Class 13 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw Folded Reed-Solomon Codes. Recall that the guarantee of these codes
was the following:

Theorem 1. Let e > 0. There is a choice of s = O(1/¢) and m = O(1/e%) so that the following holds.

Let C C (IF;")N be a Folded RS code with folding parameter m. (So N =n/m, where n < q is the length
of the original RS code). Let R be the rate of C.

The C is (1 — R — e, L)-list-decodable, where L = q*. Moreover, for any z € (FZI")N, the list

L={ceC:(c,z)<1—-—R—¢}
is contained in a subspace V C C of dimension at most s.

In this exercise, we’ll see that actually we can improve the list size from L = ¢° (which is larger than
N?, since ¢ > n > N) to something that doesn’t depend on the length N of the code. (Note: see https:
//arxiv.org/pdf/2502.14358 for an overview of recent improvements on this! It turns out that the list
size can be improved to O(1/¢), which is optimal!)

1. For this question, we will use the following theorem:

Theorem 2. Let V C (]Fg")N be any subspace of dimension at most s, so that for any two ¢, € V,
0(e,d)>1—-R.
Let S C [N] be a random set of size t. Then the probability that there exist two ¢, € V so that

cls = d|g is at most

t S
Ps[Fc # ¢ € V,e|s = |s] < R (R> .

You don’t need to prove the theorem (yet!), but just make sure you understand it.

Solution

Got it!

2. Consider the following (randomized) decoding algorithm for an FRS code of rate R.
Given z € (F7")N:
e Run the decoder from Theorem 1 to obtain a subspace V' C C of dimension at most s = O(1/e)
that contains the list L= {c€C : §(¢c,z) <1—- R —¢}.

e Choose S C [N] of size t uniformly at random. (In more detail, we will choose ¢ elements of
[N], independently with replacement, to be in S. So maybe it happens that |S| < ¢ if there are
collisions).

e If there is a unique codeword ¢ € V so that c|s = z|g, return c.

e Otherwise, return FAIL.


https://arxiv.org/pdf/2502.14358
https://arxiv.org/pdf/2502.14358

Let ¢ € C be such that §(c,z) <1 — R — e. Show that the probability that this algorithm returns c is
at least

Pr[Alg returns c] > (R+¢)! — R! (;) )

Solution
There are two reasons that the algorithm would fail to return c¢. The first is that z|g # ¢|s. Since
d(c,z) <1 — R — ¢, the probability that
Pr(z|s = c|s] > (R +¢)?,

and so

Prfsls # cls] < 1— (R+e).
The other bad event that could happen is that if there is some ¢’ € V so that ¢'|s = ¢|s. By
Theorem 2, the probability that this occurs is at most R'(t/R)*. By a union bound,

Pr[Alg returns ¢] > 1 — (1 — (R +¢)") — R (;)8 = (R+¢)' — R(t/R)*,

as desired.

3. Suppose that R is some constant (like, 1/4 or something like that), and that s is large enough and e
is small enough. Show that if ¢ > 129 In(s/e), then

.1
R'(t/R)* < =(R+e¢)".
e
Note: It’s okay to be super handwavey here. In particular, feel free to use the approximation e* ~ 1+ x

for small = as though it were an equality, and feel free to make the constant “100” bigger if you like,
and feel free to change 1/e to 1/2 or 9/10 or any constant in (0, 1) that you like.

Solution

First we write (R +¢)! = R'(1 4+ ¢/R)?, so we want to show that

—_

(t/R)* < -(1+¢/R)".

e
Using the approximation 1+ x = e* for small x, we have
(1 + E/R)t ~ ets/R’

so we want to show that .
(t/R)S < 7et5/R'
e

Taking logs of both sides, this reads

te
In(t/R) < = — 1.
sIn(t/R) < =

Thus, we should have
¢ > R(sln(t/R)Jrl). 1)

€
If R is a constant, then choosing ¢t = Q(sln(s/e)/e) will satisfy this.




(To see this, we can plug into (1):

100sIn(s/e) S R(sIn(100s1n(s/e)/e) + 1)
) _ Rs In(s/¢) +€Rs Inln(s/e) n Rs1n(100) +1
=

(100 — R)sln(s/¢) - RsInln(s/e) N RsIn(100) +1
€ - 5 5

3

(100 — R)In(s/e) > RInlIn(s/e) + RIn(100) + 1

which is true for large enough s and small enough ¢, since the left hand is asymptotically larger
than the right hand side.)

4. Use the previous two parts to show that, for any z,

£ (YO _ (1 oa/eh)
cl=(2)" = (2 ,

L,={ceC:cz)<1-—R-—¢c}.

where

In particular, the FRS code C is actually (1— R—¢, (1/£)°(/<*))-list-decodable, which is asymptotically
better than what Theorem 1 gives (assuming N is way way bigger than 1/¢).

Note: As before, assume that R is some constant, like 1/4.

Solution

Following the hint, we have

1 > E[num codewords returned] > Z Pr[c is returned |,
ceL.

where the second inequality follows from part 2. By part 3, we conclude that
1> |- (1-1/e)(R+e),

where
t = 100slog(s/e)/e.

Solving for |L£.|, we have

L] < — exp(O(#)) = exp(O(slog(s/c)/€)) = (3/e)°/2).

1
(1—1/e)(R+e)t

Plugging in s = O(1/¢) gives the result.

5. Bonus. Prove Theorem 2. We’ll walk you through a slightly easier version:

Theorem 3. Let V. C Fy be any subspace of dimension at most s, so that for any two c, d eV,
6(c,’) >1—R.



Let S C [n] be a random (multi-)set of size t (that is, choose t elements of n, independently with
replacement). Then the probability that there exist two ¢, € V so that c|g = '|s is at most

t S
= / < t _— =
Prids = clsl < 7 () =

where above we are defining p to be that quantity.

(The only difference between this and Theorem 2 is that we are ignoring the folding. The folding
doesn’t really change the proof, it’s just obnoxious to keep track of.)

(a)

Let M € Fy*® be a matrix whose columns form a basis for V. Let S C [n] be as in the theorem
statement. Let M|s denote M restricted to the columns in S. Explain why it is enough to show
that M|g is rank s with probability at least p.

Solution

Let ¢, € V, so we can write ¢ = Mx,¢ = Ma' for some x,2' € F*. If ¢|g = (/|g, then
(M|s)x = (M|s)x’, but if M|g is full rank this implies that x = 2’. But then ¢ = ¢'.

Say that S = {i1, 2, ..., }, and imagine choosing these indices one at a time. Say we have chosen
i1 and are about to choose is. Explain why the i5’th row of M is linearly independent with the
i1’st row of M with probability at least R.

Solution

Let’s call the first row that we picked v € F®. Suppose towards a contradiction that the
claim is false. Then there’s a strictly greater than R fraction of rows of M that are linearly
dependent with v. Let 2 € F* be any nonzero vector so that v“z = 0. But then Mz has
strictly greater than an R fraction of zeros, since (Mx); = 0 for any row ¢ that’s linearly
dependent with v. This is a contradiction of the fact that d(c,¢’) > 1 — R for any ¢, € V,
since Mz and 0 are both in V' and they have distance < 1 — R.

Continuing the line of thought above, suppose we have chosen 4; and is (and suppose that rows i;
and iy span a space of dimension at most s, which will be true anyway as long as s > 2). Explain
why the i3'rd row of M does not lie in the span of the first two, with probability at least R.

Solution

We can use the same argument as before. Suppose towards a contradiction that the claim is
false, and say that vy, vy are the first two rows of M that we picked. Choose any x so that
2Tv; = 2Tvy = 0. We can do this since s;, s, don’t span an s-dimensional space. But then

Mz has strictly more than a R fraction of zeros, and this is a contradiction of distance.

Continuing further, let 2 < r < t, and suppose that you have chosen i1, s, ...,%,._1, and that you
still don’t have a full rank set of rows. Explain why the i,’s row of M does not lie in the span of
rows i1, ...,4.—1, with probability at least R.

Solution

Exactly the same argument again!

Use the fact that you proved in part (d), along with the sufficient condition in part (a), to prove
the theorem.

Hint. If we draw ¢ rows of M and fail to get a full-rank matrix, then there are at least ¢t — s + 1
rows that we drew that did not increase the dimension of the span of the rows that we have...
Hint. We have (t_;l)Rt_s‘*‘l < RY(t/R)* (why?)



Solution

Suppose that we draw ¢ rows of M and fail to get a full-rank matrix. Following the hint,
there are at least t — s+ 1 choices of rows so that when we chose that row, we did not increase
the dimension of the span of rows that we were building.

By the previous part, the probability that this happens for those t — s 4+ 1 choices is at most
R'=5*+1. We need to union bound over all possible choices of t — s + 1 rows, so we get

t
Pr[M|s not rank s | < RI7SHE
r[M|g not ran S]_(t—s—i—l)

Following this hint, this is at most the thing we want it to be. To see why, notice that

t t
(t o 1>Rt““+1 - ( ! 1) R < T R = (1/R) TR < (1/R)°RY,

as desired.




