
Class 10 Exercises

CS250/EE387, Winter 2025

Warm-Up

1. What can you say (so far in this class) about the list-decodability of Reed-Solomon codes? That is,
what is the best trade-off between R and ρ so that an RS code of rate R is (ρ, L)-list-decodable for,
say, polynomial-sized L?

Solution

The best we can do (so far) is plug in the distance of RS codes into the Johnson bound. The distance
of RS codes is δ = 1−R. The JB says that as long as

ρ < Jq(δ) = (1− 1/q)(1−
√

1− qδ/(q − 1)) ≈ 1−
√
1− δ = 1−

√
R,

then an RS code of rate R is (ρ, qδn2)-list-decodable.

One proof of the Johnson bound

Today we’ll prove the (binary) Johnson bound. (You’ll see a different proof on your homework). Recall from
the lecture videos/notes that

J2(δ) =
1

2
(1−

√
1− 2δ),

and that the Johnson bound says:

Theorem 1 (Johnson bound). Suppose that C ⊆ {0, 1}n is a code of relative distance at least δ. Suppose
that ρ ≤ J2(δ). Then for any z ∈ {0, 1}n,

|C ∩Bn
2 (z, ρ)| ≤ something polynomial in n

Towards proving Theorem 1, let C ⊆ {0, 1}n be a code of relative distance at least δ, and choose ρ < J2(δ).
let z ∈ {0, 1}n be any vector. Suppose that C ∩Bn

2 (z, ρ) = {c1, . . . , cM}. Our goal is to show that M is not
too big.

2. Define a map ϕ : {0, 1} → R2 by:

ϕ(0) = (0, 1) ϕ(1) = (1, 0).

Extend this to a map ϕ : {0, 1}n → R2n in the natural way. That is,

ϕ((x1, . . . , xn)) = ϕ(x1) ◦ ϕ(x2) ◦ · · · ◦ ϕ(xn),

where ◦ denotes concatenation. Define

v := αϕ(z) +
1− α

2
1,

1



where α ∈ [0, 1] is some parameter that we will define later, and where 1 is the all-ones vector of length
2n.

What can you say about each of the following quantities? (That is, either simplify them or bound
them). Your answers should be in terms of δ, ρ, α.

(a) ⟨ϕ(ci), ϕ(cj)⟩ for i ̸= j. (Show that this is at most something, using the fact that the amount of
agreement between two codewords is at most (1− δ)n).

(b) ⟨v, ϕ(ci)⟩ for any i = 1, . . . ,M . (Show that this is at least something, using the fact that the
agreement between any of the ci and z is at least (1− ρ)n).

(c) ⟨v, v⟩. (Figure out exactly what this is equal to).

Solution

(a) For any i ̸= j, by the distance of the code and the definition of ϕ, we have

⟨ϕ(ci), ϕ(cj)⟩ = agreement(ci, cj) ≤ n(1− δ).

(b) For any i, using the fact that ci ∈ B2(z, ρ), we have

⟨v, ϕ(ci)⟩ = α ⟨ϕ(z), ϕ(ci)⟩+
1− α

2
⟨1, ϕ(ci)⟩

= α · agreement(z, ci) +
1− α

2
n

≥ α(1− ρ)n+
1− α

2
n.

(c) From the definition of v,

⟨v, v⟩ = α2 ⟨ϕ(z), ϕ(z)⟩+ α(1− α) ⟨ϕ(z),1⟩+ (1− α)2

4
⟨1,1⟩

=

(
α2 + α(1− α) +

(1− α)2

2

)
n

=
(
α2 + α− α2 + 1/2− α+ α2/2

)
n

=

(
1 + α2

2

)
n

3. Choose α =
√
1− 2δ. Show that

⟨v − ϕ(ci), v − ϕ(cj)⟩ ≤ 0

for any i ̸= j? (Hint, use (i) the previous part, (ii) the assumption that ρ < J2(δ) =
1−α
2 using our

choice of α, and (iii) the fact that (1− α2)/2 = δ using again our choice of α).

Solution

With this choice of α, and the assumption that ρ < J2(δ), all of these inner products are negative.
To see this, we have

⟨ϕ(ci)− v, ϕ(cj)− v⟩ = ⟨v, v⟩ − ⟨v, ϕ(ci)⟩ − ⟨v, ϕ(cj)⟩+ ⟨ϕ(ci), ϕ(cj)⟩

≤
(
1 + α2

2

)
n− 2

(
α(1− ρ)n+

1− α

2
n

)
+ n(1− δ)

= n
(
1/2 +−α+ α2/2 + 2αρ− δ

)
.
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Now we can plug in our assumption that ρ < (1− α)/2, and get

⟨v − ϕ(ci), v − ϕ(cj)⟩ < n
(
1/2 +−α+ α2/2 + α(1− α)− δ

)
= n

(
1− α2

2
− δ

)
= n (δ − δ) = 0,

using the choice of α in the final line.

4. It turns out that you can’t have too many vectors in RD that are all at obtuse angles from each other.
More precisely, we have the following fact:

Fact 2. Let x1, x2, . . . , xM ∈ RD such that ⟨xi, xj⟩ ≤ 0 for all i ̸= j. Suppose further that there exists
a non-zero vector u ∈ RD so that ⟨u, vi⟩ ≥ 0 for all i = 1, . . . ,M . Then M ≤ 2D − 1.

Use the fact to prove Theorem 1.

Solution

We have

⟨ϕ(ci)− v, v⟩ = ⟨v, ϕ(ci)⟩ − ⟨v, v⟩

≥
(
1 + α2

2

)
n− 1− α

2
n+ α(1− ρ)n

≥
(
1 + α2

2

)
n− 1− α

2
n+ α(1− (1− α)/2)n

= n
(
1/2− α/2− 1/2− α2/2 + α− α/2 + α2/2

)
= 0

where we have used part 1(b) and the fact that ρ ≤ (1− α)/2.

Thus, we can apply the fact with xi ← ϕ(ci)− v and u← v, and conclude that

M ≤ 4n− 1.

5. (Bonus). Use this technique to prove the q-ary Johnson bound.

Solution

See “Extensions to the Johnson Bound”, by Guruswami and Sudan. (Linked on website). The
short version is that you take

v ← αϕ(z) +
1− α

q
1

and choose

α←

√
1− qδ

q − 1
.

Then do the same thing as above.

The Johnson bound is “tight”

We saw in the mini-lectures that there exist codes list-decodable well beyond the Johnson bound. But are
there some codes for which the Johnson bound is essentially the best answer? Yes, there are, and now we’ll
prove it! (At least for q = 2; the proof for general q is similar).
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6. Fix ρ > 0 and ε > 0.

(a) Show that there exists a code C ⊆ Σn so that:

• For all c ∈ C, wt(c) ≤ ρn

• C has distance δ at least δ ≥ 2ρ(1− ρ)− ε.

• C has rate at least 1
100ε

2.

Hint: You may use the following statement: Suppose that S ⊆ [n] is a random subset of size ρn.
Let S′ be an independent copy of S. Let S△S′ denote the symmetric difference between S and
S′ (that is, S△S′ = (S ∪ S′) \ (S ∩ S′)). Then

Pr[|S△S′| ≥ E|S△S′|+ εn] ≤ 2−
1
25 ε

2n.

Another hint: Choose a bunch of random codewords of weight ρn. How many can you choose so
that it’s still very likely that they have distance at least δ ≥ 2ρ(1− ρ)− ε?

Solution

Following the hint, choose c(1), . . . , c(M) ∈ {0, 1}n independently at random so that they have
weight exactly ρn. Let S(j) denote the support of c(j), so |S(j)| = ρn.
For any i ̸= j, we have

E[∆(c(i), c(j))] =

n∑
ℓ=1

E1[c(i)ℓ ̸= c
(j)
ℓ ] = n · 2ρ(1− ρ),

since for each ℓ ∈ [n], the probability that c
(i)
ℓ ̸= c

(j)
ℓ is 2ρ(1 − ρ). Note that ∆(c(i), c(j)) =

|S(i)△S(j)|, so by the concentration bound from before,

Pr[∆(c(i), c(j)) ≥ 2nρ(2− ρ) + nε] ≤ 2−ε2n/25.

Thus, as long as M ≤ 2ε
2n/100, by a union bound the probability that there exists any pair

i ̸= j so that ∆(c(i), c(j)) ≥ 2nρ(1− ρ) + nε is at most(
M

2

)
2−ε2n/25 ≤ 22ε

2n/1002−ε2n/25 = 2−ε2n/25.

In particular, there exists a choice of 2ε
2n/100 codewords c(j) so that all of them have distance

at least δ from each other. By definition, such a code has rate at least ε2/100.

(b) Recall that J2(δ) = 1
2 (1 −

√
1− 2δ). Show that, for any δ ∈ (0, 1/2) and any ε > 0, there is a

binary code C ∈ {0, 1}n with distance at least δ so that there is some z ∈ {0, 1}n with

|{c ∈ C : ∆(c, z) ≤ J2(δ) + Cε}| ≥ 2ε
2n/100,

where C is some constant that doesn’t depend on n, δ, ε.

In particular, this shows that the Johnson bound can be tight in some cases.

Hints: Use the previous part. What happens if you take δ = 2ρ(1−ρ)+ε and plug it into J2(δ)? It
might be relevant that 1−4ρ(1−ρ) = (1−2ρ)2. It might also be relevant that

√
a− ε =

√
a−O(ε)

for small ε.

Solution

Fix δ ∈ (0, 1/2). Choose ρ = J2(δ) + Cε for some C that we will choose in a moment. We
claim that we can take δ = 2ρ(1− ρ) + ε and find some C so that this is consistent. Indeed,
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with that choice of δ,

J2(δ) =
1

2
(1−

√
1− 4ρ(1− ρ)− 2ε) =

1

2
(1−

√
(1− 2ρ)2 − 2ε) =

1

2
(2ρ+O(ε)) = ρ+O(ε).

So choose C so that this works out. But we just saw in the previous part that we can find a
code C of size at least 2ε

2n/100 that actually all lies inside a ball of radius ρ about 0. So we
take z = 0, and C to be that code, and we’re done.
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