

Class 13 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw *Folded Reed-Solomon Codes*. Recall that the guarantee of these codes was the following:

Theorem 1. *Let $\varepsilon > 0$. There is a choice of $s = O(1/\varepsilon)$ and $m = O(1/\varepsilon^2)$ so that the following holds.*

Let $\mathcal{C} \subseteq (\mathbb{F}_q^m)^N$ be a Folded RS code with folding parameter m . (So $N = n/m$, where $n \leq q$ is the length of the original RS code). Let R be the rate of \mathcal{C} .

The \mathcal{C} is $(1 - R - \varepsilon, L)$ -list-decodable, where $L = q^s$. Moreover, for any $z \in (\mathbb{F}_q^m)^N$, the list

$$\mathcal{L} = \{c \in \mathcal{C} : \delta(c, z) \leq 1 - R - \varepsilon\}$$

is contained in a subspace $V \subseteq \mathcal{C}$ of dimension at most s .

In this exercise, we'll see that actually we can improve the list size from $L = q^s$ (which is larger than N^s , since $q \geq n \geq N$) to something that doesn't depend on the length N of the code. (Note: see <https://arxiv.org/pdf/2502.14358.pdf> for an overview of recent improvements on this! It turns out that the list size can be improved to $O(1/\varepsilon)$, which is optimal!)

1. For this question, we will use the following theorem:

Theorem 2. *Let $V \subset (\mathbb{F}_q^m)^N$ be any subspace of dimension at most s , so that for any two $c, c' \in V$, $\delta(c, c') \geq 1 - R$.*

Let $S \subseteq [N]$ be a random set of size t . Then the probability that there exist two $c, c' \in V$ so that $c|_S = c'|_S$ is at most

$$\mathbb{P}_S[\exists c \neq c' \in V, c|_S = c'|_S] \leq R^t \left(\frac{t}{R}\right)^s.$$

You don't need to prove the theorem (yet!), but just make sure you understand it.

2. Consider the following (randomized) decoding algorithm for an FRS code of rate R .

Given $z \in (\mathbb{F}_q^m)^N$:

- Run the decoder from Theorem 1 to obtain a subspace $V \subseteq \mathcal{C}$ of dimension at most $s = O(1/\varepsilon)$ that contains the list $\mathcal{L} = \{c \in \mathcal{C} : \delta(c, z) \leq 1 - R - \varepsilon\}$.
- Choose $S \subseteq [N]$ of size t uniformly at random. (In more detail, we will choose t elements of $[N]$, independently with replacement, to be in S . So maybe it happens that $|S| \leq t$ if there are collisions).
- If there is a unique codeword $c \in V$ so that $c|_S = z|_S$, return c .
- Otherwise, return FAIL.

Let $c \in \mathcal{C}$ be such that $\delta(c, z) \leq 1 - R - \varepsilon$. Show that the probability that this algorithm returns c is at least

$$\Pr[\text{Alg returns } c] \geq (R + \varepsilon)^t - R^t \left(\frac{t}{R}\right)^s.$$

3. Suppose that R is some constant (like, $1/4$ or something like that), and that s is large enough and ε is small enough. Show that if $t \geq \frac{100s}{\varepsilon} \ln(s/\varepsilon)$, then

$$R^t(t/R)^s \leq \frac{1}{e}(R+\varepsilon)^t.$$

Note: It's okay to be super handwavey here. In particular, feel free to use the approximation $e^x \approx 1+x$ for small x as though it were an equality, and feel free to make the constant "100" bigger if you like, and feel free to change $1/e$ to $1/2$ or $9/10$ or any constant in $(0, 1)$ that you like.

4. Use the previous two parts to show that, for any z ,

$$|\mathcal{L}_z| = \left(\frac{s}{\varepsilon}\right)^{O(s/\varepsilon)} = \left(\frac{1}{\varepsilon}\right)^{O(1/\varepsilon^2)},$$

where

$$\mathcal{L}_z = \{c \in \mathcal{C} : \delta(c, z) \leq 1 - R - \varepsilon\}.$$

In particular, the FRS code \mathcal{C} is actually $(1-R-\varepsilon, (1/\varepsilon)^{O(1/\varepsilon^2)})$ -list-decodable, which is asymptotically better than what Theorem 1 gives (assuming N is way way bigger than $1/\varepsilon$).

Note: As before, assume that R is some constant, like $1/4$.

5. **Bonus.** Prove Theorem 2. We'll walk you through a slightly easier version:

Theorem 3. Let $V \subseteq \mathbb{F}_q^n$ be any subspace of dimension at most s , so that for any two $c, c' \in V$, $\delta(c, c') \geq 1 - R$.

Let $S \subseteq [n]$ be a random (multi-)set of size t (that is, choose t elements of n , independently with replacement). Then the probability that there exist two $c, c' \in V$ so that $c|_S = c'|_S$ is at most

$$\Pr_S[c|_S = c'|_S] \leq R^t \left(\frac{t}{R}\right)^s =: p,$$

where above we are defining p to be that quantity.

(The only difference between this and Theorem 2 is that we are ignoring the folding. The folding doesn't really change the proof, it's just obnoxious to keep track of.)

- Let $M \in \mathbb{F}_q^{n \times s}$ be a matrix whose columns form a basis for V . Let $S \subseteq [n]$ be as in the theorem statement. Let $M|_S$ denote M restricted to the columns in S . Explain why it is enough to show that $M|_S$ is rank s with probability at least p .
- Say that $S = \{i_1, i_2, \dots, i_t\}$, and imagine choosing these indices one at a time. Say we have chosen i_1 and are about to choose i_2 . Explain why the i_2 'th row of M is linearly independent with the i_1 'st row of M with probability at least R .
- Continuing the line of thought above, suppose we have chosen i_1 and i_2 (and suppose that rows i_1 and i_2 span a space of dimension at most s , which will be true anyway as long as $s > 2$). Explain why the i_3 'rd row of M does not lie in the span of the first two, with probability at least R .
- Continuing further, let $2 < r \leq t$, and suppose that you have chosen i_1, i_2, \dots, i_{r-1} , **and** that you still don't have a full rank set of rows. Explain why the i_r 's row of M does not lie in the span of rows i_1, \dots, i_{r-1} , with probability at least R .
- Use the fact that you proved in part (d), along with the sufficient condition in part (a), to prove the theorem.

Hint. If we draw t rows of M and fail to get a full-rank matrix, then there are at least $t - s + 1$ rows that we drew that did not increase the dimension of the span of the rows that we have...

Hint. We have $\binom{t}{t-s+1} R^{t-s+1} \leq R^t (t/R)^s$ (why?)