Class 11 Exercises

CS250/EE387, Winter 2025

Today, we'll see a list-decoding algorithm (which might look somewhat familiar...) for a class
of codes called Chinese Remainder Codes (c.f. Problem 2.1 on HW3). Below, Zy refers to the
integers {0,1,..., N — 1} with arithmetic mod N.

These codes are based on the Chinese Remainder Theorem:

Theorem 1. Let py,...,p: be relatively prime. Let P = H;‘f:lpi. Fiz ay,...,as € Zp. There is a
unique m € Zp so that m = a; mod p; for all i € [t].

This inspires the following code':

Definition 1. Fiz p1 < ps < --- < p, relatively prime. Let N =[]\, p; and let K = Hle ;.
Define an encoding map E : L — ZLip, X Ly, X -+ X Ly, given by

E(m)=(m mod p;,m mod pa,...,m mod py,).

The Chinese Remainder Code with parameters k and n defined by p1, ..., pn is the set of codewords
{E(m) : m € Zk}.

In your homework (HW3, problem 2.1), you will show that these codes have distance at least
n — k 4+ 1, matching RS codes. But what about list-decoding?

1. Consider the following list-decoding algorithm. Let y = (y1,...,yn) € Zp, X -+ X Zy,, be a
received word. Our goal is to find all of the m € Zg so that dist(E(m),y) < pn.

Input: y € Zy, X -+ X Zy,,, parameters ¢, F' to be determined.

e Let r € Zy be the unique element so that » = y; mod p; for all i € [n].

e Interpolation Step: Find a = (ag, a1, ..., as_) so that a # 0 and so that the following
hold:

o |a;| < F/K'foralli=0,...,0—1.
o Ef;é a;r* =0 mod N.
¢ Root-finding Step: Return the roots of Q(Y) = Zf:(l) a;Y*. (Here, this polynomial is

over the integers, not modulo anything).

There is no question for this part, just make sure the algorithm parses.

'Notice that the alphabet is different for each symbol, so it doesn’t strictly match our definition of a code, but
let’s go with it.

. Suppose that we can do the Interpolation Step with our chosen ¢, F. Let m € Zi and
suppose that dist(E(m),y) < pn. Show that, if p is not too large, then Q(m) = 0, where
Q(Y) = Zz aiYi.

How big can p be, in terms of ¢, F', and the p;’s? (It will be useful later to simplify your
answer to be in terms of ¢, F' and pq, the smallest of the p;’s).

Hint: Follow the following outline:

(a) Suppose that E(m) and y agree in position i. Explain why Q(m) =0 mod p;.

(b) By (i), if dist(E(m),y) < pn, then there are (1 — p)n values of i so that Q(m) = 0
mod p;. Use the conditions on the a; to bound |[Q(m)| < [something] and use the
Chinese Remainder Theorem to conclude that Q(m) = 0, provided that p is not too big.

. Observe that the previous part shows that, if we can do the Interpolation Step, and if p is
not too big, any m that satisfies dist(E(m), y) < pn will be returned in the root-finding step.
That is, we will have a correct list-decoding algorithm, up to radius p!

Give a bound on the list size, in terms of /.

. Towards doing the Interpolation Step, prove the following lemma.

Lemma 2. Fixr € Zy. Suppose that By, ..., By_1 € Z are such that B; > 0, and Hf;é B; >
N. Show that there exist ag,...,ap—1 € Z (not all zero), so that |a;| < B; for all i, and so

that
-1

Zairi =0 mod N.
i=0

Hint: Consider the map f : Zp, x --- X Zp,_, — Zn given by f(zo,...,z¢—1) = Zf;(l) it

mod N. Use the pigeonhole principle.

. Suppose that you don’t care about the efficiency of the Interpolation Step. Using the
previous part, what relationship do NV, F, K, ¢ need to satisfy in order for you to guarantee
the Interpolation Step can be done? Translate this to a guarantee on p,,n, k as well as
F, L.

. Choose ¢ = y/n/k. Put the previous parts together (and pick an appropriate F') to produce
a statement like “as long as p < ____, the code is (p, ___)-list-decodable with the algorithm
above.” The __’s should be in terms of k, n, and the p;’s. It might be convenient to get a
guarantee in terms of k := log(py,)/log(p1).

You may also assume that p, > ¢ and use big-Oh notation in your bound to simplify it.

. Compare this (both the algorithm and the result) with the Sudan (or Guruswami-Sudan)
algorithm for Reed-Solomon codes.

(Bonus.) Fun thing to think about, if you are familiar with polynomial quotient rings: With
the CRT codes, the i’th symbol was m mod p;. One way to view an RS code is that the i’th
symbol is f(X) mod (X — «;). Push this analogy as far as you can in the context of the
algorithm we just developed.

. (Bonus). What if you want the Interpolation Step to be efficient? Would you have to
change the parameters?

