
Stanford University

Computer Science Department

CS 240 Sample Quiz 2 Answers

Winter 2005

February 25, 2005

These were from open-book exams. In general you had 50 minutes to
answer 8-10 out of 10-12 questions. Write all of your answers directly on
the paper. Make your answers as concise as possible. Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes
incorrect or irrelevant information. (I.e., don’t put in everything
you know in hopes of saying the correct buzzword.)

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, I did
not cheat on this exam nor will I assist someone else cheating.

Name and Stanford ID:

Signature:

1



Answer 10 of the following 12 questions (i.e., skip two) and, in a
sentence or two, say why your answer holds. (5 points each).

1. Three possible reasons: (1) not all clients need this functionality, so
should be able to turn it off; (2) on a local system could still crash and
lose data after file system operation returns to application, so having
this extra guarentee is pointless in some situations. (3) when the NFS
server replies to the client it does so without ensuring that the data
was written to disk successfully.

Five points where given if you mentioned one of the three reasons.
Three points where given if you had an answer that resembled one of
the solutions but weren’t specific enough.

2. GETHASH: if the returned SHA hash is in the database then the size
is redundant — we assume the SHA cannot practically collide, thus
the entry in the database can be trusted, including the size. However,
if it is not in the database then we need the size so we can compute
offsets for the subsequent READ requests. For CONDWRITE, the
count is always redundant for similar reasons: since if the chunk is in
the database with the given hash, then we know and can trust the size.

3. This loop cannot livelock NFS, since it is subject to feedback (flow-
control): does not do another request until it gets an ack. In fact, if
we take the loop literaly, it does not retransmit when a packet is lost.
Thus it is impossible for it to livelock the machine, since the first lost
packet fill shut it up.

If the loop did retransmission, then as the number of clients goes to in-
finitity the probability of livelock goes to 1. Without retrans it maybe a
able to instananously cause packet lots but the load would immediately
go low.

4. Problem is multiple sources of starvation:

(a) If eth1 is busy, eth2 will starve.

(b) If receive busy, send will starve

(c) If net busy, app will starve.

Starvation = a scheduling problem where (1) a job can run too long or
(2) some set of jobs are consistently selected over others. To solve the

2



first problem we give each job a time-slice (in this case a quota of the
number of packets we’re willing to let them process). To solve the first
problem we round robin (fair) schedule between all different jobs.

5. It will ensure that each request is done at most once, which fixes the
problems with non-idempotent operations *until* the server crashes.
However, if the client sends a request X and the server crashes be-
fore sending an ack, then the client has no way of knowing if X was
performed or not.

6. New connection requests are not flow-controlled. Additionally, poor
video performance will causes people to push “reload,” which causes
more connection requests, which are not flow-controlled. And people
could always launch denial-of-service attacks. We also accepted the
answer that video streams are almost always UDP, so even though the
initiation of a stream might be through TCP, the stream could be use
UDP, and thus no (or poor) flow control can lead to livelock.

7. If the server does not write its state to disk, then if the server crashes
while a client program is doing a sequence of operations the file system
state will (for example) go back in time by losing some updates. They
mention that the client would otherwise have to detect server crashes
and reply its modifications.

8. “Reasonable” is open to interpretation. Several ways:

(a) Flush writes not on close but based on time (e.g., every 30 sec-
onds).

(b) Migrate ownership of the file on close so that the client owns
it. (Sending ownership is cheaper than sending file data). This
makes you vulnerable to clients going down and you must trust
them.

(c) Coda semantics: update file some point later in time (when your
laptop reconnects) and do conflict resolution as necessary. Reeally
cheap, but may require you manually fix your files.

9. No. For example, if the server crashes in the middle of a non-idempotent
operation, it still must be able to recover from the crash to retain a con-
sistent state.

3



10. No livelock; -1 point if you didn’t give a reason why. Underutilization
is a problem.

11. NFS operations:

• Idempotent: null, lookup, getattr, setattr, read, write, reader,
statfs

• not: create, remove, renam, link, symlink, mkdir, rmdir,

So less than half. Different semantics: you do a mkdir, acknolegement
gets lost, you redo mkdir and get an error code.

12. Inode: live if the inode map points to it. Data block: live if it is
contained in a file.

13. The big problem here is what happens if messages get reordered and
retransmitted.

(a) In the first case: when you retransmit, you may want to push
the lease expiration term out to give the same absolute amount
of time. However, this opens the possibility that the client will
receive multiple conflicting read leases: e.g., if its acks are all lost,
it will keep receiving leases with expirations further and further
into the future.

If you do not implicitly grant extensions on retransmission then
as the term end gets closer and closer, you will eventually have
to stop sending (or revert to 0 term lease). Additionally, you’ll
have to figure out what to do when issuing a revocation on a read
lease that has not been acknowleged.

(b) Messages can get lost or reordered with retransmissions. For ex-
ample, the server could send a message granting a read lease and
then immediately send a write revocation. The revocation could
arrive before the read lease, or the read lease message could be
lost. The simplest thing: (1) attach a sequence number to each
message (2) ack the write revocation and (3) make a note to dis-
card any subsequent read lease with a lower sequence number.

(c) You’ll have to see what they come up with for more subtle issues.
There probably are some.

4



14. For read: before sending the hash values back. Otherwise the client
would use bogus values. The client similarly checks after it gets the
gethash. For writes: the client checks before sending hashes, and the
server rechecks before telling the client which ones it has. In both cases
if they did not check, could get bad values.

15. Suspends receive processing; if the packet was not for screend you are
not happy.

Two points were given for correctly describing the hack. The rest of
the points were dependent on the description of the hack’s behavior in
a multi-process system.

16. Worse workload: random writes, followed by sequential reads. It should
do relatively better on a RAID since two disks could be seeking in
parallel. You could also state that it wouldn’t do better since a well-
organized RAID could stream large files.

17. Worst case is that we touch 5 segments in total: one segment with the
block, second that contains the triple indirect, third that contains the
double indirect, fourth that contains an indirect, fifth that contains an
inode. How can they get so smeared? Key insight is that every write to
meta data changes its location. So imagine we’ve written to the block.
All five pieces will be put in the same segment. Imagine we write to an
adjacent block some time later, putting the four above the initial block
in this new segment. Repeat this process going up the tree to smear
things around.

Problem this creates is that in the worst case cleaning generates more
garbage that it removes.

18. Process packets as long as they come in; the point of polling was for
fairness.

To get full credit you needed to mention how polling with no quota
specifically causes livelock (not just, “packets getting dropped at output
queue”).

19. There were many examples that were given full credit. Given full access
to send arbitrary packets, you can first observe the packets the client
sends to a server, then mimick these packets to perform arbitary op-
erations on behalf of the client. Similarly, you may spoof the client
by sending it responses that are bogus on behalf of the server. For

5



example, if the client tries to run a program (e.g., netscape) that is
located on the server, you could send back different executable blocks
instead of the actual application. These blocks could contain the code
to read/write data.

20. Both will shut off work generation when processing packets. The first
by setting a flag and disabling interrupts, the second by doing every-
thing in the interrupt handler, also preventing further interrupts from
occuring until it is finished.

21. create, delete, etc. Also, file permissions may change onb open files but
they should remain available. Also, according to unix semantics, files
opened and subsequently deleted should remain available for reading.
Clients can tag each request with a unique integer; server can track the
last integers used and not do the operation if they match. Also accepted
were fixes that mentioned a replay cache. If no fix was mentioned, the
answer got 3 points.

22. LBFS uses close-open consistency, so a lease invalidation only causes
the client to remove the attributes from its cache. Nothing happens to
the application: once you open a file its yours, the data in it never
changes in response to other people. I gave 3 points to people who
mentioned explicitly their assumption that the file wasn’t already open
and 2 or 1 point to people who said something generally true about
leases, but not true about LBFS’ use of them.

23. LFS uses 2MB segments, so 20MB = 10 segments. The ideal distri-
bution would have 5 segments completely full of data and 5 segments
completely empty. I took off 1 point for people whose axes were labelled
incorrectly or not at all.

24. The big problem this will cause is variable sized data blocks, which will
increase fragmentation. This will require cleverness in FFS, but should
be straightforward in LFS since you just blast a bunch of data into a
single segment. You would have to include a size along with the data
block, turning it into an extent (similar to segmentation vs paging).

25. Reads that hit in the cache would be better, reads that miss in the cache
will be a bit worse most likely since the metadata will be “dilated” by
the SHA hashes. If you share blocks that have the same hash, then

6



reads that miss in the cache will be dramatically worse since you will
have to seek all over disk rather than reading a contigous extent.

SHA-FFS will be even worse than old-FFS when compared to SHA-
LFS on writes since it has to modify two places on disk (both the hash
and the data block) rather than just the one for FFS (the datablock).

26. This doesn’t completely work: if the server crashes before it sends a
response the client cannot tell if it crashes after it did the operation
but before it sent the packet, or after it did the operation but before it
sent the packet. I took off 2 points for answers that said something
like ”in the middle of” without clarifying that the problem occurred
explicitly between performing the operation and the client receiving an
acknowledgement.

27. Infinite queue = infinite latency if the incoming packet rate is high
enough. Jitter is also a problem.

28. Traffic differentiation: One big improvement would be to track which
application a packet was for and if its queue was full or it had used too
much CPU discard the packet. Right now if any application has a full
queue all receive processing is shut down. I took off 1 point for people
who still had a single queue, but only discarded packets for backlogged
applications. This way a backlogged application can still starve others
for queue space, just not completely.

7


