
Requirements for Programming Language Memory Models

Jeremy Manson and William Pugh
Department of Computer Science

University of Maryland, College Park
{jmanson, pugh}@cs.umd.edu

ABSTRACT
One of the goals of the designers of the Java programming
language was that multithreaded programs written in Java
would have consistent and well-defined behavior. This would
allow Java programmers to understand how their programs
might behave; it would also allow Java platform architects to
develop their platforms in a flexible and efficient way, while
still ensuring that Java programs ran on them correctly.

Unfortunately, Java’s original memory model, which de-
scribed the way in which Java threads interact through mem-
ory, was not defined in a way that allowed programmers and
architects to understand the requirements for a Java system.
As part of Java Specification Request (JSR) 133 [7], a new
memory model has been defined for Java. This paper out-
lines how the requirements for a new memory model were
established, and what those requirements are. It does not
outline the model itself; it merely provides a rationale.

1. INTRODUCTION
The work in [13, 14] showed that the original semantics for

Java’s threading specification [6, §17] had serious problems.
To address these issues, the Java programming language [6]
has recently undergone a revision; it now provides greater
flexibility for implementors and a clearer notion of what it
means to write a correct program. The new specification is
widely known as the Java memory model.

To provide a clearer semantics, the informal properties of
the memory model had to be described. This was accom-
plished through a great deal of thinking, staring at white
boards, and spirited debate. A careful balance had to be
maintained. On one hand, it was necessary for the model to
allow programmers to be able to reason carefully and cor-
rectly about their multithreaded code. On the other, it was
necessary for the model to allow compiler writers, virtual
machine designers and hardware architects to optimize code
ruthlessly, possibly interfering with the intuitive results of a
program.

At the end of this process, a consensus emerged as to

what the informal requirements for a programming language
memory model are. In this paper, we discuss these require-
ments in detail. We do not discuss how these requirements
were met. For more details on the actual model, see [7].

For a more detailed record of the process of designing this
memory model, it might be instructive for the reader to look
at the Java memory model mailing list archives [8].

2. WHY A SEMANTICS?
In the past, multithreaded languages have not defined a

full semantics for multithreaded code. Ada, for example,
simply defines unsynchronized code as “erroneous” [1]. The
reasoning behind this is that since such code is incorrect (on
some level), no guarantees should be made when it occurs.
What it means for code to be correctly synchronized should
be fully defined; after that, nothing.

This is the same strategy that some languages take with
array bounds overflow – unpredictable results may occur,
and it is the programmer’s responsibility to avoid these sce-
narios.

The problem with this strategy is one of security and
safety. In an ideal world, all programmers would write cor-
rect code all of the time. However, this does not always
happen. Programs frequently contain errors; not only does
this cause code to misbehave, but it also allows attackers
an easy way into a program. Buffer overflows, in particu-
lar, are frequently used to compromise a program’s security.
Program semantics must be carefully defined: otherwise, it
becomes harder to track down errors, and easier for attack-
ers to take advantage of those errors. If programmers don’t
know what their code is doing, programmers won’t be able
to know what their code is doing wrong.

The new Java memory model provides strong guarantees
for correctly written code, but also provides a clear and
definitive semantics for how code should behave when it is
not correctly written.

3. SIMPLE REORDERING
Many of the most important optimizations that can be

performed on a program involve reordering program state-
ments. For example, superscalar architectures frequently
reorder instructions to ensure that the execution units are
all in use as much as possible. Even optimizations as ubiq-
uitous as common subexpression elimination and redundant
read elimination can be seen as reorderings: each evaluation
of the common expression is conceptually “moved” to the
point at which it is evaluated for the first time.



Initially, x == y == 0
Thread 1 Thread 2
1: r2 = x; 3: r1 = y
2: y = 1; 4: x = 2

May return r2 == 2, r1 == 1

Figure 1: Behaves Surprisingly

In a single threaded program, a compiler can (and, indeed,
must) be careful that these program transformations not in-
terfere with the possible results of the program. We refer to
this as a compiler’s maintaining of the intra-thread seman-
tics of the program – a thread in isolation has to behave as
if no code transformations occurred at all.

However, it is much more difficult to maintain a simple,
straightforward semantics while optimizing multithreaded
code. Consider Figure 1. It may appear that the result
r2 == 2, r1 == 1 is impossible. Intuitively, if r2 is 2, then
instruction 4 came before instruction 1. Further, if r1 is
1, then instruction 2 came before instruction 3. So, if r2

== 2 and r1 == 1, then instruction 4 came before instruc-
tion 1, which comes before instruction 2, which came before
instruction 3, which comes before instruction 4. This is a
cyclic execution, which is, on the face of it, absurd.

On the other hand, we must consider the fact that a com-
piler can reorder the instructions in each thread. If instruc-
tion 3 does not come before instruction 4, and instruction 1
does not come before instruction 2, then the result r2 == 2

and r1 == 1 is perfectly reasonable.
In fact, in Java, for performance reasons, we always allow

actions that are not control or data dependent on each other
in a program to be reordered. This leads us to our first
requirement:

Reorder1 Independent actions can be reordered.

In a multithreaded context, doing this may lead to counter-
intuitive results, like the one in Figure 1. However, it should
be noted that this code is improperly synchronized: there
is no ordering of the accesses by synchronization. When
synchronization is missing, weird and bizarre results are al-
lowed.

It should be noted that Reorder1 guarantees that inde-
pendent actions can be reordered regardless of the order in
which they appear in the program. It does not guarantee
that two independent actions can always be reordered. For
example, a write action clearly cannot be reordered out of a
locking region. We shall see another example of how these
reorderings are limited in Section 5.4.

4. GUARANTEES FOR CORRECTLY SYN-
CHRONIZED PROGRAMS

It is very difficult for programmers to reason about the
kinds of transformations that compilers perform. One of the
goals of the Java memory model is to provide programmers
a mechanism that allows them not to have to reason about
reorderings in a program.

For example, in the code in Figure 1, the programmer
can only see the result of the reordering because the code
is improperly synchronized. Our first goal is to ensure that
this is the only reason that a programmer can see the result
of a reordering.

We say that a program obeys sequentially consistent se-
mantics (as defined in [10]) if the result of any execution

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

if (r1 != 0) if (r2 != 0)

y = 42; x = 42;
Correctly synchronized, so r1 == r2 == 0 is the only legal

behavior

Figure 2: Surprising Correctly Synchronized Pro-
gram

is the same as if all of the actions in that execution took
place in some total order that reflects the order of the pro-
gram, and each read sees the last write to that variable that
occurred in that order. If a program obeys sequentially con-
sistent semantics, then no compiler or processor reorderings
will be visible.

Two accesses (reads of or writes to) the same shared field
or array element are said to be conflicting if at least one
of the accesses is a write. A data race occurs in an execu-
tion of a program if there are conflicting actions in multiple
threads in that execution that are not ordered by synchro-
nization. The program in Figure 1 has data races on both x

and y. A program is correctly synchronized if and only if all
sequentially consistent executions are free of data races.

Having defined these terms, we can talk a little more
about the guarantees we provide. One possibility would be
that we could eliminate all reorderings. On contemporary
systems, this would have too much of an impact on per-
formance. However, it is perfectly reasonable to ensure that
code reordering should only be visible between threads when
those threads are involved in data races. Our first guar-
antee for programmers, therefore, applies to data-race-free
programs:

DRF Correctly synchronized programs have sequentially
consistent semantics.

Given this requirement, programmers need only worry
about code transformations having an impact on their pro-
grams’ results if those program contain data races.

This requirement leads to some interesting corner cases.
For example, the code shown in Figure 2 (first described
in [2]) is correctly synchronized. This may seem surprising,
since it doesn’t perform any synchronization actions. Re-
member, however, that a program is correctly synchronized
if, when it is executed in a sequentially consistent manner,
there are no data races. If this code is executed in a se-
quentially consistent way, each action will occur in program
order, and neither of the writes will occur. Since no writes
occur, there can be no data races: the program is correctly
synchronized. A program transformation (such as an ag-
gressive write speculation) that permitted this result would
be disallowed.

5. SYNCHRONIZATION
We haven’t really discussed how code can use explicit syn-

chronization (in whatever form we give it) to make sure their
code is correctly synchronized. The typical way of doing this
is by using locking. Another way is to use volatile variables.

The properties of volatile variables arose from the need
to provide a way to communicate between threads without
the overhead of ensuring mutual exclusion. A very simple



Initially, x == 0, ready == false. ready is a volatile
variable.

Thread 1 Thread 2

x = 1; if (ready)

ready = true r1 = x;
If r1 = x; executes, it will read 1.

Figure 3: Simple Use of Volatile Variables

example of their use can be seen in Figure 3. If ready were
not volatile, the write to it in Thread 1 could be reordered
with the write to x. This might result in r1 containing the
value 0. We define volatiles so that this reordering cannot
take place; if Thread 2 reads true for ready, it must also
read 1 for x.

Locks and unlocks work in a way similar to volatiles: ac-
tions that take place before an unlock must also take place
before any subsequent locks on that monitor. The resulting
property reflects the way synchronization is used to commu-
nicate between threads:

HB Volatile writes are ordered before subsequent volatile
reads of the same variable. Unlocks are ordered before
subsequent locks of the same monitor.

The word subsequent needs to be defined for HB. Syn-
chronization actions include locks, unlocks, and reads of and
writes to volatile variables. We have a total order over all
synchronization actions in an execution of a program; this is
called the synchronization order. An action y is subsequent
to another action x if x comes before y in the synchronization
order.

5.1 Happens-Before Consistency
We can describe a simple, interesting memory model using

HB by abstracting a little from locks and unlocks.
A happens-before relationship between two actions is what

enforces an ordering between those actions. For example,
if one action occurs before another in the program order
for a single thread, then the first action happens-before the
second. The program has to be executed in a way that does
not make it appear to the second that it occurred out of
order with respect to the first.

This may seem at odds with the result in Figure 1. How-
ever, a “reordering” is only visible here if we assume that
the program executed all of its actions in a single total or-
der; the surprising behavior makes it appear as if the writes
are occurring before the reads. If the individual threads are
examined in isolation, no reordering is visible; it is simply
not known where the values seen by the reads are written.

The basic principle at work here is that threads in isola-
tion will appear to behave as if they are executing in pro-
gram order; however, the memory model will tell you what
values can be seen by a particular read;

Synchronization actions can create happens-before rela-
tionships between threads. In addition to the happens-
before relationship between actions in a single thread, we
also have (in accordance with HB)

• An unlock on a particular monitor happens-before a
lock on that monitor that comes after it in the syn-
chronization order.

• A write to a volatile variable happens-before a read of

that volatile variable that comes after it in the syn-
chronization order.

• A call to start a thread happens-before the actual start
of that thread.

• The termination of a thread happens-before a join per-
formed on that thread.

• Happens-before is transitive. That is, if a happens-
before b, and b happens-before c, then a happens-
before c.

We say that it is happens-before consistent for a read to
see a write in an execution of a program in two cases. First,
a read is happens-before consistent if the write happens-
before the read and there is no intervening write to the same
variable. So, if a write of 1 to x happens-before a write
of 2, and the write of 2 happens-before a read, then that
read cannot see the value 1. Second, it is happens-before
consistent for the read to see the write if the write does not
happen-before the read. If the read does not happen-before
the write, then the read is allowed to see the write. This can
happen, for example, if the write occurs in another thread
(as in Figure 1).

If all of the reads in an execution see writes they are
happens-before consistent to see, then we say that execu-
tion is happens-before consistent. Note that happens-before
consistency implies that every read must see a write that
occurs somewhere in the program.

Although it is simple, happens-before consistency is not
a good memory model. Notice that the behavior we want
to disallow in Figure 2 is happens-before consistent. If both
writes occur, and both reads see them, then both reads see
writes that they are allowed to see.

Nevertheless, happens-before consistency provides a good
outer bound for our model; based on HB, all executions must
be happens-before consistent. Later sections of this paper
(mostly Section 7) discuss ways of locating a more exact
bound; for now, we focus on how happens-before affects im-
plementation.

5.2 Implementing Synchronization
At the abstract level, happens-before consistency provides

a relatively simple memory model. In this section, we talk a
little about how we implement happens-before guarantees.

A happens-before relationship can be thought of as an
ordering edge with two points; we call the start point a
release, and the end point an acquire. Unlocks and volatile
writes are release actions, and locks and volatile reads are
acquire actions.

An acquire ensures an ordering with a previous release.
Consider an action that takes place before an acquire. It
may or may not have been visible to actions that took place
before the previous release, depending on how the threads
are scheduled. If we move the access to after the acquire, we
are simply saying that the access is definitely scheduled after
the previous release. This is therefore a legal transformation.
For example, in Figure 3, if there were a read of a normal
variable that occurred before the read of ready, then it could
be moved after the read of ready.

Similarly, the only thing that the release does is ensure an
ordering with a subsequent acquire. Consider an action that
takes place after a release. It may or may not be visible to



Initially, v1 == v2 == 0

Thread 1 Thread 2 Thread 3 Thread 4

v1 = 1; v2 = 2; r1 = v1; r3 = v2;

r2 = v2; r4 = v1;
Is r1 == r3 == 1, r2 == r4 == 0 legal behavior?

Figure 4: Volatiles Must Occur In A Total Order

Initially, x == y == v == 0, v is volatile.
Thread 1 Thread 2
r1 = x; r3 = y;
v = 0; v = 0;
r2 = v; r4 = v;
y = 1; x = 1;

Is the behavior r1 == r3 == 1 possible?

Figure 5: Strong or Weak Volatiles?

Initially, a == b == v == 0, v is volatile.

Thread 1 Thread 2

r1 = a; do {
if (r1 == 0) r2 = b;

v = 1; r3 = v;

else } while (r2 + r3 < 1);

b = 1; a = 1;
Correctly synchronized, so r1 == 1 is illegal

Figure 6: Another Surprising Correctly Synchro-
nized Program

particular actions after the subsequent acquire, depending
on how the threads are scheduled. If we move the access to
before the release, we are simply saying that the access is
definitely scheduled before the next acquire. This is there-
fore also a legal transformation. For example, in Figure 3, if
there were a write to a normal variable that occurred after
the write to ready, then it could be moved before the write
to ready.

All of this is simply a roundabout way of saying that ac-
cesses to normal variables can be reordered with a following
volatile read or monitor enter, or a preceding volatile write
or monitor exit, This implies that normal accesses can be
moved inside locking regions, but not out of them; for this
reason, we sometimes call this property roach motel seman-
tics.

It is relatively easy for compilers to ensure this property;
indeed, most do already. Processors, which also reorder in-
structions, often need to be given memory barrier instruc-
tions to execute at these points in the code to ensure that
they do not perform the reordering. Processors often provide
a wide variety of these barrier instructions – for information
about which are needed on which processor and for which
action, consult [11].

5.3 Additional Guarantees for Volatiles
Figure 4 gives us another interesting glimpse into the guar-

antees we provide to programmers. The reads of v1 and v2

should be seen in the same order by both Thread 3 and
Thread 4. The memory model does not allow writes to
volatiles to be seen in different orders by different threads.
In fact, it makes a much stronger guarantee:

VolatileAtomicity All accesses to volatile variables are
performed in a total order.

This is clear cut, implementable, and has the unique prop-
erty that the original Java memory model not only came
down on the same side, but was also clear on the subject.

Another issue that arises with volatiles has come to be
known as strong versus weak volatility. There are two pos-
sible interpretations of volatile, according to the happens-
before order:

• Strong interpretation There is a happens-before re-
lationship from each write to each subsequent read of
that volatile.

• Weak interpretation There is a happens-before re-
lationship from each write to each subsequent read of
that volatile that sees that write.

In Figure 5, under the weak interpretation, the read of v in
each thread might see its own volatile write. If this were the
case, then the happens-before edges would be redundant,
and could be removed. The resulting code could behave
much like the simple reordering example in Figure 1.

To avoid confusion stemming from when multiple writer
threads are communicating to reader threads via a single
volatile variable, Java supports the strong interpretation.

StrongVolatile There must be a happens-before relation-
ship from each write to each subsequent read of that
volatile.

5.4 Optimizers Must Be Careful
Optimizers have to consider volatile accesses as carefully

as they consider locking. In Figure 6, we have a correctly
synchronized program. When executed in a sequentially
consistent way, Thread 2 will loop until Thread 1 writes
to v or b. Since the only value available for the read of a to
see is 0, r1 will have that value. As a result, the value 1 will
be written to v, not b. There will therefore be a happens-
before relationship between the read of a in Thread 1 and
the write to a in Thread 2.

Knowing that the write to a will always happen, we might
want to apply the principle that we can reorder the write to
a with the loop. In this case, Thread 1 would be able to see
the value 1 for a, and write to b. Thread 2 would see the
write to b and terminate the loop. Since b is not a volatile
variable, there would be no ordering between the read in
Thread 1 and the write in Thread 2. There would therefore
be data races on both a and b.

The result of this would be a correctly synchronized pro-
gram that does not behave in a sequentially consistent way.
This violates DRF, so we do not allow it. The need to
prevent this sort of reordering caused many difficulties in
formulating a workable memory model.

Compiler writers need to be very careful when reordering
code past all synchronization points, not just those involving
locking and unlocking.



Before compiler transformation After compiler transformation

Initially, a = 0, b = 1

Thread 1 Thread 2

1: r1 = a; 5: r3 = b;

2: r2 = a; 6: a = r3;

3: if (r1 == r2)

4: b = 2;
Is r1 == r2 == r3 == 2 possible?

Initially, a = 0, b = 1

Thread 1 Thread 2

4: b = 2; 5: r3 = b;

1: r1 = a; 6: a = r3;

2: r2 = r1;

3: if (true) ;
r1 == r2 == r3 == 2 is sequentially

consistent

Figure 7: Effects of Redundant Read Elimination

5.5 Optimizations Based on Happens-Before
Notice that lock and unlock actions only have happens-

before relationships with other lock and unlock actions on
the same monitor. Similarly, accesses to a volatile vari-
able only create happens-before relationships with accesses
to the same volatile variable.

There have been many optimizations proposed (for exam-
ple, in [15]) that have tried to remove excess, or “redundant”
synchronization. One of the requirements of the Java mem-
ory model was that redundant synchronization (such as locks
that are only accessed in a single thread) could be removed.

One possible memory model would require that all syn-
chronization actions have happens-before relationships with
all other synchronization actions. If we forced all synchro-
nization actions to have happens-before relationships with
each other, none of them could ever be described as redun-
dant – they would all have to interact with the synchroniza-
tion actions in other threads, regardless of what variable or
monitor they accessed. Java does not support this; it does
not simplify the programming model sufficiently to warrant
the additional synchronization costs.

This is therefore another of our guarantees:

RS Synchronization actions that only introduce redundant
happens-before edges can be treated as if they don’t
introduce any happens-before edges.

This is reflected in the definition of happens-before. For
example, a lock that is only accessed in one thread will only
introduce happens-before relationships that are already cap-
tured by the program order edges. This lock is redundant,
and can therefore be removed.

6. TRANSFORMATIONS THAT INVOLVE
DEPENDENCIES

In Section 3, we gave Reorder1, which is a guarantee that
independent actions can be reordered. Reorder1 is a strong
guarantee, but not quite strong enough. Sometimes, com-
pilers can perform transformations that have the effect of
removing dependencies.

For example, the behavior shown in Figure 7 is allowed.
The compiler should be allowed to

• eliminate the redundant read of a, replacing r2 = a

with r2 = r1, then

• determine that the expression r1 == r2 is always true,
eliminating the conditional branch 3, and finally

• move the write 4: b = 2 early.

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r3 = y;

r2 = 1 + r1*r1 - r1; x = r3;

y = r2;
r1 == r2 == r3 == 1 is legal behavior

Figure 8: Compilers Can Think Hard About When
Actions Are Guaranteed to Occur

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r3 = y;

if (r1 == 1) if (r2 == 1)

y = 1; x = 1;

if (r2 == 0)

x = 1;
r1 == r2 == 1 is legal behavior

Figure 9: Sometimes Dependencies are not Obvious

After the compiler does the redundant read elimination,
the assignment 4: b = 2 is guaranteed to happen; the sec-
ond read of a will always return the same value as the first.
Without this information, the assignment seems to cause
itself to happen. With this information, there is no depen-
dency between the reads and the write. Thus, dependence-
breaking optimizations can also lead to apparent cyclic ex-
ecutions.

Note that intra-thread semantics guarantee that if r1 6=
r2, then Thread 1 will not write to b and r3 == 1. Addi-
tionally, either r1 == 0, r2 == 1, or r1 == 1, r2 == 0.

Figure 8 shows another surprising behavior. In order to
see the result r1 == r2 == 1, it would seem as if Thread 1
would need to write 1 to y before reading x. However, it
also seems as if Thread 1 can’t know what value r2 will be
until after x is read.

In fact, it is easy for the compiler to perform an inter-
thread analysis that shows that only the values 0 and 1 will
be written to x. Knowing that, the compiler can determine
that the quadratic equation always returns 1, resulting in
Thread 1’s always writing 1 to y. Thread 1 may, therefore,
write 1 to y before reading x. The write to y is not dependent
on the values seen for x. Our analysis of the program reveals
that there is no real dependency in Thread 1.

A similar example of an apparent dependency can be seen
in the code in Figure 9. In the same way as it does for Fig-
ure 8, a compiler can determine that only the values 0 and 1
are ever written to x. As a result, the compiler can remove



Initially, x = 0
Thread 1 Thread 2

r1 = x; r2 = x;

x = 1; x = 2;
r1 == 2 and r2 == 1 is a legal behavior

Figure 10: An Unexpected Reordering

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

y = r1; x = r2;
Incorrectly Synchronized: But r1 == r2 == 42 Still

Cannot Happen

Figure 11: An Out Of Thin Air Result

the dependency and move the write to x to the beginning of
Thread 2. If the resulting code were executed in a sequen-
tially consistent way, it would result in the circular behavior
described.

It is clear, then, that compilers can perform many opti-
mizations that remove dependencies. So we make another
guarantee:

Reorder2 If a compiler can detect that an action will al-
ways happen (with the same value written to the same
variable), it can be reordered regardless of apparent
dependencies.

Like Reorder1, this guarantee does not allow an imple-
mentation to reorder actions around synchronization actions
arbitrarily. In Figure 6, for example, we saw an example of
this: we could not reorder the accesses to a because of the
happens-before relationships.

Even though Reorder1 and Reorder2 are strong guaran-
tees for compilers, they are not a complete set of reorderings
allowed. They are simply a set that is always guaranteed to
be allowed.

6.1 Reordering Not Visible to Current Thread
Figure 10 contains a small but interesting example. The

behavior r1 == 2 and r2 == 1 is a legal behavior, although
it may be difficult to see how it could occur. A compiler
would not reorder the statements in each thread; this code
must never result in r1 == 1 or r2 == 2. However, the be-
havior r1 == 2 and r2 == 1 might be allowed by an opti-
mizer that performs the writes early, but does so without
allowing them to be visible to local reads that came before
them in program order. This behavior, while surprising,
is allowed by several processor memory architectures, and
therefore is one that should be allowed by a programming
language memory model.

7. OUT-OF-THIN-AIR GUARANTEES
In Figure 2, the writes are control dependent on the reads.

Figure 11 is a very similar example; in this case, the writes
will always happen, but the values written are data depen-
dent on the reads.

This is no longer a correctly synchronized program, be-
cause there is a data race between Thread 1 and Thread 2.
However, as it is in many ways a very similar example, we
would like to provide a similar guarantee. In this case, we
say that the value 42 cannot appear out of thin air.

In fact, the behavior of this case may be even more of a
cause for concern than the other. If, for example, the value
that was being produced out of thin air was a reference to
an object which the thread was not supposed to have, then
such a transformation could be a serious security violation.
There are no reasonable compiler transformations that pro-
duce this result.

An example of this can be seen in Figure 12. Let’s assume
that there is some object o which we do not wish Thread 1
or Thread 2 to see. o has a self-reference stored in the field
f. If our compiler were to decide to perform an analysis that
assumed that the reads in each thread saw the writes in the
other thread, and saw a reference to o, then r1 = r2 = r3

= o would be a possible result. The value did not spring
from anywhere – it is simply an arbitrary value pulled out
of thin air.

Determining what constitutes an out-of-thin-air read is
complicated. A first (but inaccurate) approximation would
be that we don’t want reads to see values that couldn’t be
written to the variable being read in some sequentially con-
sistent execution. Because the value 42 is never written in
Figure 11, no read can ever see it.

The problem with this solution is that a program can
contain writes whose program statements don’t occur in any
sequentially consistent executions. Imagine, as an example,
a write that is only performed if the value of r1 + r2 is
equal to 3 in Figure 1. This write would not occur in any
sequentially consistent execution, but we would still want a
read to be able to see it.

One way to think about these issues is to consider when
actions can occur in an execution. These transformations
all involve moving actions earlier than they would otherwise
have occurred. You can perform an action earlier in an
execution than it would have otherwise occurred if, had we
carried on the execution in a sequentially consistent way, it
would have been possible for the action to have occurred
afterward.

If we had, for example, a write that was control dependent
on the value of r1 + r2 being equal to 3 in Figure 1, we
would know that write could have occurred in an execution
of the program that behaves in a sequentially consistent way
after the result of r1 + r2 is determined.

We can apply this form of reasoning to our other example,
as well. In Figure 1, the writes to x and y can occur first
because they will always occur in sequentially consistent ex-
ecutions. In Figure 7, the write to b can occur early because
it occurs in a sequentially consistent execution when r1 and
r2 see the same value. In Figure 11, the writes of 42 to y

and x cannot happen, because they do not occur in any se-
quentially consistent execution. This, then, is our first “out
of thin air” guarantee:

ThinAir1 A write can occur earlier in an execution than it
would have otherwise occurred. However, that write
must have been able to occur without the assumption
that any reads that take place after the point where
the write occurs see non-sequentially consistent values.

7.1 When Actions Can Occur

7.1.1 Disallowing Some Results
It is difficult to define the boundary between the kinds

of results that are reasonable and the kind that are not.
The example in Figure 11 provides an example of a result



Initially, x = null, y = null.
o is an object with a field f that refers to o.

Thread 1 Thread 2

r1 = x; r3 = y;

r2 = x.f; x = r4;

y = r2;
r1 == r2 == o is not an acceptable behavior

Figure 12: An Unexpected Reordering

Initially, x == y == z == 0

Thread 1 Thread 2

r3 = x; r2 = y;

if (r3 == 0) x = r2;

x = 42;

r1 = x;

y = r1;
r1 == r2 == r3 == 42 is a legal behavior

Figure 15: A Complicated Inference

that is clearly unacceptable, but other examples may be less
straightforward.

The examples in Figures 13 and 14 are similar to the ex-
amples in Figures 2 and 11, with one major distinction. In
those examples, the value 42 could never be written to x in
any sequentially consistent execution. In the examples in
Figures 13 and 14, 42 can be written to x in some sequen-
tially consistent executions. Could it be legal for the reads
in Threads 1 and 2 to see the value 42 even if Thread 4 does
not write that value?

This is a potential security issue. Consider what hap-
pens if, instead of 42, we write a reference to an object that
Thread 4 controls, but does not want Threads 1 and 2 to
see without Thread 4’s first seeing 1 for z. If Threads 1 and
2 see this reference, they can be said to manufacture it out
of thin air.

This sort of behavior is not known to result from any
combination of known reasonable and desirable optimiza-
tions. However, there is also some question as to whether
this reflects a real and serious security requirement. In Java,
the semantics usually side with the principle of having safe,
simple and unsurprising semantics when possible. Thus, the
Java Memory Model prohibits the behaviors shown in Fig-
ures 13 and 14.

7.1.2 Allowing Other Results
Now consider the code in Figure 15. A compiler could

determine that the only values ever assigned to x are 0 and
42. From that, the compiler could deduce that, at the point
where we execute r1 = x, either we had just performed a
write of 42 to x, or we had just read x and seen the value
42. In either case, it would be legal for a read of x to see
the value 42. By the principle we articulated as Reorder2,
it could then change r1 = x to r1 = 42; this would allow
y = r1 to be transformed to y = 42 and performed earlier,
resulting in the behavior in question.

This is a reasonable transformation that needs to be bal-
anced with the out-of-thin-air requirement. Notice that the
code in Figure 15 is quite similar to the code in Figures 13
and 14. The difference is that Threads 1 and 4 are now
joined together; in addition, the write to x that was in
Thread 4 is now performed in every sequentially consistent
execution – it is only when we try to get non-sequentially

Initially, x = y = 0; a[0] = 1, a[1] = 2

Thread 1 Thread 2

r1 = x; r3 = y;

a[r1] = 0; x = r3;

r2 = a[0];

y = r2;
r1 == r2 == r3 == 1 is unacceptable

Figure 16: Another Out Of Thin Air Example

consistent results that the write does not occur.
There is a significant difference between these two cases.

One way of articulating it is that in Figure 15, we know
that r1 = x can see 42 without reasoning about what might
have occurred in another thread because of a data race. In
Figures 13 and 14, we need to reason about the outcome of
a data race to determine that r1 = x can see 42.

This is, then, what differentiates out of thin air reads from
those that are allowable. A solution must be available that
does not involve reasoning about what happens in the exe-
cution solely because of data races. This is also our second
out of thin air principle:

ThinAir2 Actions may only be performed earlier than their
original place in the program if it can be determined
that they could occur in the execution without assum-
ing that any additional reads see values via a data
race.

We can use ThinAir2 as a basic principle to reason about
multithreaded programs. Consider, for example, the code in
Figure 16. The only way in which the unacceptable result
could occur is if a write of 1 to one of the variables were
performed early. However, we cannot reason that a write of
1 to x or y will occur without reasoning about data races.
Therefore, this result is impossible.

7.2 Isolation
Sometimes, when debugging a program, we are given an

execution trace of that program in which the error occurred.
Given a particular execution of a program, the debugger can
create a partition of the threads and variables in the program
so that if a thread accessed a variable in that execution, then
the thread and variable are in the same partition. Monitors
can be included in with variables for the purposes of this
discussion.

Given this partitioning, you can explain the behavior in
the execution of the threads in each partition without hav-
ing to examine the behavior or code for the other threads.
If a thread or a set of threads is isolated from the other
threads in an execution, the programmer can reason about
that isolated set separately from the other threads. This is
called the isolation principle:

Isolation Consider a partition P of the threads and vari-
ables in the program so that if a thread accessed a
variable in that execution, then the thread and vari-
able are in the same partition. Given P , you can ex-
plain the behavior in the execution of the threads in
each partition without having to examine the behavior
or code for the other threads.

How is this helpful? Consider the code in Figure 14. If
we allowed the unacceptable execution, then we could say



Initially, x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x; r2 = y; z = 42; r0 = z;

y = r1; x = r2; x = r0;
Is r0 == 0, r1 == r2 == 42 legal behavior?

Figure 13: Can Threads 1 and 2 see 42, if Thread 4 didn’t write 42?

Initially, x == y == z == 0

Thread 1 Thread 2 Thread 3 Thread 4

r1 = x; r2 = y; z = 1; r0 = z;

if (r1 != 0) if (r2 != 0) if (r0 == 1)

y = r1; x = r2; x = 42;
Is r0 == 0, r1 == r2 == 42 legal behavior?

Figure 14: Can Threads 1 and 2 see 42, if Thread 4 didn’t write to x?

Initially, a = b = c = d = 0
Thread 1/2/3 Thread 4
r1 = a;

if (r1 == 0)

b = 1;

r2 = b;

if (r2 == 1)

c = 1;

r3 = c;

if (r3 == 1)

d = 1;

r4 = d;

if (r4 == 1) {

c = 1;

a = 1;

}

Behavior in question: r1 == r3 == r4 == 1; r2 == 0

Figure 18: Result of thread inlining of Figure 17;
behavior allowed by semantics

that the actions in Threads 3 and 4 affected the actions in
Threads 1 and 2, even though they touched none of the same
variables. Reasoning about this would be difficult, at best.

The Isolation principle closely interacts with our out of
thin air properties. If a thread A does not access the vari-
ables accessed by a thread B, then the only way A could have
really affected B is if A might have accessed those variables
along another program path not taken. The compiler might
speculate that the other program path would be taken, and
that speculation might affect B. The speculation could only
really affect B if B could happen at the same time as A. This
would imply a data race between A and B, and we would
be speculating about that race; this is something ThinAir2
is designed to avoid.

Isolation is not necessarily a property that should be re-
quired in all memory models. It seems to capture a property
that is useful and important in a memory model, but all of
the implications of it are not understood well enough for us
to decide if it must be true of any acceptable memory model.

7.3 Thread Inlining
One behavior that is disallowed by a straightforward in-

terpretation of the out of thin air property that we have
developed is shown in Figure 17. An implementation that
always scheduled Thread 1 before Thread 2 and Thread 2
before Thread 3 could reasonably decide that the write to d

by Thread 3 could be performed before anything in Thread 1
(as long as the guard r3 == 1 evaluates to true). This could
lead to a result where the write to d occurs, then Thread 4
writes 1 to c and a. The write to b does not occur, so the

read of b by Thread 2 sees 0, and does not write to c. The
read of c in Thread 3 then sees the write by Thread 4.

However, this requires reasoning that Thread 3 will see a
value for c that is given by a data race. A straightforward
interpretation of ThinAir2 therefore disallows this.

In Figure 18, we have another example, similar to the
one in Figure 17, where Threads 1, 2 and 3 are combined.
We can use the same reasoning that we were going to use
for Figure 17 to decide that the write to d can occur early.
Here, however, it does not clash with ThinAir2: we are only
reasoning about the actions in the combined Thread 1/2/3.
The behavior is therefore allowed in this execution.

As a result of this distinction, the compiler writer must be
careful when considering inlining threads. When a compiler
does decide to inline threads, as in this example, it may not
be possible to utilize the full flexibility of the Java memory
model when deciding how the resulting code can execute.

8. RELATED WORK
The happens-before relationship has a long history in con-

currency literature. It is first described in [9].
The notion that correctly synchronized programs should

behave in a sequentially consistent way was first articulated
in [3].

An earlier, substantially simpler version of this work ap-
peared in [12]. It did not address the full range of causality
issues addressed here.

Most multithreaded languages do not provide strong se-
mantics for multithreaded programs in the presence of data
races. The Ada programming language [1], for example,
refers to such programs as “erroneous”, and discusses them
no further. The C# language’s [4] underlying framework,
the Common Language Infrastructure [5], is also multithreaded;
it explicitly allows optimizations to take place when there
are data races, but it does not offer specific semantics.

9. CONCLUSION
The adoption of a new Java memory model was a long

process. In order to carefully define the requirements, the
needs of programmers, compiler writers and processor archi-
tects had to be carefully balanced. The end result is a strong
statement, not only of what the requirements are for Java
(as listed in Figure 19), but one that identifies and classifies
these issues for future memory models.

10. ACKNOWLEDGMENTS



Initially, a = b = c = d = 0
Thread 1 Thread 2 Thread 3 Thread 4

r1 = a;

if (r1 == 0)

b = 1;

r2 = b;

if (r2 == 1)

c = 1;

r3 = c;

if (r3 == 1)

d = 1;

r4 = d;

if (r4 == 1) {

c = 1;

a = 1;

}

Behavior in question: r1 == r3 == r4 == 1; r2 == 0

Figure 17: Behavior disallowed by semantics

The authors wish to thank the members of the Java mem-
ory model mailing list for their time and contribution to
this effort. Gratitude is particularly extended to Doug Lea
and Sarita Adve for their contributions. Gramercy, also, to
David Hovemeyer, for his feedback on this paper.

11. REFERENCES
[1] Ada Joint Program Office. Ada 95 Rationale.

Intermetrics, Inc., Cambridge, Massachusetts, 1995.

[2] Sarita Adve. Designing memory consistency models
for shared-memory multiprocessors. Technical Report
1198, University of Wisconsin, Madison, December
1993. Ph.D. Thesis.

[3] Sarita Adve and Mark Hill. Weak ordering—A new
definition. In Proc. of the 17th Annual Int’l Symp. on
Computer Architecture (ISCA’90), pages 2–14, 1990.

[4] ECMA. C# Language Specification, December 2002.
http://www.ecma-
international.org/publications/standards/Ecma-
334.htm.

[5] ECMA. Common Language Infrastructure (CLI),
December 2002. http://www.ecma-
international.org/publications/standards/Ecma-
335.htm.

[6] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison Wesley, 1996.

[7] Java Specification Request (JSR) 133. Java Memory
Model and Thread Specification Revision, 2004.
http: //jcp.org/jsr/detail/133.jsp.

[8] The Java memory model. Mailing list and web page.
http://www.cs.umd.edu/ users/ pugh/ java/
memoryModel.

[9] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. CACM, 21(7):558–564,
1978.

[10] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
9(29):690–691, 1979.

[11] Doug Lea. JSR-133 Cookbook, 2004. Available from
http: //gee.cs.oswego.edu/dl/jmm/cookbook.html.

[12] Jeremy Manson and William Pugh. Core semantics of
multithreaded Java. In ACM Java Grande Conference,
June 2001.

[13] William Pugh. Fixing the Java memory model. In
ACM Java Grande Conference, June 1999.

[14] William Pugh. The Java memory model is fatally
flawed. Concurrency: Practice and Experience,
12(1):1–11, 2000.

[15] Eric Ruf. Effective Synchronization Removal for Java.
In ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, Vancouver, BC
Canada, June 2000.



Name Description Exemplar
Guarantees for Optimizers

Reorder1 Independent actions can be reordered. Figure 1

Reorder2

If a compiler can detect that an action will always
happen (with the same value written to the same
variable), it can be reordered regardless of apparent
dependencies.

Figures 7, 8, 9, 10, 15

RS
Synchronization actions that only introduce redun-
dant happens-before edges can be treated as if they
don’t introduce any happens-before edges.

Section 5.5

Guarantees for Programmers

DRF Correctly synchronized programs have sequentially
consistent semantics.

Figures 2, 6

HB
Volatile writes are ordered before subsequent
volatile reads of the same variable. Unlocks are or-
dered before subsequent locks of the same monitor.

Figure 3

VolatileAtomicity All accesses to volatile variables are performed in a
total order.

Figure 4

StrongVolatile
There is a happens-before relationship from each
write to each subsequent read of that volatile.

Figure 5

ThinAir1

A write can only occur earlier in an execution than
it would have otherwise occurred if that write would
have occurred without assuming that any addi-
tional, later reads see non-sequentially consistent
values.

Figures 11, 12, 16

ThinAir2

Actions may only be performed earlier than their
original place in the program if it can be determined
that they could occur in the execution without as-
suming that any additional reads see values via a
data race.

Figures 13, 14, 17, 18

Isolation

Consider a partition P of the threads and variables
in the program so that if a thread accessed a vari-
able in that execution, then the thread and variable
are in the same partition. Given P , you can explain
the behavior in the execution of the threads in each
partition without having to examine the behavior
or code for the other threads.

Figures 13, 14

Figure 19: Properties of the Java Memory Model


