Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw local list decoding, and an algorithm to locally list-decode
the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture
videos, and today we’ll see another application: hardcore predicates from one-way-functions.

Our goal will be to make pseudorandom generators from one-way permutations. Here are some
intuitive definitions':

Definition 1. A pseudorandom generator (PRG) G takes a short seed x € F§ and outputs a (much
longer) string of bits G(z) € FY so that it is computationally difficult to tell if a string y € FY was
generated uniformly at random or if it was generated as the output of G.

Definition 2. A one-way permutation (OWP) is a permutation f : F’Q“ — F’f so that:
e Given x € FY, it is computationally easy to compute f(z)

e Given y € Fé, it is computationally hard to find x so that f(x) =y, with any non-negligable
probability.

Group Work: Here are some ways we might try to make a PRG from a OWP.

1. Let f:F5 — F5 be a OWP. Consider the generator

G(x) = f(z)o f(f(x)) e f(f(f(z)) oo fCD(zx)e--,

where e denotes concatenation and f©*) denotes f composed with itself ¢ times. Explain why
G is not a good PRG.

2. How about this attempt?

G(x) = [f (@) o [f(f @)1 o [F(F(F @)oo [f e,

where [y]; denotes the first element of y € F’g . Is this a good PRG? If not, give an example
that proves it (assuming one-way-permutations exist).

It turns out that there’s something like the second attempt that will work, using the following
definition:

Definition 3 (Hard-core bit). Let f : F§ — F5 be a function. We say that b : F§ — Fy is a
hard-core bit for f if:

o [t is computationally efficient to compute b.

'For more formal versions of everything we’ll do today, see https://www.wisdom.weizmann.ac.il/~oded/
prg-primer.html


https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 
https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 

o Given f(x), it is hard to determine b(x) with any probability non-negligably larger than 1/2.

Formally, for any randomized algorithm A that runs in time polynomial in k, and for any
function (k) that tends to zero polynomially fast in k,

1
Pr[A(f (@) = b(z)] < 5 + (k).
ity
(The probability is over both the choice of x and any randomness in A).
Group Work:
3. Show that if b is a hard-core bit for a OWP f. Show that G given below is a PRG:

G(x) = b(z) e b(f(x)) e b(f(f(z)) e - eb(f(x)) e

More precisely, show that it’s hard to predict b(z) given (b(f(x)), b(f(f(x))),...,b(f)(x)),...).
It turns out that if you can’t predict any one bit given the others, then you can’t distinguish
the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you could predict b(z) from the
other bits? It’s okay to be very hand-wavey in your answer, since we haven’t given a precise
definition of a PRG.

It turns out that in fact, any one-way-permutation has a hard-core predicate!

Theorem 1 (Goldreich-Levin Theorem). Suppose that f : FS — F% is a OWP. Consider the
function g : F%k — F%k given by
g(@,r) = f(z)er,
where o denotes concatenation. Then g(xz,r) is a one-way permutation, and
b(x,r) = (x,1)
1 a hard-core bit for g.

We'll prove this theorem? by contradiction: suppose that b is not hard-core. Then there is some
efficient algorithm A that can predict b(x,r) given f(x,r). We will use A as a black box to build
an efficient algorithm B that inverts f. But since f was supposed to be a one-way permutation,
this will be a contradiction!

Group Work:

4. Suppose that A is an efficient algorithm so that Pr, g [A(g(z,7)) = (z,7)] = 1. Give an
cfficient algorithm B so that Pr, g [B(f(z)) = 2] = 1.

(Above and throughout, the probabilities are also over the randomness of A, B).
5. Suppose that A is an efficient algorithm so that Pr,, , g[A(g(z,7)) = (z,7)] > 3/4+ €. Give

an efficient algorithm B so that Pr, g [B(f(x)) = x] > &' for some constant & (that can
depend on ¢).

6. Suppose that A is an efficient algorithm so that Pr,, . g [A(g(z,7)) = (z,7)] > 1/2 + . Give

an efficient algorithm B so that Pr, g [B(f(z)) = 2] > e’ for some ¢’ that may depend on e.

7. Conclude that (z,r) is a hard-core bit for g(x,r).

*We'll prove that (x,r) is hard-core for g. You can check for yourself that g(x,r) is a OWP if f(z) is.



