
CS250/EE387: Error Correcting Codes M. Wootters
Problem Set 1 Winter 2025
Due: by 11:59pm Friday, January 17, 2025, on Gradescope

Instructions:

• Please complete all problems in Section 1.

• Try to complete 3 of the problems in Section 2. You are welcome to do more than 3, but please indicate
which 3 you want graded.

• No problems in Section 3 are required, but they might be fun to think about (some might be open-
ended).

• Problems are labeled with the class number after which you should be able to do them. (This is to aid
your time management since all HWs are posted up front).

Guidelines/rules:

• You are encouraged to work in groups (up to 3); each group should turn in one HW assignment.

• Please refer to the collaboration policy on the course website. It is fine to use computational resources
like Sage or Mathematica if you want to.

Typing up your solutions in LATEX is encouraged (but I don’t type up my lecture notes, so I can’t be too
strict). Legibility and complete sentences are required.

Section 1

(Do all of these problems.)

1.1. (8 pts, Class 2) Please answer the following questions with a brief justification of your answer. Let C
be the binary linear code with generator matrix

G =


0 0 1
0 1 1
1 1 1
1 1 0
1 0 0


(a) What is the dimension of C?
(b) Find a parity-check matrix for C.
(c) What is the distance of C?
(d) Find another generator matrix G′ for the same code C that represents a systematic encoding;

that is, so that the encoding map x 7→ G′x has the form (x1, x2, x3) 7→ (x1, x2, x3, a, b) for some
a, b ∈ F2.

1.2. (4 pts, Class 1) Suppose that C is a code of length n and distance d. Consider a noise model that
has both errors and erasures: that is, when a codeword c ∈ Σn is transmitted, the recieved word
y ∈ (Σ ∪ {⊥})n has

yi ∈ Σ \ {ci}
for at most e positions i, and yi = ⊥ for at most s positions i. Show that as long as 2e+ s < d, then c
can be determined from y. (Above, the symbol ⊥ is a place-holder symbol not in Σ, which corresponds
to “erasure.”)
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Section 2

Section 2 problems are worth 10 points each; please do at least 3 of them.

IMPORTANT: In gradescope, please tag all problems you want feedback on. However, if you tag more
than 3, write “NOT FOR GRADING!!!!” prominently at the top of all but 3 of them.

Some of the problems in Section 2 reference the Hamming Code H which we discussed during the in-class
work in Class 2. Recall the following definition:

Definition 1. Let n = 2r − 1 for some integer r. The Hamming code Hr of length n is the code whose
parity-check matrix Hr ∈ Fr×n

2 is the matrix which has every nonzero vector in {0, 1}r as its columns.

Now onto the problems.

2.1. (Fun with linear algebra over finite fields, Class 2)

Let q be a power of a prime and Fq be the finite field of order q. In this exercise you’ll rigorously prove
a few statements of the flavor “linear algebra works over finite fields.” So, for the following problems,
use only the definitions we’ve seen and fact that Fq is a finite field (that is, you may use the
definitions of “linear independent,” “subspace,” and so on, and the field axioms, but do not appeal to
linear algebra “facts” that you may know). (See the lecture notes for the list of definitions that “we’ve
seen.”)

Let V ⊆ FN
q be a subspace over Fq. Recall that a basis for V is any collection of vectors a1, . . . , an ∈ V

so that the ai are linearly independent and span(a1, . . . , an) = V . Let A = {a1, . . . , an} be a basis
for V .

(a) Prove the following useful statements about finite fields (using the field axioms):

• Suppose that α ∈ Fq. Then α · 0 = 0.

• Suppose that α, β ∈ Fq are both nonzero. Then α · β ̸= 0.

(b) Suppose that b1, . . . , bm ∈ V are linearly independent, with m ≤ n. Prove that there exists an
ordering a1, . . . , an of A so that, for all k ∈ {1, . . . ,m}, {b1, . . . , bk, ak+1, . . . , an} is a basis for V .
(Hint: use induction on k; part (a) might be useful).

(c) Show (using part (b)) that any two bases of V must have the same cardinality. (That is, our
definition of “dimension” makes sense).

2.2. (Perfect Codes, Class 2) We say a code C over Fq is e-perfect if it has distance 2e+ 1 and meets the
Hamming bound:

qn−k = Volq(n, e).

(a) Suppose that C is a binary linear code of length n and dimension k, with parity-check matrix
H ∈ Fn−k×n

2 . Show that C is e-perfect if and only if, for all v ∈ Fn−k
2 , there is a unique way to

write v as a sum of at most e columns of H.

(b) Conclude that the Hamming code is the only 1-perfect binary linear code. (Up to permutations
of codeword symbols).

(c) Suppose that C ⊂ Fn
2 is e-perfect. Show that the nonzero codewords in C⊥ take on at most e

distinct weights. (Recall that the weight of a vector x ∈ Fn
2 is the number of nonzero entries).

[Note: This one might be tricky. For partial credit you can just show this for e = 1.]
(Hint 1: Try it first for e = 1. Hint 2: What can you say about the code whose parity-check matrix
has as columns all (≤ e)-wise sums of columns of H? And, Hint 3: Use part (a)).

2.3. (Another lower bound, Class 2)
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(a) Show that if there exists a linear (n, k, d)q code, then there also exists a linear (n− d, k − 1, d′)q
code for some d′ ≥ ⌈d/q⌉.
You may find it useful to use the following algebra fact: for any nonzero α ∈ Fq, the set
{α · x : x ∈ Fq} is again Fq. That is, multiplication by α just permutes the elements of the
field.

Hint: Consider dropping the non-zero positions of a minimum-weight codeword from the code.

(b) Show that if C is a linear (n, k, d)q code, then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

(c) Show that the bound above can sometimes be stronger than the Hamming bound. That is, find
some values for n, k, d (and let q = 2) so that the Hamming bound is satisfied but the bound
above is not. (Note: If you do not (yet) have a very good intuition for how the volume term in the
Hamming bound behaves, you could enlist a computer to find these parameters. However, there
is a small example (n = 7), and you might learn more about how the Hamming bound behaves if
you do it by hand.)

2.4. (Simplex Codes, Class 2) Let Cr = H⊥
r , where Hr is the binary Hamming code of length n = 2r − 1.

Notice that (by definition) a partity-check matrix for H is a generator matrix for Cr. So the generator
matrix for Cr is the n× r matrix that contains every non-zero binary vector of length r as a row. Let
G ∈ Fn×r

2 be this generator matrix, and let gi ∈ Fr
2 denote the i’th row of G.

The code Cr ⊆ Fn
2 is called the Simplex Code or (a slight variant of it is called) the Hadamard Code.

(a) What is the dimension and distance of Cr?
(b) Suppose that w ∈ Fn

2 and that there is some c ∈ Cr so that ∆(w, c) < n/4, where ∆ denotes
Hamming distance. Explain (using your answer from part (a)) why there is no other codeword c′ ∈
Cr with c ̸= c′ so that ∆(w, c′) < n/4. Explain why this immediately suggests a straightforward
algorithm for finding c, given w. What is the running time of this algorithm, in terms of n? (In
big-Oh notation).

(c) Suppose that w ∈ Fn
2 and that there is some c ∈ Cr so that ∆(w, c) < n/4. In the rest of this

part, we will motivate and analyze a more interesting algorithm for finding c, given w.

i. Suppose without loss of generality that the first row of the generator matrix G for Cr is the
first standard basis vector (1, 0, 0, . . . , 0). Call this row g1 ∈ Fr

2. Let gi be any other row of
Cr (so i ̸= 1). Explain why there is a unique row gj of Cr so that gi + gj = g1.

ii. Suppose that g1 = gi + gj for some i, j. Let c = Gx be some codeword of Cr, where x ∈ Fr
2 is

the original message. Explain why x1 = ci + cj . (Recall that g1 = (1, 0, . . . , 0).

iii. Consider the following algorithm that is supposed to find x1 (the first bit of the message),
given w (the corrupted codeword).

Given input w in F_2^n:

votes_for_0 = 0

if w_1 == 0:

votes_for_0 = votes_for_0 + 1

for each i=2,...,n:

Let g_j be the unique row of G so that g_i + g_j = g_1 (in F_2^r)

If w_i + w_j == 0:

votes_for_0 = votes_for_0 + 1.

If votes_for_0 > n/2:

return "x_1 = 0"

else return "x_1 = 1"
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What is the running time of this algorithm? (In big-Oh notation)

iv. Prove that the algorithm above indeed returns x1. (You will need to use the assumption that
∆(w, c) < n/4).
Hint 1: Use part (ii).
Hint 2: The rows of G are broken up into pairs {gi, gj} and the singleton {g1}. How many of
these groups can be “corrupted”, in the sense that they contain an index i so that wi ̸= ci?

v. Adapt the algorithm above to recover all of x, given w. Your algorithm should run in time
O(npolylog(n)).

2.5. (Coordinated failure, Class 2) Consider the following n-player cooperative game, for n = 2r−1. The
players 1, . . . , n are placed in separate rooms and are not allowed to communicate during the game. n
values x1, . . . , xn ∈ {0, 1} are drawn uniformly at random. Player i is given {xj : j ̸= i}, (along with
labels, so she knows which xj belongs to which other player), and her goal is to guess xi. Player i must
say “0,” “1,” or “pass,” independently of all the other players. The players collectively lose if:

• Everyone passes, OR

• Any player i reports a value that is not equal to xi.

The players collectively win if they do not lose. The players are allowed to strategize before the game
begins.

(a) Find a strategy where the players win with probability 1− 1/2r.

(b) Prove that your strategy is optimal.

Hint: Try it first for n = 3 to get some intuition.

Hint 2: The fact that n = 2r − 1 is not an accident.

Hint 3: The title of this problem might be a hint too.

Section 3

(These problems are not required and may be open-ended.)

3.1. Hamming codes are the best (that is, with the largest size |C|) codes with distance 3 and length
n = 2r − 1. What about other values of n? In particular, what is the best code you can come up with
with distance 3 and length 6? What about length 10? 16? 20? Do you think your constructions are
optimal? What if you just need to find the best linear code with these parameters?

3.2. In Section 2, you showed that all e-perfect linear codes have at most e different possible weights of
dual codewords. Show the converse: that any code whose dual has only e different nonzero weights is
e-perfect. What is the simplest proof you can find of this fact?

3.3. In Section 2, you showed that the Hamming code is the only 1-perfect binary linear code. (We also
saw this in class!) We saw in class that this doesn’t extend to non-linear codes. Can you find (or
interestingly characterize) all the 1-perfect binary non-linear codes of a given length?
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