
CS 240 Quiz Questions 2002 - 2005

Stanford University

Computer Science Department

April 26, 2005

These quizes were all open-book exams. In general you were asked to
answer somewhere between 8 out of 10 to 10 out of 12 given questions. The
questions below are actual questions that were given.

Write all of your answers directly on the paper. Make your answers as
concise as possible. Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes
incorrect or irrelevant information. (I.e., don’t put in everything
you know in hopes of saying the correct buzzword.)

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, I did
not cheat on this exam nor will I assist someone else cheating.

Name and Stanford ID:

Signature:

1



Answer the following questions and, in a sentence or two, say why your
answer holds.

1. Gabriel uses “pc-losering” as an example of how “worse is better” can
triumph even when it makes an interface more complex. Taking his
explanation of how Unix works at face value: explain how a luser-level
library could make the Unix interface into the Right Thing. Does this
invalidate his argument?

2. The Therac paper is a study in severed feedback loops, ranging from
AECL not informing customers of problems in the Therac-25 to the
video camera being off when a patient was zapped. From the paper,
give three (other) examples of such missing feedback loops.

3. What would be a difficulty in detecting the Therac races using an
Eraser-type approach?

4. The Therac code in Figure 4 on page 34 shows an overflow error involv-
ing the “Class3” variable. If we assume the code in Figure 4 accurately
represents the code in the Therac, describe the race that exists between
Set-up Test and Lmtchk.

5. The Eraser paper claims that they have never observed more than
10,000 distinct sets of locks for a given program. Give a data structure
and locking policy that would pass this limit.

6. Eraser only ensures that data is protected by a consistent set of locks.
Give an intuitive sketch of a class of race conditions it will miss, an
example, and explain how Eraser could be extended to handle them.

7. Assume we have two threads, T1 and T2, that execute the following
code in the following order:

int *q = NULL; /* shared global variable */

T1 T2

1: int *p = malloc(sizeof *p);

2: *p = 0;

3: q = p;

4: while(q == NULL)

2



5: ;

6: *q = 1;

7: q = 0;

8: while(q != NULL)

9: ;

10: printf("p = %d\n", *p);

11: exit();

12: exit();

Assuming naive memory semantics (if you don’t know what this means,
you are just fine): What will Eraser do for this code? Is its behavior
correct?

8. The set of locks that are acquired at any given time is a global property
(e.g., switching threads has no effect on it). Given this, why does Eraser
use per-thread locksets rather than a single global lockset? Give an
intuition and a simple example of the problem a global lockset would
cause.

9. The Eraser paper claims “A write access from a new thread changes the
state from Exclusive or Shared to the Shared-Modified state...” But
Figure 4 says that a write by any thread in the Shared state takes it to
the Shared-Modified state. Which is right?

10. Eraser, like most tool papers, defines a race condition as a reference to
shared memory without holding a (consistent) lock. Give two intuitive,
short examples showing that this definition is both too strong and too
weak.

11. Eraser uses local locksets — i.e., the locks in a threads lockset are only
those that it acquired. Of course, the set of locks that are currently
locked is a global property that does not depend on which thread is
running. What would happen if Eraser used this global rather than
local lockset when checking for races?

12. In Section 4.3 in the Eraser paper, they state that the routine GmapCh Write2

passes the address of a stack variable to its children threads. If this
variable is on the stack, why does Eraser flag an error? Why can’t they
annotate this false positive away?

3



13. Assume only one thread has a pointer to a data location p. How would
you use this ability to improve Eraser? (Make sure you do not miss
races that Eraser currently detects.)

14. For the following snippet of Mesa monitor code:

void foo() {

signal(c);

}

If the code runs on a system with different priority processes, what
is a potential way that it will generate useless overhead? Is there an
automatic way to fix this problem?

15. Would a Mesa programmer have any use for a Mesa version of Eraser?

16. Give two examples where Mesa makes a “New Jersey” style decision.

17. Explain from the Mesa paper: “...[while] any procedure suitable for
forking can be called sequentially, the converse is not true.”

18. Your ex-140 partner loudly declares that if the semantics of the “wakeup-
waiting switch” is good for naked notifies, it must be good for normal
notifies, which should be replaced with them. Can you do this sub-
stitution and preserve correctness? (List any assumptions you must
make.)

19. The mesa paper claims that because of their semantics on waits, “ver-
ification is actually made simpler and more localized” (page 11). Give
an intuition for why this is true or false.

20. Linux has a “big kernel lock” (the BKL) originally used to more-or-less
turn the OS into one large monitor. Using your knowledge of Mesa:
what must Linux do (and why) if a kernel thread holds the BKL and
sleeps (i.e., puts itself on a block queue and allows another thread to
run)? Give an example of a problem this can cause. (Note: you only
need to understand Mesa to answer this question, the details of Linux
are completely irrelevant.)

21. Thread 1 consists of a single call to foo, which is an entry routine in
the following monitor M:

4



---------------------- Thread 1 -------------------------

void thread_1(void) {

foo();

bar();

}

-----------------------------------------------------------

---------------------- Monitor M -------------------------

condition c;

entry foo() {

wait(c);

return;

}

entry bar() {

signal(c);

return;

}

-----------------------------------------------------------

Assume you are running on a MESA system and there are other threads
on the system. Point out four locations in the code (in either the caller
or callee) where thread 1 could get switched out. NOTE: the switches
cannot occur for identical reasons.

22. Capriccio, Figure 1: what is a plausible reason that performance for
the non-Capriccio systems goes down so quickly?

23. Give two examples of where a static stack allocation scheme would
perform better than Capriccio’s dynamic approach.

24. The Capriccio paper states that “larger path lengths require fewer
checkpoints but more stack linking.” What is the intuition behind
this statement?

5



25. The capriccio paper (weirdly!) limits the buffer cache in its experiments
to 200MB. Assume you rerun the experiment without this limit and
notice that LinuxThreads improves somewhat and capriccio performs
much worse. What is a plausible explanation?

26. Assume we only have two jobs, a and b. The VTRR paper would claim
that if Wa(t)/Sa = Wb(t)/Sb then we have “perfect fairness.” Prove
this is true.

27. Why does WFQ run the job with the minimum VFT rather than the
job with the minimum VT?

28. What in the WFQ scheduling pattern in Figure 5 is it impossible for
VTRR to mirror?

29. Identify several potential weaknesses in the VMS memory system and
describe experiments to measure them.

30. You increase the size of the free list to 80% of memory. Describe a
workload that will run better, and one that will run worse.

31. VMS has several different parameters. If you were to try to hurt system
performance the most by setting a single parameter to its worst value,
which one and value would it be? Explain your reasoning in terms of
numbers given in the paper. You will need to make assumptions: make
sure they are reasonable, and make sure to justify them.

32. Describe the worst-case address space layout that maximizes VMS page
table overhead (i.e., the amount of memory consumed by page tables
given the amount of memory mapped). Be very specific.

33. The experimental hypothesis of Figure 3 in the VMS paper is not well
evaluated. Give three important, concrete limitations and how to fix
them.

34. When the reference bit of a base page within a superpage is reset,
the superpage management system demote the superpage speculatively,
recursively performing the demotions with a probability p = 1. Suppose
we set p = 0.5 instead. Give one reason why the system might perform

6



better because of that, and one reason why the system might perform
worse because of that.

35. When does the coalesce daemon run in the superpage system? What
would the effect of running it more often be?

36. Assume you run a process that has a 513K text segment on the Alpha
system described in the superpage paper. What are all the different
actions in the superpage system that can be triggered when you jump
to the first instruction in this process? (Hint: make sure you consider
more than just reservations.)

37. Assume superpage management (promotion, demotion, etc) is free. De-
scribe a workload that will perform much worse on the Navarro super-
page system as compared to FreeBSD.

38. Superpages are demoted both under memory pressure and when the
first write occurs. How does this demotion differ, why does it differ,
and when does re-promotion occur?

39. When measuring active memory (for use in idle memory tax calcula-
tions), ESX Server keeps three statistical averages: a “slow” average,
a “fast” average, and a “very fast” average. Explain the problem that
could result if ESX stopped using the “slow” average.

40. Your ex-140 partner (fresh from their triumphant foray into monitor
semantics) decides to get the same effect of a balloon driver using an
application running on top of the guest OS. On ESX’s request the ap-
plication will aggressively touch many pages of memory, causing them
to be “recently used” and the guest OS to page out other, less recently
used pages. Is this a bright idea?

41. A balloon driver must use fairly non-portable device driver interfaces.
It would have been much more portable if Carl had used a user-level
application to do ballooning instead. Would this have worked or not?

42. What bad things would happen if ESX used the average rather than
the max of the three moving averages of memory usage?

7



43. Figure 8(c) of the ESX paper (the graph for the citrix server): ex-
plain what the synchronized spike in the “alloc,” “active” and valley
in “balloon” at (roughly) the 39-42 minute mark imply about what is
happening in VMware and in the Citrix server. Assuming the system
had 2GB rather than 1GB: what would the shape of the lines be?

44. Most OSes have some sort of mpin(void *va, unsigned len) system
call, which will pin a range of addresses in physical memory. Explain
how to use this system call to replace the need to write a balloon driver.
(NOTE: make sure to describe how to communicate with ESX.) What
is the advantage/disadvantage of this approach?

45. Assume you want to add ESX memory taxation to the VMS system.
In a few sentences, describe why this might make sense and how you
would integrate it.

46. List two realistic, specific scenarios where running VMS (or copies of
VMS) on top of ESX will give better performance.

47. You use the shares-per-page ratio formula from the ESX paper to adjust
the fixed partitions in VMS. However, you change the estimation of f
to be based on the number of pages rescued over a 30 second period.
Under what two conditions will this be identical to the original VMS
scheme? In general, do you expect this estimation of f to work better
or worse than the ESX estimation approach?

48. Your nooks extension makes an XPC call to a kernel function:

foo(p);

and the nooks system restarts your extension. Give three different
errors that could have occurred in the call to cause this restart to
happen.

49. You use the Safe-C compiler in the Rinard et al papers to implement
memory protection in Nooks. What changes would you anticipate in
Figures 6 and Figures 7 in the Nooks paper (and why!).

8



50. The failure oblivious guys try to put the nooks guys out of business
by applying their approach to a network driver and a disk driver. In
which would you expect to see better/safer results and why?

51. Livelock: in Figure 6-3 why does “Polling (no quota)” work badly?

52. The livelock paper has a hack to handle the problem of dropping packets
on the “screend” queue. What limit does this solution have for multiple
applications getting network data?

53. Assume we have a router that does exactly three things: (1) receives
packets, (2) processes packets, and (3) transmits packets. If we use
a 3-CPU multiprocessor and put each of these on a single dedicated
CPU, can we still livelock? Are there any other problems with this
approach?

54. Give two ways that the MTV music video award webserver could suffer
from livelock despite the fact that everyone connects to it using TCP,
which is flow-controlled.

55. Given the following pseudo-code:

// runs when there is a network interrupt.

net_interrupt() {

while eth1 has packets on receive Q

// process packets;

while eth2 has packets on receive Q

// process packets;

while eth1 has packets to send

// send packet

while eth2 has packets to send

// send packet

}

List several problems with this code from a livelock point of view and
suggest how to rewrite it to eliminate these problems.

56. The livelock paper states you can use one of two approaches in solving
livelock: “(1) do (almost) everything at high IPL, or do (almost) noth-
ing at high IPL.” As they describe these approaches, in what sense are
they actually the same?

9



57. Livelock: Why are infinitely large queues not a good idea (even assum-
ing an infinite amount of memory)?

58. Livelock: In 6-3, why does the output packet rate of “Polling (no
quota)” drop to almost zero after 6K pkts/sec? What does the same
thing not happen with “Polling, no feedback” in 6-4?

59. Assume you could classify packets with what application they were
intended for infinitely quickly. What could you improve in the livelock
paper and how?

10


