
Class 11 Exercises

CS250/EE387, Winter 2025

Today, we’ll see a list-decoding algorithm (which might look somewhat familiar...) for a class
of codes called Chinese Remainder Codes (c.f. Problem 2.1 on HW3). Below, ZN refers to the
integers {0, 1, . . . , N − 1} with arithmetic mod N .

These codes are based on the Chinese Remainder Theorem:

Theorem 1. Let p1, . . . , pt be relatively prime. Let P =
∏t
i=1 pi. Fix a1, . . . , at ∈ ZP . There is a

unique m ∈ ZP so that m ≡ ai mod pi for all i ∈ [t].

This inspires the following code1:

Definition 1. Fix p1 < p2 < · · · < pn relatively prime. Let N =
∏n
i=1 pi and let K =

∏k
i=1 pi.

Define an encoding map E : ZK → Zp1 × Zp2 × · · · × Zpn given by

E(m) = (m mod p1,m mod p2, . . . ,m mod pn).

The Chinese Remainder Code with parameters k and n defined by p1, . . . , pn is the set of codewords
{E(m) : m ∈ ZK}.

In your homework (HW3, problem 2.1), you will show that these codes have distance at least
n− k + 1, matching RS codes. But what about list-decoding?

1. Consider the following list-decoding algorithm. Let y = (y1, . . . , yn) ∈ Zp1 × · · · × Zpn be a
received word. Our goal is to find all of the m ∈ ZK so that dist(E(m), y) ≤ ρn.

Input: y ∈ Zp1 × · · · × Zpn , parameters `, F to be determined.

• Let r ∈ ZN be the unique element so that r ≡ yi mod pi for all i ∈ [n].

• Interpolation Step: Find a = (a0, a1, . . . , a`−1) so that a 6= ~0 and so that the following
hold:

◦ |ai| ≤ F/Ki for all i = 0, . . . , `− 1.

◦
∑`−1

i=0 air
i ≡ 0 mod N .

• Root-finding Step: Return the roots of Q(Y) =
∑`−1

i=0 aiY
i. (Here, this polynomial is

over the integers, not modulo anything).

There is no question for this part, just make sure the algorithm parses.

1Notice that the alphabet is different for each symbol, so it doesn’t strictly match our definition of a code, but
let’s go with it.

1

2. Suppose that we can do the Interpolation Step with our chosen `, F . Let m ∈ ZK and
suppose that dist(E(m), y) ≤ ρn. Show that, if ρ is not too large, then Q(m) = 0, where
Q(Y) =

∑
i aiY

i.

How big can ρ be, in terms of `, F , and the pi’s? (It will be useful later to simplify your
answer to be in terms of `, F and p1, the smallest of the pi’s).

Hint: Follow the following outline:

(a) Suppose that E(m) and y agree in position i. Explain why Q(m) ≡ 0 mod pi.

(b) By (i), if dist(E(m), y) ≤ ρn, then there are (1 − ρ)n values of i so that Q(m) ≡ 0
mod pi. Use the conditions on the ai to bound |Q(m)| ≤ [something] and use the
Chinese Remainder Theorem to conclude that Q(m) ≡ 0, provided that ρ is not too big.

Solution

Following the outline in the hint, for (i) we observe that if E(m)i = yi, then by definition
m ≡ r mod pi. Since pi divides N , this implies that m ≡ r mod N as well.

Now we move on to (ii). Notice that, over Z,

|Q(m)| <
`−1∑
i=0

(F/Ki)Ki = `F,

using the fact that m < K. If we remove the absolute values, we can treat Q(m) as living
in ZP for any P ≥ 2`F . If E(m) and y agree in at least (1− ρ)n places, then

Q(m) ≡ 0 mod pi

for at least (1− ρ)n different values of i. Let P =
∏
i:E(m)i=yi

pi.

By the CRT, there is a unique value M ∈ ZP so that M ≡ 0 mod pi for all i so that
E(m)i = yi. One the one hand, M = 0 is such an M . On the other hand, if P ≥ 2`F ,
then Q(m) is that unique value. So we conclude that if P ≥ 2`F , then

Q(m) = 0.

Therefore, our second step—returning all the roots of Q—will indeed include m in the
list.

We can simplify this requirement a bit by observing that it’s enough for

p
(1−ρ)n
1 ≥ 2`F,

since p1 is the smallest of the p’s.

3. Observe that the previous part shows that, if we can do the Interpolation Step, and if ρ is
not too big, any m that satisfies dist(E(m), y) ≤ ρn will be returned in the root-finding step.
That is, we will have a correct list-decoding algorithm, up to radius ρ!

Give a bound on the list size, in terms of `.

2

Solution

Observed! (If ∆(E(m), y) ≤ ρn, then Q(m) = 0, so we will return m). The list size is at
most the number of (integer) roots of Q(Y), which is at most deg(Q) = `− 1.

4. Towards doing the Interpolation Step, prove the following lemma.

Lemma 2. Fix r ∈ ZN . Suppose that B0, . . . , B`−1 ∈ Z are such that Bi > 0, and
∏`−1
i=0 Bi >

N . Show that there exist a0, . . . , a`−1 ∈ Z (not all zero), so that |ai| < Bi for all i, and so
that

`−1∑
i=0

air
i ≡ 0 mod N.

Hint: Consider the map f : ZB0 × · · · × ZB`−1
→ ZN given by f(x0, . . . , x`−1) =

∑`−1
i=0 xir

i

mod N . Use the pigeonhole principle.

Solution

Following the hint, let f be as above. Since
∏`−1
i=0 Bi > N , there are some distinct ~x, ~x′

so that f(~x) = f(~x′). Let ai = xi − x′i (over Z, not over ZBi). Notice that |ai| ≤ Bi as
required. Moreover,

`−1∑
i=0

air
i =

`−1∑
i=0

xir
i −

`−1∑
i=0

x′ir
i ≡ 0 mod N.

5. Suppose that you don’t care about the efficiency of the Interpolation Step. Using the
previous part, what relationship do N,F,K, ` need to satisfy in order for you to guarantee
the Interpolation Step can be done? Translate this to a guarantee on pn, n, k as well as
F, `.

Solution

We apply the lemma with Bi ← F/Ki, and we see that the lemma applies as long as

N <
`−1∏
i=0

F/Ki = F `K−`(`−1)/2.

Using the fact that pn is the largest, it is enough for

pn+k`(`−1)/2n < F `.

6. Choose ` =
√
n/k. Put the previous parts together (and pick an appropriate F) to produce

a statement like “as long as ρ ≤ , the code is (ρ,)-list-decodable with the algorithm
above.” The ’s should be in terms of k, n, and the pi’s. It might be convenient to get a
guarantee in terms of κ := log(pn)/ log(p1).

You may also assume that pn � ` and use big-Oh notation in your bound to simplify it.

3

Solution

From part (b), we need

p
(1−ρ)n
1 ≥ 2`F

and from part (d) we need
pn+k`(`−1)/2n < F `.

Using the first equation, let’s set

F =
p
(1−ρ)n
1

2`
.

Plugging this into the second equation and taking `’th roots, we need

pn/`+k(`−1)/2n <
p
(1−ρ)n
1

2`
.

Now we take logs base pn and get that it suffices for

n

`
+
k`

2
<

(1− ρ)n

κ
− logpn(2`)

Since pn � `, the last term is o(1). Dividing by n,

κ

(
1

`
+
k`

2n

)
< 1− ρ+ o(1)

and plugging in `←
√
n/k, we get

κ
(√

k/n+
√
k/n/2

)
< 1− ρ− o(1),

or

ρ ≤ 1− 3κ

2

√
k/n− o(1).

If ρ satisfies this, we conclude that we can do the interpolation step, and that for any m we
wnat to return the root-finding step returns it. FInally, we observe that the root-finding
step returns at most ` =

√
n/k things, so we get:

Suppose that ρ ≤ 1− 3κ
2

√
k/n. Then the CRT code is (ρ,

√
n/k)-list-decodable.

7. Compare this (both the algorithm and the result) with the Sudan (or Guruswami-Sudan)
algorithm for Reed-Solomon codes.

(Bonus.) Fun thing to think about, if you are familiar with polynomial quotient rings: With
the CRT codes, the i’th symbol was m mod pi. One way to view an RS code is that the i’th
symbol is f(X) mod (X − αi). Push this analogy as far as you can in the context of the
algorithm we just developed.

Solution

The framework is very similar! For RS codes, we consider polynomials g(X) ∈ Fq[X],

4

and we measure the “size” of g its degree. For CRT codes, we are working with g ∈ Z,
and we measure the “size” of g by |g|.
In the interpolation step, we interpolate Q(Y) with coeffs in Fq[X] (for RS codes) or in
Z (for CRT codes), subject to the condition that they aren’t too big (for the appropriate
notion of big), and so that Q(r) vanishes everywhere. For RS codes, “vanishes every-
where” means “is zero mod (X−αi) for all i ∈ [n]” and for CRT codes, it means “is zero
mod pi for all i ∈ [n].”

To analyze, we show that Q(a correct answer) is zero in an appropriate sense. For RS
codes, this is that Q(X, f(X)) ≡ 0, and for CRT codes it is that Q(m) = 0 as an integer.
In order to show this in both cases, we show that (a) Q(correct answer) is not too big, but
(b) it vanishes mod [lots of things]. For RS codes, (a) is that the degree of Q(X, f(X))
is small, but it has many roots (vanishes mod (X − αi) for many i) so it must be zero.
For CRT codes, (a) is that |Q(m)| is small, but it vanishes mod pi for enough i ∈ I so
that 2

∏
i∈I pi > |Q(m)|, which is enough to show that Q(m) = 0.

The quantitative result is also pretty similar. It’s not clear what the “right” notion of
the Johnson bound is for codes with different alphabets for each symbol (c.f. HW3,
problem 2.1 for more on interpreting this), but if we just take k, n for granted, we can
write ρ ≤ 1 − Õ(

√
k/n) in both cases, where the O(·) in the CRT case depends on κ

(which may or may not be a constant depending on how we pick our primes — the m’th
prime has size about m logm+m log logm, so if we choose p1 to be the n’th prime and
pn to the the 2n’th prime, our κ will be constant).

(There’s lots more to say here about comparing and contrasting these two algorithms!)

8. (Bonus). What if you want the Interpolation Step to be efficient? Would you have to
change the parameters?

Solution

Check out the paper “Chinese Remaindering with Errors” by Goldreich, Ron and Su-
dan here: https://eccc.weizmann.ac.il/report/1998/062/revision/4/download/.
The idea is to set up a lattice whose short vectors correspond to a solution, and then use
the LLL algorithm to find a such a vector. Since the LLL algorithm has some approxi-
mation factor, the parameters need to change a bit.

5

https://eccc.weizmann.ac.il/report/1998/062/revision/4/download/

