17th ACM Symposium on Operating Systems Principles (SOSP ' 99),
Published as Operating Systems Review, 34(5):110-123, Dec. 1999

Deciding when to forget in the Elephant file system

Douglas S. Santry', Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch',
Ross W. Carton, and Jacob Ofir

Department of Computer Science
University of British Columbia

{dsantry,feeley,norm,carton,jofir} @cs.ubc.ca

Abstract

Modern file systems associate the deletion of a file with the
immediate release of storage, and filewriteswith theirrevo-
cable change of file contents. We argue that this behavior is
arelic of the past, when disk storage was a scarce resource.
Today, large cheap disks make it possible for the file system
to protect val uable data from accidental delete or overwrite.

This paper describes the design, implementation, and
performance of the Elephant fil e system, which automatically
retainsall important versions of user files. Users nameprevi-
ousfileversions by combining a traditional pathnamewith a
time when the desired version of a file or directory existed.
Sorage in Elephant is managed by the system using file-
grain user-specified retention policies. This approach con-
trasts with checkpointing file systems such as Plan-9, AFS,
and WAFL that periodically generate efficient checkpoi nts of
entire file systems and thusrestrict retention to be guided by
asingle palicy for all fileswithin that file system.

Elephant isimplemented as a new Mirtual File Systemin
the FreeBSD kerndl.

1 Introduction

Disksare becoming ever cheaper and larger. Human produc-
tivity, however, remains constant. This affords system de-
signers an opportunity to re-examine the way file systems
use disk stores. In particular, the current model of user-
controlled storage management may no longer beideal.

In atraditional file system, users control what is stored
ondisk by explicitly creating, writing, and deletingfiles. The
key weakness of this model isthat user actions have an im-
mediate and irrevocabl e effect on disk storage. If auser mis-

! Author’s current address is Network Appliance, Inc., Sunny-
vale, CA.

Permission to makedigital or hard copiesof all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on thefirst
page. To copy otherwise, to republish, to post on serversor to re-
distribute to lists, requires prior specific permission and/or afee.
SOSP-17 12/1999 Kiawah Island, SC

(©1999 ACM 1-58113-140-2/99/0012...$5.00

110

tStorage Systems Program
Hewlett-Packard Laboratories

aveitch@hpl.hp.com

takenly deletes or overwritesavauablefile, thedatait stores
isimmediately lost and, unless a backup copy of thefile ex-
ists, lost forever.

Over the years, amain focus of file system research has
been to protect data from failure. Excellent solutions exist
to protect data from a wide variety of network, system, and
mediafailures. Usersof an appropriately configured filesys-
tem can now rest assured that their valuable datais safe and
available, protected from all forms of failure; al, that is, but
failures of their own making. As soon as users modify or
delete afile, none of the carefully engineered protectionsin
thefilesystem can savethem from themselves or fromthe ap-
plicationsthey run. Some partial solutionsand coping mech-
anisms do exist, but none adequately solves the problem.

Some early file systems such as Cedar provided a degree
of protectionfrom accidental overwrite, but not del ete, by au-
tomatically retaining the last few versions of afilein copy-
on-writefashion[20, 1, 13]. Limited storage space, however,
meant that only afew versionscould beretained. The choice
of which version to prune was either left to the user or the
oldest versionsweredeleted. In either case, valuablefilever-
sions could easily belost.

Personal computer operating systems provideadegree of
protection from accidental delete, but not overwrite, using
the “trash can” metaphor, which requires a two step process
toredly delete afile. The trash can, however, provides only
limited undo capability. Eventually storage becomes con-
strained and the trash can must be emptied. File deletions
that occur shortly before the empty are afforded only a very
limited period in which they can be undone.

In most well-maintained file systems, off-line backup
storage is used to protect users from system failures, me-
diafailures, and their own mistakes. Checkpointingfile sys-
tems such as Plan-9, AFS, and WAFL buildthis support into
the file system using copy-on-write techniquesto create pe-
riodic file-system checkpoints[16, 5, 6]. These checkpoints
are available online and they alow users to access out-dated
versions that were captured by a checkpoint. Changes that
occur between checkpoints(or backups), however, arenot re-
coverable. Furthermore, thefact that checkpointing occursat
thegranularity of theentirefile system limitsthe number and
frequency of checkpoints.

The lack of file system support has required users and
application devel opers to devise various coping mechanisms



to protect their data. A user who wants to maintain older
versions of files must explicitly make and maintain multiple
copies. A savvy user tendsto be conservative, making many
copies of dataand avoiding deletes whenever possible. File-
editing applications often provide operation-grain undo ca
pability and perform liveeditingin acopy of the original file
that replaces thefilein an atomic operation when users com-
mit changes.

Today, information is valuable and storage is cheap. It
thusmakes sense for thefile system to use some of thischeap
storage to ensure that valuablefiles are never lost dueto the
failure of auser to make acopy (or make the right copy) be-
fore modifying them, or because of the accidental or unin-
formed deletion of afilethat isin fact valuable.

Furthermore, we believe that the amount of storage ded-
icated to files that are modified by users is growing slowly
compared to the total amount of data stored in the file sys-
tem. Asthe capacity of asingleinexpensive disk approaches
50 GB, only asmall fraction of thisspace will be occupied by
filesthat require protection from user mistakes. Therest will
be temporary, derived, and cached data that can be ignored,
re-created, or re-fetched if lost.

This paper describes the design, implementation, and
performance of the Elephant file system. In Elephant, old
versions of files are automaticaly retained and storage is
managed by thefile system. Users specify retention policies
for individual files, groups of files, or directories. The goal
of Elephant isto alow usersto retain important old versions
of al of their files. User actions such as delete and file write
are thus easily revocable by rolling back afile system, a di-
rectory, or anindividual fileto an earlier point intime.

2 Issuesfor storage management

A file system that protects users from their mistakes must
separate storage management from the common file-system
operations available to users (e.g., open, write, close, and
delete). Deleting a file must not release its storage and file
updates must not overwriteexisting file data. To achievethis
goal, thefile system must retain sufficient information to be
able to reconstruct old versions of files and directories. To
undo an update, the previous content must be retained. To
undo a delete, both the file's name and content must be re-
tained.

It isobviously not feasible, however, to retain every ver-
sion of every file. The system or user must decide what his-
toric data can be discarded and when it should be freed. The
key question is what are the respective roles of the system
and the user in making thisdecision?

There are two competing factors to consider. First, in-
creasing direct user control of reclamation tends to decrease
the protectiontheuser hasfromtheir mistakes. Storagerecla
mationis, by definition, an irreversible process. Onthe other
hand, if the system controls reclamation, how do we ensure
that the decisionsit makes respect user needs? Only the user
knows which versions of file data are important.

Solving thisdilemmarequiresacompromise between the
competing needs of user protection and user control. To un-
derstand how best to strike this compromise it is useful to

m

review in more detail the different types of data users store
in afile system, the different ways they access thisdata, and
how these factorsimpact the question of what sort of history
information the file system should retain. The remainder of
this section summarizes our observationstaken from severa
UNIX file system traces [14, 3, 18].

2.1 Not all filesarecreated equal

Thefirst key observationisthat afile system stores many dif-
ferent types of files that each require different levels of ver-
sioning. The following simplified taxonomy demonstrates
these differences.

+ Read-only files such as application executables, li-
braries, header files, etc. have no version history.

o Derived files such as object files require no history or
undo capability as they can be regenerated from their
original sources.

e Cached files such as those maintained by a web
browser require no versioning or history.

e Temporary files have short lifetimes and, while they
may benefit from short-term histories for undo pur-
posesif they are modified by users, long-term histories
are not necessary.

o User-modified files may require histories, but even
these files need varying degrees of versioning.

Clearly, a variety of file retention policies are required.
User control can beachieved by allowing usersto associate a
policy with each of their files. User protection can be assured
by placing the mechanism that implements these policiesin-
side of the file system. In this way, a user can indicate that
versioning is not required for some files and, for other files,
the user can indicate what type of versioningisrequired. The
next key question isthus what different types of versioning
are possible and useful ?

2.2 Goals. undo and long-term history

We break down the goal of protecting users from their mis-
takes into two related issues: (1) providing users the ability
to undo arecent change and (2) maintaining along-termhis-
tory of important versions. The two differ in the amount of
time they cover and in the compl eteness of the history they
retain.

Undo requires that a complete history be retained, but
only for alimited period of time. The history must be com-
plete, because thereistypically no good way to predict which
actionsauser might later want to undo. Limiting the amount
of storage needed to support undo thus requires restricting
the period of time in which an undois possible. The system
might, for exampl e, allow theuser an hour, aday, or aweek to
realizethat an operationwasinerror. Withinthat interval, the
user can reverse any delete or overwrite. Once that second-
chance interval passes, however, changes become perma
nent.



Long-term history serves a different purpose. Once the
undo period has passed, it may still be necessary toretain cer-
tain important versions of afile. It istypically not appropri-
ate or useful to retain every version of thefile. Instead, users
select key landmark versionsto be retained long term. In a
software revision control system[17, 24], for example, users
select landmark versions by checking them into arepository.
Intermediate changes the user makes in their working direc-
tory are not retained.

These two gods are closely related. It may be useful to
haveintermediateregimesinwhich some undo’sbecomeim-
possible, but more versions are retained than just the land-
mark versions. Additionally, the importance of a landmark
version may degrade over time to the point where some old
landmarks can be deleted.

2.3 Pruningthelong-term file history

Thefina remaining issueis how to prune the long-term his-
tory and how to identify landmark versions. To understand
thisissueitishelpful toreview how usersuse current file sys-
tems and how increasing disk storage capacity impacts the
decisionsthey make.

As stated previously, users cope with the fragility of cur-
rent file systems by making frequent copies of important
data. Data that is changed frequently is copied frequently.
Furthermore, users are reluctant to delete files, because do-
ing so permanently removes them from the file system.

Ironically, as storage becomes larger, it becomes more
difficult for users to manage the versions they create. When
storageisfairly constrained, users are required to frequently
assess thefilesthat they are maintaining, and to delete those
that are no longer necessary. Typicaly, the ability of the user
to make this assessment effectively deteriorates over time.
After afew weeks or months, the user is unlikely to remem-
ber why certain versions are being maintained. While there
may be value in maintaining these old versions, it becomes
more and more difficult to make sense of them.

When it becomes necessary to delete something, what
strategy should the user employ? Unless they have care-
fully remembered what version iswhat, their probable strat-
egy isto delete the oldest versions. This, however, is often
the wrong strategy because a version history typically con-
tains certain landmark versions surrounded by other versions
whose time frame of interest is much shorter. Unfortunately,
the user may have no good way to tell which old version is
important.

Any solution that relies solely on the user to identify
landmark versionsis problematic, because failureto identify
an important version as a landmark can result in the loss of
important data. It is thusimportant for the file system to as-
sist the user in detecting landmark versions.

Fortunately, it is often possible to detect landmark ver-
sionsby looking at atimeline of the updatesto afile. In our
study of UNIX file-systemtraces, we have seen that for many
files, these updates are grouped into short barrages of edits
separated by longer periods of stability. A good heuristicis
to treat the newest version of each group as a landmark, in
addition to any landmarks explicitly identified by the user.

112

Another option isto treat as alandmark any version with a
large deltato the subsequent version, i.e., where the amount
of work involvedto recover theolder version wouldbelarge.

24 Summary

In summary, the following issues are key to the implemen-
tation of afile-system storage management mechanism that
protects users from their mistakes.

e Storage reclamation must be separated from file write
and delete.

o Filesrequireavariety of retention policies.

o Policiesmust be specified by theuser, but implemented
by the system.

o Undo requires complete history for alimited period of
time.

e Long-term histories should not retain al versions.

o The file system must assist the user in deciding what
versionsto retain in the long-term history.

3 TheElephant file system

This section describes thedesign of the Elephant File System
and thefile retention policiesit uses to manage storage.

3.1 Design overview

The key design principle of Elephant is to separate storage
management from the common file system operations avail-
able to users (e.g., open, write, close, and delete). The file
system, not users, handles storage reclamation. Deleting a
filedoesnotrdeaseitsstorageandfilewritesarehandledina
copy-on-writefashion, creating a new version of afile block
when it iswritten.

Fileversionsare named by combiningthefile' spathname
with adate and time. Versions are indexed by their creation
time (i.e., the file's modification time) and versioning is ex-
tended to directories as well as files; only the current ver-
sion of a file can be modified. The system interprets the
pathname-time pair to locate the version that existed at the
specified time. A file version thus does not have a unique
name; any timeintheinterva inwhich aversion was current
can be used to name the version.

By rolling adirectory back in time, auser can see the di-
rectory exactly asit existed at that earlier time, including any
filesthat the user subsequently deleted. Delete thus becomes
areversible name-space management operation.

Storage is managed by the system using retention poli-
cies associated with each file. Users can specify policiesfor
afile, agroup of files, or for adirectory; newly created files
by default inherit thepolicy of thedirectory inwhichthey are
created. Periodicaly, afile system cleaner process examines
the file system and uses these policies to decide when and
which disk blocksto reclaim, compress, or move to tertiary
storage. This approach allows users to indicate which files



require versioning and what sort of versioning they require.
Asaresult, the majority of files can be handled by keeping a
singleversionwith no history, asisdonetoday, whileprovid-
ing detailed history information for only thefilesthat require
it.

3.2 Fileretention policies

We have identified the following four file retention policies
for Elephant and haveimplemented these policiesin our pro-
totype.

e Keep One

o Keegp All

o Keep Safe

o Keep Landmarks

Keep One provides the non-versioned semantics of a
standard file system. Keep All retains every version of the
file. Keep Safe providesversioning for undo but does not re-
tain any long-term history. Keep Landmarks enhances Keep
Safe to aso retain along-term history of landmark versions.
The remainder of this section discusses the details of these
policies.

3.3 Keep One: noversioning

Keep One provides semantics identica to astandard file sys-
tem, retaining only the current version of afile. Deleting a
Keep-Onefileremovesthefileimmediately. WritingaKeep-
Onefile updates the file in place; copy-on-writeis not used.
An important property of Keep Oneisthat it isthe only pol-
icy that allows usersto directly control storage reclamation.

There are many classes of filesthat thispolicy suitswell.
Filesthat are unimportant (e.g., filesin /tmp, corefiles, etc.)
or files that are easily recreated (e.g., object files, filesin a
Web browser cache, etc.) are good candidates for Keep-One
retention.

We anticipate, however, that most files that users modify
directly, even temporary files, will have at least Keep Safe
semantics.

34 Keep All: complete versioning

Keep All retains every version of every file. On each open
a new version of the file is created, and on each close that
version isfinalized. While we do not believe that there are
many filesthat require every versionto beretained, Keep All
isavailableif necessary.

In addition, Keep All is the basis of the Keep Safe and
Keep Landmarks policies, asfile versions are created in ex-
actly the same way asin Keep All; these policiesdiffer only
in when versions are forgotten.

113

3.5 Keep Safe: undo protection

Keep Safe protects users from their mistakes but retains no
long-term history. The policy is parameterized by the length
of thesecond-chanceinterval. The system guaranteesthat all
file-system operations can be undonefor a period defined by
this parameter. A second-chance interva of seven days, for
example, meansthat theuser can rollback any changethat oc-
curred withinthe past seven days. Any change that occurred
more than seven days ago, however, becomes permanent.

Implementing Keep Safe requiresthat every version of a
file beretained until it isno longer needed for rollback. No-
tice that smply retaining a version until it is older than the
second-chance interval is not sufficient. Instead, a version
must be retained until a younger version, or the file's dele-
tion, becomes permanent. For example, if afile with ayear-
old version ismodified or deleted, the year-old version must
be retained until the second-chance interval for that modifi-
cation or deletion expires.

3.6 Keep Landmarks: long-term history

Filesthat store important user information often require his-
tories. For these files, in addition to the protections of Keep
Safe, the system also maintains along-term history.

Keep Landmarks retains only landmark versions in a
file's history; non-landmark versions are freed as necessary
to reclaim storage. The key issue, however, is how to de-
termine which versions are landmarks. We follow a com-
bined approach that provides users with direct control, but
also seeks to protect users from their mistakes. A user can
specify any version as alandmark. In addition, the system
uses aheuristic to conservatively tag other versions as possi-
blelandmarks. Thecleaner freesonly versionsthat the Keep-
Landmarks policy determines are unlikely to be landmarks.

This landmark-designation heuristic is based on the as-
sumption that as versions of files get older without being
accessed, the ability of the user to distinguish between two
neighboring versionsdecreases. For example, we might des-
ignate every version of afile generated in the past week as a
landmark. For versions that are a month old, however, we
might assume that versions generated within one minute of
each other are now indistinguishable to the user. If so, we
can designate only the newest version of any such collection
of versionsto be alandmark, possibly freeing some versions
for deletion.

Freeing non-landmark versions introduces discontinu-
itiesinafile shistory. A user may request thefreed version of
thefile. The presence of these discontinuitiesisimportant in-
formation to the user. Wethusretain information about freed
versionsof afilein itshistory and alow the user to examine
the history for discontinuities. Thisinformationisimportant,
for example, for the user to roll back a set of filesto a con-
sistent point inthe past. The user can only be certain that the
specified pointisconsistent if the historiesof al filesare con-
tinuous at that pointin time.

Finally, the Keep-Landmarks policy allows the user to
group files for consideration by the policy. Groupingisim-
portant for inter-dependent files whose consistency requires
viewing al files as of the same point in time. When this



type of inter-dependency exists, the files are inconsistent if
adiscontinuity existsin any of thefiles, because the missing
version is required for a consistent view. Keep-Landmarks
solves this problem by ensuring that no filein agroup has a
discontinuity that overlaps a landmark version of any other
filein the group. This grouping can be done a a number of
granularities ranging from explicitly indicating which files
areinterdependent to specifying directoriesor entiresubtrees
that should be treated as a group.

4 Prototypeimplementation

We have implemented a complete prototype of Elephant in
FreeBSD 2.2.8, which is a fredy available version of BSD
for personal computers. Elephant isfully integrated into the
FreeBSD kernel and uses BSD’s VFS/vnode interface. The
standard UNI X fileinterfaceisaugmented withanew API to
access the advanced features of Elephant, but all UNIX util-
itieswork unmodified on current aswell as older versions of
files.

This section describes the design and implementation of
our prototype, detailingthefile system’smetadata, versioned
directory structure, enhanced kernel interface, storage recla
mation mechanism, and user-mode tools.

4.1 Overview of versioning

Elephant versions al files except those assigned the Keep-
One policy. Disk blocks of versioned files are protected by
copy-on-write and only the current version of afile can be
modified. Keep-Onefiles can beupdated in place, following
the same procedure as a standard UNI X file system.

A versionisdefined by the updates bracketed between an
open and aclose. The first write to a versioned file follow-
ing an open causes itsinodeto be duplicated, creating anew
version of thefile. Thefirst timean existing block iswritten
after an open, themodified block isgivenanew physical disk
address and thenew inodeisupdated accordingly. Thiscopy-
on-writeisavoided for writesthat only append to thefile. All
subsequent writes to a modified block before the close are
performed in place. When thefileis closed, theinodeis ap-
pended to an inode log maintained for that file. Thisinode
log constitutes the file's history and is indexed by the time
each inodein the log was last modified. Concurrent sharing
of afileissupported by performing copy-on-writeonthefirst
open and updating theinode log on the last close.

To economize disk space, files that have no history are
stored in a standard inode instead of an inode log. The sys-
tem adaptively switches between an inode and inode log as
necessary. For example, a newly created Keep-Safe file is
stored in asingleinode. When thefileis modified, an inode
log is created for the file to store both the original and new
versions of the file. When the current version is sufficiently
old, thecleaner freesall historicversionsand thesystem frees
thefile'sinodelog and replacesit with asingleinode.

Note that the inode log maintains version history based
on afile'sinode and not its name. This level of versioning
does not easily capture namespace changes such asthosethat
occur when afileis created, deleted or renamed. Renaming

114

afile, for example, changes its name but not itsinode. To
simplify namespace journaing, Elephant stores directories
as name logs. Name logs are used in conjunction with in-
ode logsto provide users with an adternative view of afile's
history based on file name. Name historieslistsal versions
associated with a name, even those that belong to different
inodes (or inodelogs).

Name histories are useful, for example, for programs
such as Emacs that overwrite files by writing to a new in-
odethat isthen renamed to the original nhame. Using thisap-
proach, every new version of afileis stored inadifferent in-
ode (or inodelog) and thusthefile' s history isavailable only
in the name-centric view. While we believe that this style
of access islikely to disappear once versioning file systems
such as Elephant become widespread, the current prototype
does allow users to view both inode and name histories for
any file. The file retention policiesimplemented in the pro-
totype, however, use only inode histories.

42 Metadata

Traditiona file systems have oneinode per name (but there-
verse does not hold). Files can thus be uniquely and unam-
biguously named by their inumber, an index to their inode's
disk address. Elephant departsfromthismodel, because files
can have multipleinodes, onefor each version of thefile. To
maintain the important naming properties of inumbers, Ele-
phant redefines inumbers to index an imap.

421 Theimap
imap inode file
, | »tinode
(‘) meta-data pointer{<_or
I [temperature
& |policy 1 inode log
g policyGroup . mcurrent
= ol ol ©
T|T|T
[o]Ne])e]
C- Ll.El.E
7ol o ool o
|||
Q| O| O| Q| O
E|.E|.E|.E|l.E
older —

Figure 1. Meta data: the imap, inode logs, and the in-
ode file.

Asdepicted in Figure 1, the imap providesalevel of in-
direction between an inumber and the disk address of afile's
inode or inode log. There is an entry in the imap for every
file. Each entry is 16 bytes, storing the file's inode or inode
log pointer, temperature, policy, and policyGroup. Theimap
is stored on disk and cached in memory; its disk address is
recorded at afixed location on disk.

The meta-data pointer has two parts: type and address.
Type indicates whether thefileis stored in an inode or an in-
ode log. For inodes, address is the offset of the inodein the



inodefile and, for inode logs, addressisthe disk block num-
ber of thefile'sinode log. The inodefile and inode logs are
described in detail below.

Temperature is a heuristic used to guide the system
cleaner to files likely to have the most reclaimable storage.
The temperature encodes avalue and an expiration date; the
system artificially raises the value of an expired temperature
to ensure that the cleaner re-examines thefile. A file'stem-
peratureisincreased by the syssemwhentheanew versionis
created by an amount dependent onthe number of blocksthat
were copied-on-write. It isreset by thefile's policy module
when the cleaner examinesthefile, since at that instant there
should be no reclaimable storage in the file. Policy mod-
ulesthat base their reclamation decisionson elapsed timeuse
thetimeout val ueto expire obsol ete temperature estimations.
For example, theKeep Safe policy will want to re-examine a
file when its second-oldest version is as old as the retention
period islong.

Finally, policy names the file's storage retention policy
and policyGroup organizesfiles that are grouped by this pol-
icy asdescribedin Section 3.6. Theimap entriesforagroup’s
files are linked into a circular list; policyGroup stores the
inumber of the next file in the group.

4.2.2 Non-versioned inodes

Elephant stores inodes for non-versioned files in a distin-
guished file called theinodefile. Thisapproach differsfrom
traditional UNIX file systems, which pre-allocate inodes at
fixed disk locations. The inode file itself is stored in an in-
ode log, not an inode, in order to avoid circularity. Our ap-
proach has the advantage that inode storage space need not
be pre-allocated when the file system is initialized. Thein-
ode file can grow and shrink as easily as any other file. A
new inode is alocated by picking a random entry in thein-
ode file and scanning forward until afree inodeisfound. If
afree dotis not found after scanning a bounded number of
inodes, a new block is added to the inode file and the inode
isalocated there. The inode file can be compacted by mov-
ing inodes to create empty blocks and then removing those
blocks from thefile.

4.2.3

Inodelogsare alocated and named at the granularity of disk
blocks and they thus consume considerably more storage
than a single inode, which consumes only 168 bytes. Anin-
ode log stores the versions of afile as an ordered list of in-
odes. If the log spans multiple blocks, the blocks are linked
together in descending-chronological order, with the block
containing the current inode a the head of the list. Thefile's
imap entry storesthe addressif thisblock and the block stores
the offset to the current inode. Reading the inode of the cur-
rent version of afileisthus as efficient as reading the inode
of anon-versioned filein Elephant or any standard UNIX file
system. Older versionsarelocated by alinear scan of thelog.

The inode log also uses inodes to record information
about reclaimed versionsand to record a file'sdeletion time.
Recall that we retaininformation about reclaimed versionsso

Inodelogs

115

that users can detect discontinuitiesin afile's history. To do
this, the system replaces reclaimed inodes with an inode that
describes the discontinuousinterval they leave behind. Sim-
ilarly, when afile is deleted, an inode is added to the end of
the log to record the delete time. The delete time is needed
by the K eep-Safe policy, for exampl e, to determine when the
del ete becomes permanent.

4.3 Directories

inode file active partition
inodel” | name, inumber, ..., created, deleted
inode \_) history partition (if needed)

name, inumber, ..., created, deleted

Figure 2. Directory structure.

Directories map names to inumbers. They differ in their
usage fromfilesin that files are explicitly opened and closed
whereas directory modifications are implicit side effects of
other system calls. For thisreason Elephant handles the ver-
sioning of directoriesdifferently from that of ordinary files.

Elephant directories store versioninginformation explic-
itly, and so are implemented using standard inodes, not in-
odelogs. Each directory entry stores aname’s creation time
and, if deleted, its deletion time. It is possible for multiple
instances of the same name to co-exist in a directory, pro-
vided that no two of them existed at the same time. A name
remains in a directory as long as at least one version of the
fileit names remains in the file system. Directory layout is
depicted in Figure 2.

Initially a directory is stored in asingleinode. If a di-
rectory accumulates a sufficiently large number of deleted
names, asecond inodeisallocated to storethe del eted names.
As necessary, the system periodically moves del eted names
from the active inode to the history inode and compacts the
activeinode. A name lookup on the current version of adi-
rectory scans only the active node, while alookup on an past
version of the directory scans both inodes. This partitioning
thus ensures that the history information stored in a direc-
tory does not significantly slow the common case operation
of looking up a name in the current version of the directory.

An alternative to keeping versioning information in di-
rectories would have been to treat directories in the same
fashion as versioned files. The result, however, would be
wasteful of inodes and data blocks, because each name cre-
ation or deletion would require a new data block and thus a
new inode for the directory. Copying a large directory, for
example, would create anew directory inodefor every name
in the directory.

4.4 System interface

Elephant allows users to add a timestamp tag to any
pathname they present to the file system. If this tag



setCurrentEpoch  (timestamp)
getHistory (file) = history
setLandmark (file)
unsetLandmark  (file)

setPolicy (file, policyID)
groupFiles (fileA, fileB)
ungroupFile (file)

Table 1. Kernel interface for user-mode applications.

maplmap  (pathname) = mntPt
lockFile (mntPt, iNumber)
unlockFile  (mntPt, iNumber)
readBlock  (mntPt, block)
writeBlock  (mntPt, block)
freeBlock  (mntPt, block)

Table 2. Kernel interface for the cleaner process.

is present, Elephant accesses the version of the file
that existed at the specified time. If a user types “cd
. @2-nov-1999: 11: 30", for example, their working
directory is changed to the version that existed at the
specified date and time.

If atimestamp tag isnot specified, the selected versionis
determined by either thetimestamp of the current workingdi-
rectory, if arelative pathnameis specified (eg., “fi | e”), or
the process's current epoch, if acomplete pathname is spec-
ified (e.g., “/ fil e"). Userscan change a process's current
epoch as described next and child processes inherit their par-
ent’s current epoch when they are created.

Table 1 showsthe seven new system calls added for Ele-
phant. The setCurrentEpoch operation changes the current
epoch of the calling process. The getHistory operation re-
turns a digest of the inodes in a file's inode log, including
key fiel dssuch asthetimestamp of each inode. The setL and-
mark operation designates the specified file version to be a
landmark so that the Keep-Landmarks policy will never re-
move the version; unsetL andmark removes this designa
tion. The setPolicy operation assigns a retention policy to
afile. The groupFiles operation places fileA and fileB in
the same group for treatment by their retention policy, as de-
scribed in Section 3.6. The new group contains the transi-
tive closure of any files previously grouped with either of the
two files. The current prototyperequiresthat the user explic-
itly create file groups by naming each file. We are consider-
ing more flexible group creation schemes where directories
or subtrees could be grouped together. The ungroupFile op-
eration removes file from its group, if one exists.

45 Storagereclamation

Storage reclamation is handled by a system cleaner that im-
plements the per-file retention policies described in Sec-
tion 3.2. The cleaner is a privileged and trusted user-mode
process that uses a customized kernel interface to interact
with the Elephant file system.

Table 2 details the kernel interface used by the cleaner.
The maplmap cal maps theinode map for the Elephant file

116

system named by pathname into the cleaner’s virtual ad-
dress space. Also, it returns mntPt, thefile system’s mount-
point id, which the cleaner uses on subsequent cdlls to the
kernel. The mount-point id is necessary to alow multiple
Elephant file systems to co-exist on one system.

ThelockFileand unlockFile operationslock and unlock
the sdlected file's inode log; no other process is permitted
to operate on the file while the cleaner has it locked. The
cleaner reads and synchronously writestheinodelog directly
usingthereadBlock andwriteBlock calls; blocksare named
by mount point and relative disk address. Finally, freeBlock
frees the specified physical block.

The cleaner process runsin the background, scanning the
memory-cached imap for a high-temperature file. When it
selects afile, it cals lockFile and then uses readBlock to
read thefile'sinodelog into memory. It then scansthelogto
build a binary tree of the physical blocks allocated to thefile
and counts the number of inodes that reference each block.
If the policyGroup fidld intheimap indicates that thefileis
part of apolicy group, it repeats this process for every filein
the group. To avoid deadlock, if the cleaner encountersafile
that isaready locked, it immediately releases dl of itslocks
and skips the group.

The cleaner proceeds by invokingthefile spolicy to pick
zero or moreinodesfor deletion. It deletes each inode by up-
dating the in-memory inodelog and decrementing the block-
list reference countsfor each of theinode sblocks. Finaly, it
callswriteBlock towritethemodifiedinodelogtodisk, cals
freeBlock to free any block inthe block list with areference
count of zero, and calls unlockFile to release itslock on the
file'sinode log.

The cleaner protectsthefile system fromfailuresthat oc-
cur during cleaning by ordering disk writes to ensure that a
block is not freed if any inode on disk stores a reference to
it. A recovery procedure reclaims disk blocks that are un-
reachable from any inode. If the cleaner process fails in-
dependently of the rest of the system, locked inodes are in-
accessible and partially freed disk blocks are not reclaimed.
The system detects and recovers from cleaner failure by ter-
minating the cleaner process, releasing al inode-log locksit
holds, scheduling the recovery procedure, and restarting the
cleaner.

Finally, itisimportant to distinguishthe Elephant cleaner
from the cleaner of aLog Structured File System [19, 22, 9].
AnLFScleaner servestworoles: it freesobsol ete blocksand
it coalesces free space. In contrast, the Elephant cleaner’s
roleis simply to free obsolete blocks. As a result, the Ele-
phant cleaner has significantly lower overhead than an LFS
cleaner, because Elephant’s cleaning is performed without
reading any file data blocks, only the inode log need be ac-
cessed. In contrast, the LFS cleaner must typically read ev-
ery datablock at least once, even obsol ete blocks, and it may
read and write active blocks multipletimes.

46 Tools

We have augmented the standard set of UNIX file manipula
tion tools to add severa new toolsthat manage the file sys-
tem’'s new temporal dimension. Thetlstool issimilar to Is,



register Policy (pathname) = policylD
unregisterPolicy (policylD)
lookupPolicy (policylD) = pathname

Table 3. Kernel interface for registering application-
defined policies modules.

| cleanFile (fileHistory) = (verList, newTemp) |

Table 4. Interface exported by application policy mod-
ules; called by the system cleaner.

but instead outputsalist of afile' shistory, includinginforma-
tion about deleted versions. Thetool allows usersto select a
history of a specified inumber or name; name histories may
include versions from multiplefiles with different inumbers.
Similarly, tgrep searches for patternsin every version of a
file in much the same way that grep searches alist of files.
Finally, tview provides agraphical view of theindividual or
combined histories of agroup of files.

5 Application defined retention policies

Elephant allows applications to define and implement their
own file retention policies to augment the system defined
policiesdescribed in Section 3.2. An application defined pol-
icy can be used, for example, where the user wishes to use
a different definition of landmark versions — perhaps one
based on how much filedatachanged between versionsrather
than on the timeline of those changes. Application-defined
policies run as non-privileged and untrusted processes that
communicate with the privileged system cleaner.

5.1 Registering an application policy

Application-defined policy modules must be registered with
the kernd before they can be used. When registered, the
kernel assigns a unique number to the policy and users call
the standard setPolicy operationto assign thispolicy tofiles.
The system cleaner invokes application-defined policiesin
much the same way it invokesthe system-defined policies.

Table 3 shows the kernd interface for registering
application-defined policy modules. Applications call reg-
ister Palicy to register the program specified by pathname
as a new policy and they cal unregisterPolicy to remove
a policy. Policies can be unregistered only by a system
administrator or by the user that registered the policy. The
kernel assigns a unique policyl D to al policies and stores
the registration persistently.

The system cleaner callslookupPolicy tolocate the path-
name of the policy modulefor agiven policylD. If the policy
has been unregistered, lookupPolicy returnsan error and the
file'spolicy defaults to the Keep All system policy.

5.2 Operation of application policies

Application-defined policy modul es export the single clean-
File operation shown in Table 4. When the system cleaner

117

encountersahigh-temperaturefile handled by an application-
defined poalicy, it forks the appropriate policy-module pro-
gram, unless it is aready running, and calls the process's
cleanFile operation. This processrunswith the privileges of
the target file's owner. To amortize the overhead of starting
the policy-module program, the cleaner maintains a pool of
recently accessed processes. It limitsthetotal number of pro-
cesses, terminating the least-recently accessed process when
thislimit isreached.

Before caling cleanFile, the system cleaner locks the
target file'sinode log, reads itsinode log into memory, and
buildsitsallocated-block list, as described in Section 4.5. In
the call to cleanFile, the cleaner provides the policy mod-
ule with a digest of the file's history that includes block-
allocation information.

In response to the cleanFile call, the application policy
modul eexaminesthefile shistory and buildsalist of thezero
or more versions of the file it wishes to delete. It computes
a new temperature for the file and returns the verList and
newTemp to the system cleaner. This procedure is the only
way that an application-defined policy can change a file's
temperature. Unlike system policies, application policies do
not get control when afileis closed and thus they can not af -
fect thefile'stemperature at that time.

Upon successful completion of acleanFile cal, the sys-
tem cleaner deletestheversionslistedinverList, freestheas-
sociated disk blocks, updates the file's temperature, and un-
locksitsinodelog, as described in Section 4.5. If cleanFile
fails to return within a prescribed timeout interva, the sys-
tem cleaner cancels the call, and unlocksthefile'sinodelog.
Thistimeout protectsthe system from policy-modul efailure.

6 Performance and evaluation

This section assesses the feasibility of our design. First, we
compare the performance of our Elephant prototype to the
standard FreeBSD FFSfile system. Second, we examine the
types of files stored by a large file system to estimate what
portion of its files would be versioned. Third, we anayze
file-system trace data to estimate how much extrastorage an
Elephant file system might consume for history information.
Finally, we describe a key feature of the Elephant prototype
that allowsit to shadow an NFS server and we report on the
results of two short-term user studies conducted using this
feature.

6.1 Prototype performance

Our experimental setup consists of a 200 MHz Pentium
MMX with 64 MB of RAM and a 3 GB IDE disk. Our
prototype is a modified FreeBSD 2.2.8 kernd. We com-
pare the performance of the prototype to an unmodified
FreeBSD 2.2.8 kernel, which uses the UNIX fast file sys-
tem (FFS) [11]. Both file systems were configured with a 4
KB block size. The measurements were taken by configur-
ing each file system in the same disk slice to normalize for
the effects of disk geometry.

Inthefollowingtables, FFSreferstothefast file system,
EFS-O refersto files using the Keep-One policy whose in-



Operation EFSV | EFSO | FFS
(ps) (#s) | (us)

open (current) 134 133 | 132
open (20th ver) 140 — —
open (75th ver) 160 — —
write (4 KB) 58.7 545 47.3
close (upd) 35.8 345 349
close (upd 24th ver) 121 — —
create (0 KB) 5040 3750 | 3930
delete (0 KB) 452 2154 | 3010
delete (64 KB) 446 4522 | 4732

Table 5. Performance of basic file system operations.

odes are stored in the inode file, and EFS-V refers to files
using the Keep-All policy whose inodes are stored in inode
logs (the performance of Keep Safe and Keep Landmarks is
identical to Keep All).

6.1.1 Micro-benchmarks

Table 5 summarizes the performance of the basic file system
operations. All measurements were taken by running a user-
mode program and using the Pentium cycle counter to mea-
sure the elapsed time each system call spends in the kerndl.
The times do not include the overhead of entering and exit-
ingthekerndl. Each number representsthe median of 10,000
trids.

The first three lines of Table 5 show the time to open a
filewhen itsinode (or inode log) is cached in memory. The
first line shows that the time to open afile’'s current version
isvirtualy the samein Elephant and in FFS. Thisisaso true
if the inode and inode logs are not cached; in this case, both
EFS and FFSareslowed by thelatency of asingle-block disk
read. The next two lines show the cost of opening an older
version, which requires scanning the inode log and possi-
bly reading additiona inode-log blocks; each 4 KB inode-
log block stores 24 inodes. Opening the 20th versionis6 s
slower than opening the current version, 0.3 us for each in-
ode scanned. Opening the 75th version is 26 us slower. |If
the inode and inode-log blocks are not cached in memory,
open (20th ver) requires one disk read and open (75th ver)
requires four, one for each inode-log block it must scan.

The cost of thefirst write of a4 KB block after an open
is58.7 usin EFSV and 47.3 pusin FFS, including the time
to schedule an asynchronous disk write. EFSV is 11 us
sower due to the copy-on-write operation required for this
first write. The performance of subsequent writes to the
block before the close is the same as in EFS-O. EFS-O is
7.2 psslower than FFS, because the prototypecurrently per-
formsamodified copy-on-writefor thesewritesaswell. This
use of copy-on-writeisan artifact of the way our prototype
evolved; it is not required for versioning and could be re-
placed with an update-in-place scheme with the same perfor-
mance as FFS.

The next two lines of Table 5 show the time to close a
modified file. For EFS-V, the close produces a new version
of thefile. If thefile's new inodefitsinthe current inode-log
block (i.e., close (upd)) the performance of EFS-V isvirtu-

118

ally the same as EFS-O and FFS. If it does not fit (i.e., close
(upd 24th ver)) anew inode-logblock isallocated and over-
head increases by 85.2 i1s. All EFS and FFS close operations
requireasingledisk write; in thetimes reported, thiswriteis
handled asynchronously. Findly, if theinodeor inodelogis
not cached in memory, al EFS and FFS close operationsre-
quire one disk read. Closing aread-only fileisthe same in
EFS and FFS.

The last three lines of Table 5 show the time to create
and delete afile. Creating an empty versioned file requires
5.04 ms. Thistimeis1.11 ms dower than FFS, because EFS
must allocate anew inodelog for thefile and writeit to disk.
Deleting aversioned filein EFS is considerably faster than
FFS, both because an EFS delete does not release the file
or its disk blocks and because EFS writes some meta data
asynchronously. The actua release of storage in EFSiis per-
formed by the cleaner process, and Section 6.1.4 reports on
its performance.

Finally, we measured the performance impact of ver-
sioned directories. Recall that an Elephant directory stores
both active and del eted names and that a second inodeisused
to archive deleted names. The system periodically moves
del eted names to the archive and compacts the active names;
the overhead of this operation is 0.22 ;s per name in the ac-
tiveinode. Name lookup in the current version of adirectory
is slowed by the number of deleted names in the active in-
ode that must be skipped. Currently, we trigger compaction
when the active inode has 20% deleted names. The impact
on name-lookup time, however, is much less than 20%, be-
cause a deleted entry can be skipped without performing a
name comparison, the operation that dominates|ookup over-
head.

6.1.2 The Andrew file system benchmark

We ran the modified Andrew File System Benchmark for
EFS-V, EFS-O, and FFS. This standard benchmark is de-
signed to represent the actions of atypical UNIX user. It cre-
ates adirectory hierarchy, copies 70 source files totaling 200
KB intothe hierarchy, traverses the hierarchy to examine the
status of every file, reads every byte of every file, and com-
pilesand linksthefiles.

To beconservative, we modified the prototypetoforceall
EFS-V filesto be stored in aninodelog. We did thisbecause
Andrew does not overwrite or delete files and thus the EFS
adaptive meta-data all ocation scheme would normally store
these single-versionfilesin an inode, not an inode log.

The benchmark’s elapsed time was 19 s for EFS-V and
EFS-O, and 18 sfor FFS. FFS was one second faster in the
compile-and-link phase of the benchmark. The tota meta
data consumed by files was 18 KB for EFS-O and FFS and
444 KB for EFS-V. EFS-V consumed 426 KB more space,
because it stored filesin 4 KB inode logs instead of 168 B
inodes.

6.1.3 Copying a large directory

We also measured the performance of copying a directory
that is substantidly larger than that used in the Andrew



Benchmark. For this experiment, we copied the FreeBSD-
kernel source tree, which consists of 1525 files totaling 20
MB. Again, weforced al EFS-V filesto use an inode log.

We measured an el apsed time of 49 sfor EFS-V, 56 sfor
EFS-O, and 115 sfor FFS. EFS isfaster than FFS because it
performs meta-data writes asynchronously and because EFS
can place a newly created inode or inode log anywhere on
disk and isthus ableto group meta-data and datawrites more
effectively than FFS. The total meta-data consumed in EFS-
O and FFSwas 0.24 MB; EFS-V consumed 5.9 MB.

6.14 Cleaner performance

To measure the ability of the cleaner to free disk blocks, we
created three versions of 1000 different files. Each version
modified every block of afile. File sizes ranged between 1
KB and 1 MB, withmost of thefileslessthan 4 KB; the mean
file size was 145 KB. The Kegp-Safe policy was assigned to
each file and the cleaner was triggered when the changes be-
came permanent. The cleaner then removed two versions of
each filefor atotal of 284 MB.

In thisexperiment, the cleaner was ableto rel ease storage
at arate of 5.6 MB/s. The cleaner spent roughly 70% of its
time calling freeBlock, once for each block it frees. An op-
timization that allowed blocksto befreed in bulk would thus
substantialy improve cleaner throughput.

6.2 Filesystem profile

We have examined the profil es of thefiles storedinthe home-
directory file system of alarge workgroup server within HP
Labs. The server currently supports approximately a dozen
active researchers, who use it for development, document
preparation, email, etc. This single file system contains ap-
proximately 15 GB of datain 360,000 filesand 27,000 direc-
tories.

Using rough heuristicsbased on thefile extension and the
resultsof the UNIX filecommand, wedivided thesefilesinto
the following major categories.

e Source includes program source files, i.e, C, C++,
perl, shell scripts, etc.

e Document includes files used for genera document
preparation, typicaly plain text, HTML, word proces-
sor files, and mail files.

o Derived includesfilesthat are derived from other files,
and which can presumably be easily re-created. These
include object, library, executable, postscript, and PDF
files.

o Archiveincludesthosefiles that are typically used for
archival purposes, such astar and compressed filesand
data files containing experimental results etc.

e Temporary includesfileswith extensionslike.tmp and
Netscape cache files.

e Other includesall other files. Unfortunately, it wasim-
possible to categorize all files effectively (there were

119

| FileType | Files(%) | Bytes(%) |

Source 14.6 34
Documents 22.6 11.0
Derived 20.6 53.3
Archive 3.9 285
Temporary 13.0 3.0
Other 25.2 0.8

Table 6. File distribution of 15 GB HPL server home
directories.

over 4,000 distinct file name extensions present in the
file system).

Table 6 showsthe distribution of filesinto these six cate-
gories. Itisreasonableto assume that most Derived and Tem-
porary files would use the Keep-One policy, most Archive
fileswould use the K eep-Safe policy, and that the remainder
might use the Keep-Landmarks policy. If these assumptions
hold, then the distribution of files to policies breaks down as
follows:

o Keep One: 33.6% of files—56.3% of bytes
o Keep Safe: 3.9% of files—28.5% of bytes
o Keep Landmarks: 62.4% of files— 15.2% of bytes

Theseresultsare conservative, asitislikey that many of
the files we assigned to the Keep-Safe and Keep-Landmark
categorieswould actually bein Kegp One. A small sampling
of these files reveal s that many of them are part of packages
fromother sources (e.g. gcc distributions)that are essentialy
read-only.

A larger scale study of file-system contents on a variety
of machines at Microsoft [2] reveals results similar to those
above. Using the file name extension information they pro-
vide, and making an assignment of extension typeto policy,
we determine that approximately 12% of the bytes in their
file systems would probably be under the Keep Landmarks
policy.

Another interesting result of the Microsoft study istheir
observationthat file systems are, on average, using only 50%
of theavailable disk capacity. Thisimpliesthat modern sys-
tems have sufficient free capacity to keep numerousversions
of many files.

6.3 Tracestudies

We a so collected fil e-system trace datafrom the same server
at HP labs that we used for our file-system profile. Using an
HP-UX system call tracing facility, we recorded dl file sys-
tem activity that occurred between August 29 and October
8, 1999. In particular, we recorded all open, close, read and
write eventson all filesin the system.

We have used these traces to try to provide an approxi-
mate upper bound on the growth of an Elephant file system.
We processed the traces by generating a list of modified or
updatedfiles, and categorizing theseinto oneof our three pol-
icy categories using thesame heuristicaswe used for thefile-
system profile described in Section 6.2.



Policy Files | Bytes| Writes
(%) | (%) | (% Bytes)
Keep One 336 56.3 98.7
Keep Safe 39| 285 0.6
Keep Landmarks | 62.4 | 15.2 0.7

Table 7. Estimated distribution of files and file-writes to
Elephant policies.

Using trace data for the week of Monday, September 27
through Friday, October 1, we calculated the distribution of
writes into each of these categories. The average amount of
datawritten each day was 112,219 KB, of which thevast ma-
jority, 110,793 KB (98.7%), wasto filesin the Keep One cat-
egory, 662 KB (0.6%) was to Keep Safe category files, and
764 KB (0.7%) was to Keep Landmark files. Table 7 sum-
mari zes the results of both the profile and trace studies.

Theseresultsare very promising, for threereasons. First,
the amount of data needing some form of versioning per day
(1.4 MB) isnot large: it isonly asmall percentage of mod-
ern disk drivecapacity. Second, thisisaconservativefigure.
Severa of thefilesincluded in the final traces would not be
versioned in an Elephant system, as they were copies of other
existing files (e.g. from source packages downloaded from
theinternet). Finaly, the analysisabove does not account for
file deletion or overwrites. It iscertain that these operations
would reduce the amount of storage growth, as Elephant for-
got some of thefile versions.

6.3.1

A potentia drawback of Elephant isthat it reduces the effec-
tiveness of buffer-cache write absorption and thus increases
the number of disk writes. In most UNIX systems, two
writesto the same file system block within acertain time pe-
riod (typically thirty seconds) will be absorbed by the buffer
cache, and will result inonly asingledisk write. In addition,
writesthat occur shortly beforeadel ete need not bewrittento
disk. For Elephant versioned files, however, if thereisanin-
tervening close between the file system writes, then two sep-
arate disk writes are required. Similarly, writesto a deleted
versioned file must be written to disk.

We examined our file system traces to determine the po-
tential increase in write traffic. Only a very small propor-
tion (lessthan 5%) of the overall writes are to blocksthat are
overwritten, or to filesthat are are deleted, within 30 seconds
of that write. Factoring in our observation that only 1.3%
of writes are to potentially versioned files, we conclude that
their impact on disk writetraffic should be minimal. A qual-
itative analysis of a subset of the traces showed that the few
writes in this category were typically to files being actively
edited, wherethe user had performed two or more“save’ op-
erationsin ashort space of time.

Impact on the buffer cache

6.4 NFSshadowingand user studies

Convincing people to trust their valuable data to a research
file system is a daunting task at best, and for a good reason.

120

A key part of the evaluation of our ideas, however, requires
that people use the system to do real work.

To solve this dilemma, we modified our prototype to
shadow NFS traffic on our local network. The modified pro-
totype snoops NFS traffic between clients and NFS servers
and duplicates all file and directory creations and deletions
and al file writesin an Elephant file system. To collect in-
formation about how users access ol dfiles, the prototypel ogs
each time an old version of afileis accessed.

As aresult, people can keep their files on an NFS server
and perform all updates over NFS, while being able to view
the history and change the retention policy of the shadowed
copy of their files stored by Elephant. Furthermore, we can
gain confidence in the robustness of the prototype by exer-
cising it with areal, high-volumeworkload.

The NFS-shadowing implementation was complicated
by the fact that NFS clients do not inform the NFS server
when afileisclosed. Thisinformationis critical, however,
because closes determine when anew version is created. To
solvethisproblem, weused aheuristicthat assumes afilewas
closed if a pair of writesis separated by more than 10 sec-
onds.

We have conducted two preliminary user studies using
thistechnique, onewith agroup of eight graduate-studentsin
aresearch |lab, theother with aclass of twenty studentswork-
ing on programming assignments in a graduate course. The
first study covered roughly four weeks and the second cov-
ered about two weeks while students were working on one
assignment. In both studies, we marked al files as Keep All
and tracked which old versions were accessed by users and
when they were accessed.

As a result of these two studies we have gained confi-
dencein the stability of our prototype and we have seen that
users will access old versions of their files if the file system
retains them. We have aso seen, however, that short-term
studies can not provide useful information about the efficacy
of long-term policies such as Keep Landmarks or about the
impact Elephant will have ontheway peopleusefilesystems.

Answering to these twoimportant questionsrequiresthat
people use the file system for many months. A long time
period isrequired to determine whether versions deleted by
Keep Landmarks or other policies will eventually be re-
guested by auser or whether versionsretained by such apol-
icy will never berequested. Similarly, webelievethat it takes
time for users to gain sufficient confidence so that they fed
free to modify or delete important files without first making
backup copies. Itisonly when usershave thisconfidencethat
we will gaininsight into the intriguing question of how this
new file-system modd will change user behavior. Finaly,
long-term studies are needed to shed light on other issuesre-
lated to user behavior such as possi bl e heuristicsfor automat-
ically assigning policiesto files.

Our main contribution in this area, therefore, has been
to enable future long-term studies by providing a working
prototype and an experimentation framework. NFS shad-
owing will allow peopleto use the file system without hav-
ing to trust it to store their data and our logging facility will
record when they access old versions. In addition, the fact
that the prototypeallows users to define new policies should
encourage users to experiment with avariety of policy ideas.



With these pieces in place, it is possible for us or other re-
searchers to conduct the long-term user studies necessary to
better understand the rel ationships between Elephant, itsre-
tention policies, and user behavior.

6.5 Summary

Our performance measurements show that there isno show-
stopper in the Elephant prototype. Performance is compet-
itive with the standard FreeBSD FFS across a broad range
of micro-benchmarks and some simple macro-benchmarks.
We show that meta-data storage for versioned files can be 24
timeslarger than for non-versionedfiles, if aversionedfileis
stored in an inode log instead of an inode. This fact demon-
strates the importance of our adaptive approach that usesin-
ode logs only where necessary, to store files that currently
have a history.

Our analysis of the file system traces and studies of the
distributionof filetypestell acommon story. The mgority of
files, and specifically filesthat arewritten, arefilesthat would
normally not be versioned. The number of files for which
versioning would be desirable comprise only a small frac-
tion, approximately 12—15%, of typical file systems. Thisre-
sultisvalidated by thereatively small writeratewehavecal -
culated for the file system traces on versionablefiles. Given
these results, we believe that the extra storage and disk write
overhead incurred by using afile system such as Elephant is
of minimal cost compared to the convenience and time gains
(dueto not having to restore or recreate accidentally-del eted
files) made possible.

Finally, using NFS-server shadowing, we are able to ex-
ercise the prototypewith area user workload and we are be-
ginning to gain some information from users regarding the
usability of the system. Information about Keep Landmarks
and other long-term retention policies, however, can only be
obtained from a long-term user study, which is reserved for
future work.

7 Redated work

The goal of keeping multiple versions of data automatically,
compactly, and in an organized way is reminiscent of soft-
ware revision control systems [17, 24]. These systems are
implemented by application programsrunning ontop of atra-
ditional filesystem. Users checkout aversionfromaversion-
controlled repository, modify aloca copy of that versionin
the file system, and then return the modified version to the
repository, which compresses it with respect to older ver-
sions. In essence, the goa of Elephant isto extend thisidea
to dl clients of thefile system by moving the versioning se-
mantics into the file system, while supporting the traditional
file system interface, and thus freeing users from the details
of version management.

The idea of versioned files was first proposed for the
Cedar file system from Xerox PARC [20, 4]. In Cedar, files
were immutable; writing to afile produced a new version of
the file and file names included a version number (e.g., file-
name!10). A similar ideawas found in the RSX, VMS[1],
and TOPS-10/-20 [13] operating systems from Digital.

121

The approach taken by these systems has two key limi-
tations. First, the maximum number of file versions retained
by the system was assigned as a per-file parameter; when this
threshold was reached, the ol dest version was deleted. How-
ever, the deletion of the oldest version isa poor heuristic for
decidingwhichfilesarevauable. Interestingversionsof files
may be discarded while undesirable or less interesting ver-
sions till exist. Second, versioning did not apply to directo-
ries. Operations such as renaming afile, creating or destroy-
ing a directory, or, in some cases, deleting a file, were thus
not revocable.

Several recent file systems have taken a different ap-
proach to versioning. In systems such as AFS [6], Plan-9
[16, 15], and WAFL [5] an efficient checkpoint of an entire
file system can be created to facilitate backup or to provide
users with some protection from accidental deletesand over-
writes. A checkpoint istypically created and maintainedina
copy-on-writefashionin paralel with the activefile system.
The old version thus represents a consistent snapshot of the
file system sufficient for creating a consistent backup while
the file system remains available for modification by users.
The snapshot also allowsusersto easily retrieve an ol der ver-
sion of afile.

These systems differ in how frequently checkpoints are
taken and in how many checkpoints are retained. In AFS
and Plan-9, checkpoints are typically performed daily. In
WAFL they can be performed as frequently as every few
hours. Plan-9 integrates tertiary storage with thefile system
and can thusretain all checkpoints, WAFL can keep as many
as 20, and AFS keeps only the most recent checkpoint.

Checkpoainting file systems have two mgjor limitations.
First, checkpointsapply to al filesequally, but files have dif-
ferent usage patterns and retention requirements. Whileitis
not feasibletoretain every version of every file, it may beim-
portant to keep every version of some files. Unfortunately,
this dilemma cannot be solved using afile system-grain ap-
proach to checkpointing. Elephant addresses this limitation
using file-grain retention policiesthat can be specified by the
user. Second, changes that occur between checkpoints can-
not berolledback. Forinstance, users of daily-checkpointing
systemssuch asPlan-9or AFSareasvulnerableas UFSusers
tolosing al their morning’swork in the afternoon, due to an
inadvertent file deletion or overwrite.

The POSTGRES database[23] maintainsacompletehis-
tory of database tables by archiving the transaction log. It
also adds tempora operators to SQL to alow querying the
state of the database at any point in the past. This provides
database users with functionality similar to what Elephant
givesfile system users.

8 Other issues and futurework

This section briefly discusses severa remaining issues re-
lated to our design and prototypeimplementation that we are
actively considering.



8.1 Version history export and import

Currently, Elephant storesfilesas version histories, but users
can only access files one version a atime. This interface
makes sense, because it matches the way that people access
filesin standard file systems. It is aso useful, however, to
allow users and applications to manipulate files at the gran-
ularity of their complete history. Thisfacility is needed, for
example, to move afile from one Elephant file system to an-
other or to backup afile and its history.

We envision adding two new file-system operations to
export and import file histories, either as kernel operations
or as user-mode tools. Export would generate a single inter-
mediate file containing the exported file's compl ete history.
Import would reconstituteaversioned file from an intermedi-
ate file. Copies between Elephant file systems could be han-
dled using acombined export-import operation, optimized to
avoid creating the intermediatefile.

Animportant open questionishow to handlefilesthat are
managed by an application-defined policy. |dedly, theinter-
mediate file would form a closure of both the exported file
and itspolicy module. A fileimported from another Elephant
file system could then really beidentical to the exported file.

8.2 Disconnected operation

Export and import operationsallow usersto usemultipleEle-
phant systemsto access afile, by copyingit totheappropriate
system before accessing it. It would be useful to extend this
modest support to allow for full-fledged disconnected oper-
ation. In any file system, the key issue for disconnected op-
eration is handling updates to a file that occur concurrently
in multiplefile systems[7]. For Elephant, theissueis some-
what more complicated, because it requires that an import
operation be able to merge the version histories of multiple
copies of afile. The key problem isthat the merged history
may have intervalsin which multipleversions co-existed.

8.3 Version history merge and branch

Fundamental to Elephant’snaming scheme istheassumption
the multiple versions of a file never co-exist. We have just
seen, however, that disconnected operation can violate this
assumption. The same is true for software revision control
systems.

A revision control systemtypically viewsfilehistory asa
rooted acyclic graph, allowing for branch and merge points.
A branch occurswhen asingleversion splitsintotwo or more
new versions of the file that can be modified independently.
A merge combines multipleconcurrent versionsof afileinto
asingle version. Merging thus allows branched versions to
be reconciled periodically, before a software release, for ex-
ample.

To support disconnected operation and applications such
as RCS, we are exploring the idea of adding branch and
merge pointsto Elephant file histories. Thekey issueisnam-
ing. Our current approach that uses time to name files must
beaugmented or replaced in order to resolveambiguitiesthat
occur when multipleversionsco-exist. One strategy isto add

122

a tag to each concurrent history created by a branch. Ver-
sions could then be named by the pathname-time-tag triple
when necessary to disambiguate among concurrent versions
of afile.

9 Conclusions

Since their inception, file systems have contracted with their
userstoreliably storethemost recent version of each fileuntil
that fileisdeleted. File systems have evolved excellent solu-
tionsto addressawidevariety of network, system, and media
failures. We believe that it is time to offer a richer contract
in which the file system aso protects users from their own
mistakes. This has become feasible due to the recent arrival
of very large cheap disk storage. Our anaysis of file system
trace dataindicates that the amount of space required to pro-
videthislevel of protection is moderate, on the order of 1.4
MBYytes per day, per user.

Providing protection from user mistakesrequiresthe sep-
aration of file system modification operationsand file system
storage reclamation. All operations in the file system that
modify data must be revocable, meaning that copy-on-write
techniques must be used to maintain al file system data, and
no regular file system operation can free storage. Since file
system modification has been separated from storage recla-
mation, we must define mechanisms and policiesfor storage
reclamation. We have argued that the system must support
the specification of storage reclamation policies at the gran-
ularity of individua files or groups of files. We have aso
described four storage reclamation policies that we believe
will be vauable to users, and also how both these system-
defined policies and application-defined policies can be im-
plemented using a simple interface to the file versioning in-
formation maintained by thefile system.

This paper has presented our arguments that this new
contract between thefile system and the user isdesirableand
feasible, and has described our initia attempt to build afile
system, Elephant, which implements this new contract. Our
experience with the system to date indicates that there is no
substantia performance penalty for providing thisadditional
level of protection.

Acknowledgments

We would like to thank Alex Brodsky, Yvonne Coady, Joon
S. Ong, the anonymous referees, and our shepherd, Peter
Chen, whose comments on earlier drafts of this paper have
helped immensely, and Sreelatha Reddy who helped imple-
ment the NFS shadowing. We would aso like to thank the
studentsinthe DSG lab and in CPSC 508 at UBC for agree-
ing to be guinea pigsfor our Elephant user studies.

References

[1] Digital. Vax'VMS System Software Handbook. Bedford,
1985.



(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

John R. Douceur and William J. Bolosky. A large-scale
study of file-system contents. In Proceedings of S G-
METRICS’ 99, pages 5969, Atlanta, GA, USA, 1999.

James Griffioen and Randy Appleton. Reducing file
systemlatency using apredictiveapproach. In Proceed-
ingsof the Usenix Summer Conference, pages 197208,
Boston, MA, June 1994. Usenix.

R. Hagmann. Reimplementing the cedar file system
using logging and group commit. Proceedings of the
11th ACM Symposium on Operating Systems Princi-
ples, 21(5):155-162, November 1987.

DaveHitz, James Lau, and Michagl Macolm. Filesys-
tem design for afile server appliance. In Proceedings of
the 1994 Winter USENIX Technical Conference, pages
235-245, San Francisco, CA, January 1994. Usenix.

John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performancein
adigtributed file system. ACM Transactions on Com-
puter Systems, 6(1):51-81, February 1988.

James J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. In Proceedings of
the Thirteenth ACM Symposium on Operating Syste m
Principles, pages 213-225, Pacific Grove, CA, October
1991. ACM.

K.Smith and M.Seltzer. A comparison of FFSdisk al-
location policies. In Proc. 1996 USENIX Conference,
pages 1526, January 1996.

Jeanna Neefe Matthews, Drew Rosdli, Adam M.
Costello, Randolph Y. Wang, and Thomas E. Ander-
son. Improving the performance of log-structured file
systems with adaptative methods. In Proceedings of
the 16th Symposium on Operating Systems Princi ples,
pages 238-252, 1997.

M. McDonad and R. Bunt. Improving file system per-
formance by dynamically restructuring disk space. In
Proc. of Phoenix Conference on Computers and Com-
muni cation, pages 264-269, March 1989.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for UNIX. ACM Transactions
on Computer Systems, 2(3):181-197, August 1984.

L. McVoy and S. Kleiman. Extent-like performance
from a UNIX file system. In Proceedings of the 1990
Summer Usenix, pages 137-144, June 1990.

Lisa Moses. TOPS20 User’'s manual.
USC/Information Sciences Institute, Interna man-
ual, Marina del Rey, Cdlifornia.

J. K. Ousterhout, H. DaCosta, D. Harrison, JA. Kunze,
M. Kupfer, and J.G. Thompson. A trace-driven analy-
sisof the UNIX 4.2BSD file system. In Proceedings of
the 10th Symposium on Operating Systems Principles,
pages 15-24, Orcas Idand, WA, December 1985.

123

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

David Presotto. Plan 9. In Proceedings of the Work-
shop on Micro-kernels and Other Kernel Architectures,
pages 31-38, Seattle, WA, USA, April 1992. USENIX
Association.

Sean Quinlan. A cached worm file system. Software—
Practice and Experience, 21(12):1289-1299, Decem-
ber 1991.

Marc J. Rochkind. The source code control system.
| EEE Transactionson SoftwareEngineering, 1(4):364—
370, December 1975.

Drew Rosdlli. Characteristics of file system workloads.
Technical Report UCB//CSD-98-1029, Computer Sci-
ence Division, University of California, Berkeley,
1998.

Mendel Rosenblum and John K. Ousterhout. The de-
sign and i mplementation of alog-structuredfile system.
ACM Transactionson Computer Systems, 10(1):26-52,
February 1992.

Michael D. Schroeder, David K. Gifford, and Roger M.
Needham. A caching file system for a programmer’s
workstation. In Proceedings of the 10th ACM Sym-
posiumon Operating Systems Principles, pages 25-34,
Orcas Island WA (USA), December 1985. ACM.

M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. Mc-
Mains, and V. Padmanabhan. File system logging ver-
sus clustering. In Proc. 1995 Winter USENIX Confer-
ence, pages 249-264, January 1995.

Margo Sdltzer, Keith Bostic, Marshall Kirk McKusick,
and Carl Staglin. Animplementation of alog-structured
file system for UNIX. In USENIX Association, ed-
itor, Proceedings of the Winter 1993 USENIX Con-
ference: January 25-29, 1993, San Diego, Califor-
nia, USA, pages 307-326, Berkeley, CA, USA, Winter
1993. USENIX.

Michael Stonebraker. The design of the POSTGRES
storage system. In Proceedings of the 13th Interna-
tional Conference on \ery Large Data Bases, pages
289-300, September 1987.

Walter F. Tichy. RCS: A system for version control.
Software — Practice and Experience, 15(7):637-654,
July 1985.



