
Why Exokernels Matter

Dawson Engler, Frans Kaashoek, Greg
Ganger, Héctor Briceño, Russell Hunt,
David Mazières, Thomas Pinckney, John
Jannotti, Robert Grimm, Ken Mackenzie



The Two Questions of the Talk
! Do exokernels give  control to applications?

– Can interesting, shared resources be exported?
– Can a real OS be built on an exokernel?

! Do exokernels matter?
– Do normal applications benefit significantly?
– Do aggressive applications improve by 10x?
– Is global performance bad?



Outline

! What is an exokernel?
! Most interesting problem: disk multiplexing
! Xok/ExOS: a real exokernel system
! Application performance
! Summary



Exokernels in a Nutshell
! The problem with traditional OS structures:

– Most interesting resource management
decisions already made and cannot be altered

! The exokernel belief:
– Allowing anyone to manage resources safely

will hugely improve innovation/performance
! Why?

– Anyone can innovate, using result has low risk



Exokernel Architecture

! Key: Separate protection from management

Memory Pages Disk
Network

gcc

FS Net
    libOS

VM

Specialized Web Server

FS Net libOS subset

Exokernel



How do you build a file system?

Main idea: untrusted deterministic
functions (UDFs) let libFS metadata

safely specify which disk blocks it owns



How To Multiplex the Disk
! Goal: libFS as powerful as privileged FS
! Hardest problem: who can use a disk block?

! Issue 1: access control ! file system
– Sol’n: reuse libFS’ own data structures

! Issue 2: must understand metadata
– Fixed set of components would be infeasible



gcc CFFS + ExOS

Disk

Novel Solution: UDFs

! Result: libFS metadata tracks what it owns
without kernel understanding how

Checked UDFs

Dir Inode



C-FFS: A Fast LibFS
! Faster than in-kernel file systems (e.g. FFS)
! Uses exokernel control to:

– Embed inodes in directories
– Co-locate related files together on disk
– Fetch large chunks of disk on every read

! To guarantee metadata integrity:
– Use “protected methods” (specified along with

UDFs) to guard modifications



The Story So Far

! What is an exokernel?
– Key idea: Separate management from protection
– Ideal: libOS as powerful as privileged OS

! Hardest problem: disk multiplexing
– Reuse libFS metadata for access control using UDFs
– Built C-FFS (performance results coming up)

! Next: A real exokernel system + app. performance



Xok/ExOS: A Real OS
! Xok:

– Runs on x86
– Multiplexes disk, memory, network, …

! Default libOS: ExOS
–  “Unix as a library”
– Runs many unmodified Unix applications

» csh, perl, gcc, telnet, ftp, ...
– Compiles itself

! Caveats: no VM paging, no SFI on methods



Experimental Methodology
! Xok vs. OpenBSD 2.1 and FreeBSD 2.2:

– Xok uses OpenBSD-derived device drivers
– Shares large code base (libc, most apps)

! Main experimental caveat:
– Some ExOS data structures are not fully

protected
– Estimate cost of full protection by performing

all necessary checks and adding 3 extra system
calls per reference



Experimental Questions
! Do normal applications benefit?
! Is exokernel flexibility costly?
! Do aggressive applications get 10x?
! What happens to global performance?



Do normal applications need to
manage resources to benefit?

No.  Their libOS does the work.



Normal Applications Benefit

! Unaltered Unix apps + aggressive libFS
! Untrusted resource management = up to 4x faster

0
2
4
6
8

1 0
1 2
1 4

Se
co

nd
s

p a x c p d iff g c c g zip r m

X o k /E x o s
O p e n B S D
F r e e B S D



Does adding another layer of
protection make everything slower?

No. Protection is off critical path:
we conservatively duplicate

checks, overhead lost in noise.



Is Exokernel Flexibility Costly?

! Tentative answer: No

0
2
4
6
8

1 0
1 2
1 4

gu
nz

ip pa
x cp di

ff gc
c

gz
ip rm pa
x

X o k /C F F S

B S D /C F F S



Nano, pico, exo, endo, whatever.
Why does OS structure matter?

One reason: Exokernel enables
aggressive optimization without

sacrificing protection.



The Cheetah Web Server

0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

1 0 0  b y te 1  K b y te 1 0
K b y te

1 0 0
K b y te

H
TT

P 
D

oc
/S

ec

C h e e ta h /X o k
H a r ve st /B S D
N C S A /B S D

! Customization = 8 x perf. improvement



What about global performance?

(Tentative: it is good!)



Issues in Global Performance
! Wasteful applications?

– No different than current systems
! Conflicting policies?

– Exokernel architecture can enforce any global
policy required for “performance protection”

– Open challenge: recovering lost information
! Most optimizations result in less resources

used



Optimization = More Resources

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Se
co

nd
s

1 2 3 4 5
C o n c u r r e n t P r o c e sse s

X o k
B S D

! Randomized mix of non-cooperative apps



Conclusions
! Exokernel Architecture:

– Goal: safe application control of all resources
Ideal: libOS can do anything OS can

– How: separate management from protection
! Results are promising:

– Unaltered applications run same or 4x better
– Custom applications up to 8x better
– Global performance as good or better than

Unix



Protecting high-level shared state
! Problem: enforcing high level invariants

– General soln: layer protection on exokernel
– How: “privileged”/unprivileged libOS code

» protection code ~ 10% of code base

! Problem: inflexibility! Solutions:
– Privileged sw only implements protection
– Localizing state
– Declarative guards
– Note: most sharing is merely fault isolation



Exokernel Advantages
! Multiple libOSes co-exist

– Tight coupling to applications and domain
! Fast, easy innovation :

– Unprivileged = anyone can innovate
» # of system hackers >> # trusted kernel hackers

– Fault-isolated = cheap to use innovations
– Possible to deploy innovations to other systems
– Strong analogy to compilers



Challenges
! Portability, preventing system chaos

– standard soln: interfaces, good programming
! Sharing state with buggy/malicious peers

– General soln: layer protection on exokernel
– How: “privileged”/unprivileged libOS code

» protection code ~ 10% of code base

! Reconciling greed and global performance
– greed = faster apps = more resources



What about Linux/FreeBSD?
! Exokernel/libOS advantages:

– Fault-isolation
– Library development easier
– Unices: slow rate of delivered innovation

! Cons:
– Linux & co. available NOW
– Large scale deployment may expose problems



Global Performance is Good

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

S e c o n d s

1 2 3 4 5
C o n c u r r e n t P r o c e sse s

X o k
B S D



But you don’t handle ‘x’
! What to protect is somewhat orthogonal
! Exokernel mostly comes in after you decide

what to protect: get everything else out
! Note, however, typically not much that is

protection (fault-isolation, etc)


