
a research lab, the other with a class of twenty students work-
ing on programming assignments in a graduate course. The
first study covered roughly four weeks and the second cov-
ered about two weeks while students were working on one
assignment. In both studies, we marked all files as Keep All
and tracked which old versions were accessed by users and
when they were accessed.

As a result of these two studies we have gained confi-
dence in the stability of our prototype and we have seen that
users will access old versions of their files if the file system
retains them. We have also seen, however, that short-term
studies can not provide useful information about the efficacy
of long-term policies such as Keep Landmarks or about the
impact Elephant will have on the way people use file systems.

Answering to these two important questions requires that
people use the file system for many months. A long time
period is required to determine whether versions deleted by
Keep Landmarks or other policies will eventually be re-
quested by a user or whether versions retained by such a pol-
icy will never be requested. Similarly, we believe that it takes
time for users to gain sufficient confidence so that they feel
free to modify or delete important files without first making
backup copies. It is only when users have this confidence that
we will gain insight into the intriguing question of how this
new file-system model will change user behavior. Finally,
long-term studies are needed to shed light on other issues re-
lated to user behavior such as possible heuristics for automat-
ically assigning policies to files.

Our main contribution in this area, therefore, has been
to enable future long-term studies by providing a working
prototype and an experimentation framework. NFS shad-
owing will allow people to use the file system without hav-
ing to trust it to store their data and our logging facility will
record when they access old versions. In addition, the fact
that the prototype allows users to define new policies should
encourage users to experiment with a variety of policy ideas.
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With these pieces in place, it is possible for us or other re-
searchers to conduct the long-term user studies necessary to
better understand the relationships between Elephant, its re-
tention policies, and user behavior.

6.5 Summary

Our performance measurements show that there is no show-
stopper in the Elephant prototype. Performance is compet-
itive with the standard FreeBSD FFS across a broad range
of micro-benchmarks and some simple macro-benchmarks.
We show that meta-data storage for versioned files can be 24
times larger than for non-versioned files, if a versioned file is
stored in an inode log instead of an inode. This fact demon-
strates the importance of our adaptive approach that uses in-
ode logs only where necessary, to store files that currently
have a history.

Our analysis of the file system traces and studies of the
distributionof file types tell a common story. The majority of
files, and specifically files that are written, are files that would
normally not be versioned. The number of files for which
versioning would be desirable comprise only a small frac-
tion, approximately 12–15%, of typical file systems. This re-
sult is validated by the relatively small write rate we have cal-
culated for the file system traces on versionable files. Given
these results, we believe that the extra storage and disk write
overhead incurred by using a file system such as Elephant is
of minimal cost compared to the convenience and time gains
(due to not having to restore or recreate accidentally-deleted
files) made possible.

Finally, using NFS-server shadowing, we are able to ex-
ercise the prototype with a real user workload and we are be-
ginning to gain some information from users regarding the
usability of the system. Information about Keep Landmarks
and other long-term retention policies, however, can only be
obtained from a long-term user study, which is reserved for
future work.

7 Related work

The goal of keeping multiple versions of data automatically,
compactly, and in an organized way is reminiscent of soft-
ware revision control systems [17, 24]. These systems are
implemented by application programs running on top of a tra-
ditional file system. Users checkout a version from a version-
controlled repository, modify a local copy of that version in
the file system, and then return the modified version to the
repository, which compresses it with respect to older ver-
sions. In essence, the goal of Elephant is to extend this idea
to all clients of the file system by moving the versioning se-
mantics into the file system, while supporting the traditional
file system interface, and thus freeing users from the details
of version management.

The idea of versioned files was first proposed for the
Cedar file system from Xerox PARC [20, 4]. In Cedar, files
were immutable; writing to a file produced a new version of
the file and file names included a version number (e.g., file-
name!10). A similar idea was found in the RSX, VMS [1],
and TOPS-10/-20 [13] operating systems from Digital.

The approach taken by these systems has two key limi-
tations. First, the maximum number of file versions retained
by the system was assigned as a per-file parameter; when this
threshold was reached, the oldest version was deleted. How-
ever, the deletion of the oldest version is a poor heuristic for
deciding which files are valuable. Interestingversions of files
may be discarded while undesirable or less interesting ver-
sions still exist. Second, versioning did not apply to directo-
ries. Operations such as renaming a file, creating or destroy-
ing a directory, or, in some cases, deleting a file, were thus
not revocable.

Several recent file systems have taken a different ap-
proach to versioning. In systems such as AFS [6], Plan-9
[16, 15], and WAFL [5] an efficient checkpoint of an entire
file system can be created to facilitate backup or to provide
users with some protection from accidental deletes and over-
writes. A checkpoint is typically created and maintained in a
copy-on-write fashion in parallel with the active file system.
The old version thus represents a consistent snapshot of the
file system sufficient for creating a consistent backup while
the file system remains available for modification by users.
The snapshot also allows users to easily retrieve an older ver-
sion of a file.

These systems differ in how frequently checkpoints are
taken and in how many checkpoints are retained. In AFS
and Plan-9, checkpoints are typically performed daily. In
WAFL they can be performed as frequently as every few
hours. Plan-9 integrates tertiary storage with the file system
and can thus retain all checkpoints, WAFL can keep as many
as 20, and AFS keeps only the most recent checkpoint.

Checkpointing file systems have two major limitations.
First, checkpoints apply to all files equally, but files have dif-
ferent usage patterns and retention requirements. While it is
not feasible to retain every version of every file, it may be im-
portant to keep every version of some files. Unfortunately,
this dilemma cannot be solved using a file system-grain ap-
proach to checkpointing. Elephant addresses this limitation
using file-grain retention policies that can be specified by the
user. Second, changes that occur between checkpoints can-
not be rolled back. For instance, users of daily-checkpointing
systems such as Plan-9 or AFS are as vulnerable as UFS users
to losing all their morning’s work in the afternoon, due to an
inadvertent file deletion or overwrite.

The POSTGRES data base [23] maintains a complete his-
tory of database tables by archiving the transaction log. It
also adds temporal operators to SQL to allow querying the
state of the database at any point in the past. This provides
database users with functionality similar to what Elephant
gives file system users.

8 Other issues and future work

This section briefly discusses several remaining issues re-
lated to our design and prototype implementation that we are
actively considering.
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8.1 Version history export and import

Currently, Elephant stores files as version histories, but users
can only access files one version at a time. This interface
makes sense, because it matches the way that people access
files in standard file systems. It is also useful, however, to
allow users and applications to manipulate files at the gran-
ularity of their complete history. This facility is needed, for
example, to move a file from one Elephant file system to an-
other or to backup a file and its history.

We envision adding two new file-system operations to
export and import file histories, either as kernel operations
or as user-mode tools. Export would generate a single inter-
mediate file containing the exported file’s complete history.
Import would reconstitute a versioned file from an intermedi-
ate file. Copies between Elephant file systems could be han-
dled using a combined export-import operation, optimized to
avoid creating the intermediate file.

An important open question is how to handle files that are
managed by an application-defined policy. Ideally, the inter-
mediate file would form a closure of both the exported file
and its policy module. A file imported from another Elephant
file system could then really be identical to the exported file.

8.2 Disconnected operation

Export and import operations allow users to use multiple Ele-
phant systems to access a file, by copying it to the appropriate
system before accessing it. It would be useful to extend this
modest support to allow for full-fledged disconnected oper-
ation. In any file system, the key issue for disconnected op-
eration is handling updates to a file that occur concurrently
in multiple file systems [7]. For Elephant, the issue is some-
what more complicated, because it requires that an import
operation be able to merge the version histories of multiple
copies of a file. The key problem is that the merged history
may have intervals in which multiple versions co-existed.

8.3 Version history merge and branch

Fundamental to Elephant’s naming scheme is the assumption
the multiple versions of a file never co-exist. We have just
seen, however, that disconnected operation can violate this
assumption. The same is true for software revision control
systems.

A revision control system typically views file history as a
rooted acyclic graph, allowing for branch and merge points.
A branch occurs when a single version splits into two or more
new versions of the file that can be modified independently.
A merge combines multiple concurrent versions of a file into
a single version. Merging thus allows branched versions to
be reconciled periodically, before a software release, for ex-
ample.

To support disconnected operation and applications such
as RCS, we are exploring the idea of adding branch and
merge points to Elephant file histories. The key issue is nam-
ing. Our current approach that uses time to name files must
be augmented or replaced in order to resolve ambiguities that
occur when multiple versions co-exist. One strategy is to add

a tag to each concurrent history created by a branch. Ver-
sions could then be named by the pathname-time-tag triple
when necessary to disambiguate among concurrent versions
of a file.

9 Conclusions

Since their inception, file systems have contracted with their
users to reliably store the most recent version of each file until
that file is deleted. File systems have evolved excellent solu-
tions to address a wide variety of network, system, and media
failures. We believe that it is time to offer a richer contract
in which the file system also protects users from their own
mistakes. This has become feasible due to the recent arrival
of very large cheap disk storage. Our analysis of file system
trace data indicates that the amount of space required to pro-
vide this level of protection is moderate, on the order of 1.4
MBytes per day, per user.

Providing protection from user mistakes requires the sep-
aration of file system modification operations and file system
storage reclamation. All operations in the file system that
modify data must be revocable, meaning that copy-on-write
techniques must be used to maintain all file system data, and
no regular file system operation can free storage. Since file
system modification has been separated from storage recla-
mation, we must define mechanisms and policies for storage
reclamation. We have argued that the system must support
the specification of storage reclamation policies at the gran-
ularity of individual files or groups of files. We have also
described four storage reclamation policies that we believe
will be valuable to users, and also how both these system-
defined policies and application-defined policies can be im-
plemented using a simple interface to the file versioning in-
formation maintained by the file system.

This paper has presented our arguments that this new
contract between the file system and the user is desirable and
feasible, and has described our initial attempt to build a file
system, Elephant, which implements this new contract. Our
experience with the system to date indicates that there is no
substantial performance penalty for providing this additional
level of protection.
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