Stanford University
Computer Science Department
CS 240 Quiz 1 Spring 2009

April 29, 2010

This is an open-book exam. You have 75 minutes. Cross out the questions you skip.
Write all of your answers directly on the paper. Make your answers as concise as possible.
Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes incorrect or
irrelevant information. (I.e., don’t put in everything you know in hopes of say-

ing the correct buzzword.)

Question Score
1-9 (45 points)

10-13 (50 points)

total (max: 75 points):

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, I did not cheat on this
exam nor will I assist someone else cheating.

Name and Stanford ID:

Signature:



Short answer questions: in a sentence or two, say why your answer holds. (5 points each).

1. You run your code on a machine that does not guarantee that a load will see the value
of a previous store unless an explicit memory synchronization operation was performed
(e.g., a memory barrier, a lock or unlock). If you check your code using an unmodified
version of Eraser what parts the Eraser state machine will cause it to miss errors of
this type? When will it catch them?

2. You change MESA to use “recursive locks” where the same lock can be acquired mul-
tiple times by the same thread. Why would this be useful as a system grows in size?
How would Lampson say wait should work in this brave new world and why?



3. Consider the following MESA monitor:

condition c;

entry foo() {

wait(c);
return;

}

entry bar() {
signal(c);
return;

}

Point out four places where a thread could get switched out. NOTE: the switches
cannot occur for completely identical reasons.



4. Assume we try to use a variant of the double-check lock idiom in a not particularly
useful routine:

int div(unsigned x) {
static int *p;

if(p) {
lock(l);
if(p) {
int *t = malloc(sizeof *t);
*t = 4096;
*p = t;
}
unlock(1l);
}

return x / *p;

Assume your compiler obeys the POSIX requirements laid out in Boehm and that on
your machine that a load always returns the value of the last store. Give two Boehm-
style compiler optimizations that could break this code. Does acquiring lock 1 on the
read of p fix the problem?



5. You see a lock implementation that looks like:

void lock(int *1) {
while(*x1 !'= 0)
yield(*1);
*1 = thread_id();

}

void unlock(int *1) {
*1 = 0;

}

Using the “Cooperative Task Management” paper’s classification system, what type
of threading system would use such a lock implementation? What is the point of
assigning the thread ID to the lock? Let’s say you took a program that worked fine,
put such lock calls in, and now it has race conditions. What is going on?



6. The “Why Events are a bad idea” paper states: “our thread package ... translates
blocking I/0 requests into asynchronous requests internally.” How does this work?

7. Say concretely what will happen if we compiled the following code with Rinard’s failure
oblivious compiler and ran it. Does this code satisfy or violate the requirements that
they state are needed for failure oblivious to work well?

char srcl4];
strcpy(src, "hello world");
printf ("%s\n", src);



8. Hardware VMM vs Software VMM: Give two calls to isPrime that would remove the
two continuations left in its translated code.

9. Hardware VMM vs Software VMM: A guest OS evicts a page. How will VMware see
this and what should it do? Does it matter if the page contained code or data?



Problem 10: Binary Fun (10 points) Explain how to rewrite Eraser to be a binary-level
failure oblivious system rather than a race detector. Make sure you say how you would reuse
shadow memory so that you could always catch errors like this:

p = malloc(1024);
p += 10000;
*p = 10;



Problem 11: More Binary Fun (10 points) The VMware guys, nervous about the rise
of hardware VMMSs, want to make their software approach more valuable. One idea: build a
variant of Eraser by using their binary translation engine to instrument guest code. Sketch
how to do this. What parts of Eraser would be easy for them? What could be a significant
obstacle? Give two example of where a VMware-level Erawer could be more powerful than
Eraser.



Problem 12: Virtual Machines (15 points)

1. (5 points) ESX forcibly takes a page from a guest OS using paging (i.e., so the guest
does not know it no longer has the page). An application on the guest OS references
this page. What problem does this cause that similarly comes up with cooperative

and/or user-level threading?

2. (5 points) Assume you can define a new hardware exception that the guest OS would
receive: explain what this would look like and how would you use it to remove the

problem?

10



3. (5 points) Assume the VMM knows that the guest OS has a sleep system call that will
put the current application to sleep for a given amount of time. How could VMware
use yield to potentially fix the problem in a spirit similar to its balloon driver? What

are the tradeoffs as compared to defining a new exception type?

11



Problem 13: Superpages (15 points) Three points each:

1. (3 points) Give two programs in Table 2 that illustrate the problem they ran into with
the Alpha’s TLB miss cycle counter.

2. (3 points) Table 2: What is weird about FFTW? What type of access pattern must it
be doing?

3. (3 points) If you could pick a single superpage size, what would it be and why? How
much difference would you expect in their results in Table 17

12



4. (3 points) You compute the speedups in Table 1 as an average of the four runs they
did rather than discarding the first one: what do you expect to happen?

5. (3 points) Assume you changed the Navarro promotion scheme to allocate an entire
reservation’s superpage as soon as any page in the reservation was allocated. If you
reran the experiments in Table 1, what result do you expect?

13



