
Class 14 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw Locally Correctable Codes (LCCs). Recall the definition of
an LCC:

Definition 1 (LCC). A code C ⊆ Fnq is a (δ,Q, γ)-LCC if there is a randomized algorithm A so
that the following holds. For all w ∈ Fnq so that δ(c, w) ≤ δ for some c ∈ C, and for all i ∈ [n], A
makes Q queries to w and outputs Aw(i) so that

Pr[Aw(i) = ci] ≥ 1− γ,

where the probability is over the choice of queries.

We saw several examples of LCCs. One was Reed-Muller codes:

Definition 2 (q-ary Reed-Muller Code). The m-variate Reed-Muller code over Fq with degree r is
given by

RMq(m, r) =
{
〈f(~α)〉~α∈Fm

q
: f ∈ Fq[X1, . . . , Xm],deg(f) ≤ r

}
.

For the rest of today, we will specialize to the case where m = 2 for simplicity.

As we saw in the videos, the RM codes that were decent LCCs had low rate. Today, we’ll see
one way to modify them, through a process called lifting, to make the rate close to 1. To motivate
this, let’s do a quick warm-up:

0. Consider the following property of a (possibly high-degree) polynomial p(X,Y ), which we’ll
call property P(r):

Definition 3. We say that p(X,Y ) ∈ Fq[X,Y ] satisfies property P(r) if for any line `(T ) =
(aT + b, cT + d), the univariate polynomial p(`(T )) is equivalent to (that is, has all the same
evaluations as) a polynomial of degree at most r.

(a) Explain why any polynomial p(X,Y ) with total degree at most r has property P(r).

(b) Let F ⊆ Fq[X,Y ], so that every polynomial f ∈ F has property P(r). In the mini-
lecture, we saw a proof that RMq(2, r) was an LCC (for appropriate values of q, r).
Explain why the same argument works for the code

C =
{
〈f(~α)〉~α∈F2

q
: f ∈ F

}
.

(c) What might be the advantage of considering a code like C over RMq(m = 2, r)?
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For the rest of today’s class, we will see how to come up with a code C as in part (c) above
with rate way better than the corresponding Reed-Muller code! We’ll do it for the special case
that q is a power of 2; m = 2; and r = q − 2.

1. Let’s start with an example. Consider the polynomial p(X,Y ) = X2Y 2 ∈ F4[X,Y ].

(a) Is (the evaluation vector of) p(X,Y ) in RMq=4(m = 2, r = 2)?

(b) Show that p(X,Y ) has property P(2).

Hint: You may use the facts that for any x, y ∈ F4, we have (x + y)2 = x2 + y2, and
x4 = x.

(c) Reflect on the fact that this is pretty weird. Can you come up with an example like this
over the real numbers?

2. From now until the end of class, let q = 2t. As before, we have m = 2, and let’s
fix r = q − 2.

(a) What is the rate of RMq(m = 2, r = q − 2)? (Or at least, what is its limit as q gets
large?)

(b) Consider the following theorem:

Theorem 1. Let q = 2t for some t. The the number of f(X,Y ) ∈ Fq[X,Y ] so that

P(q − 2) holds for f(X,Y ) is at least q4
t−3t−1.

Assuming that theorem is true, explain why this implies the existence of a LCC C of
length N = q2 and rate that tends to 1 as N → ∞, with parameters δ = 1

100
√
N

,

Q =
√
N , and γ = 0.1.

Note: In case it is helpful, log3(4) ≈ 1.26.

3. In this part, we will (mostly) prove Theorem 1.

Say that a monomial Mij(X,Y ) := XiY j is good if P(q − 2) holds for Mij(X,Y ).

(a) Explain why, to prove Theorem 1, it is enough to show that the number of good mono-
mials is at least 4t − 3t − 1.

(b) Let `(T ) = (T, aT + b). (We are going to restrict ourselves to lines that look like this for
simplicity; the general case is basically the same). Suppose that (i, j) 6= (q − 1, q − 1).
Consider the univariate polynomial

Pij(T ) = Mij(`(T )).

Show that the coefficient on T q−1 in Pij(T ) is{(
j

q−i−1
)
aq−i−1bj−(q−i−1) j ≥ q − i− 1

0 j < q − i− 1

where when we refer to an integer like
(

j
q−i−1

)
as a element of F2t , we mean 1+1+ . . .+1

that many times.
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Conclude that if
(

j
q−i−1

)
≡ 0 mod 2, then Mij(X,Y ) is good.1 (For the “conclude”

part, you can use the fact that 1 + 1 = 0 in F2t ; you can also use the convention that(
a
b

)
= 0 if b > a).

(c) To finish the proof, we will use the following corollary of Lucas’ theorem (which we will
not prove):

Fact 2. For an integer m < 2t, let b(m) ∈ {0, 1}t denote the binary expansion of m.
For example if t = 3, we have b(5) = 101. For a vector v ∈ {0, 1}t, write v ∈ {0, 1}t to
denote the coordinate-wise flip of v. For example, b(5) = 010.

For two vectors v, w ∈ {0, 1}t, we say that v “lies in the 2-shadow of w” if vi = 1 implies
that wi = 1. For example, v = 100 lies in the 2-shadow of w = 101, since whenever v
has a 1, w also has a 1. However, v = 110 does not lie in the 2-shadow of w = 101,
since v2 = 1 but w2 = 0.

With this notation, the fact is that, for q = 2t,(
j

q − i− 1

)
6= 0⇔ b(i) ≤2 b(j).

This fact may seem weird, but it is true! Convince yourself of this by example by
applying it to with j = 5 and i = 3, and for j = 5 and i = 4 (and with t = 3 for both).

(d) Show that the number of good monomials is at least 4t − 3t − 1, proving the theorem.

Hint: You want to show that the number of pairs (i, j) so that b(i) ≤2 b(j) is at most
3t (why?). Imagine constructing a pair (i, j) with this property coordinate by coordinate.
How many possibilities are there for (b(i)[k], b(j)[k]) for each coordinate k = 0, . . . , t−1?

Hint: If you do it in a different way than the hint above is hinting at, it might be helpful
that

∑t
s=0

(
t
s

)
2s = 3t.

4. (Bonus) Try to use the same ideas for r < q − 2 and m > 2 to come up with an LCC with
rate close to 1 and parameters δ = 0.01, Q = N0.01, γ = 0.01.

1Here, you can ignore the fact that we didn’t consider general lines of the form (aT + b, cT + d), only lines like
(T, aT + b). The argument for the more general case is exactly the same, just slightly more tedious. Notice that
by restricting to these simpler lines, we are only leaving out the “horizontal” lines of the form (c, aT + b) for some
constant c.
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