

Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw *local list decoding*, and an algorithm to locally list-decode the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture videos, and today we'll see another application: *hardcore predicates from one-way-functions*.

Our goal will be to make *pseudorandom generators* from *one-way permutations*. Here are some intuitive definitions¹:

Definition 1. A pseudorandom generator (PRG) \mathcal{G} takes a short seed $x \in \mathbb{F}_2^k$ and outputs a (much longer) string of bits $\mathcal{G}(x) \in \mathbb{F}_2^N$ so that it is computationally difficult to tell if a string $y \in \mathbb{F}_2^N$ was generated uniformly at random or if it was generated as the output of \mathcal{G} .

Definition 2. A one-way permutation (OWP) is a permutation $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$ so that:

- Given $x \in \mathbb{F}_2^k$, it is computationally easy to compute $f(x)$
- Given $y \in \mathbb{F}_2^k$, it is computationally hard to find x so that $f(x) = y$, with any non-negligible probability.

Group Work: Here are some ways we might try to make a PRG from a OWP.

1. Let $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$ be a OWP. Consider the generator

$$\mathcal{G}(x) = f(x) \bullet f(f(x)) \bullet f(f(f(x))) \bullet \dots \bullet f^{(ot)}(x) \bullet \dots,$$

where \bullet denotes concatenation and $f^{(ot)}$ denotes f composed with itself t times. Explain why \mathcal{G} is *not* a good PRG.

2. How about this attempt?

$$\mathcal{G}(x) = [f(x)]_1 \bullet [f(f(x))]_1 \bullet [f(f(f(x)))]_1 \bullet \dots \bullet [f^{(ot)}]_1 \bullet \dots,$$

where $[y]_1$ denotes the first element of $y \in \mathbb{F}_2^k$. Is this a good PRG? If not, give an example that proves it (assuming one-way-permutations exist).

It turns out that there's something like the second attempt that will work, using the following definition:

Definition 3 (Hard-core bit). Let $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$ be a function. We say that $b : \mathbb{F}_2^k \rightarrow \mathbb{F}_2$ is a hard-core bit for f if:

- It is computationally efficient to compute b .

¹For more formal versions of everything we'll do today, see <https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html>

- Given $f(x)$, it is hard to determine $b(x)$ with any probability non-negligibly larger than $1/2$. Formally, for any randomized algorithm \mathcal{A} that runs in time polynomial in k , and for any function $\varepsilon(k)$ that tends to zero polynomially fast in k ,

$$\Pr_{x \sim \mathbb{F}_2^k} [\mathcal{A}(f(x)) = b(x)] \leq \frac{1}{2} + \varepsilon(k).$$

(The probability is over both the choice of x and any randomness in \mathcal{A}).

Group Work:

- Show that if b is a hard-core bit for a OWP f . Show that \mathcal{G} given below is a PRG:

$$\mathcal{G}(x) = b(x) \bullet b(f(x)) \bullet b(f(f(x))) \bullet \dots \bullet b(f^{(ot)}(x)) \bullet \dots$$

More precisely, show that it's hard to predict $b(x)$ given $(b(f(x)), b(f(f(x))), \dots, b(f^{(ot)}(x)), \dots)$. It turns out that if you can't predict any one bit given the others, then you can't distinguish the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you *could* predict $b(x)$ from the other bits? It's okay to be very hand-wavey in your answer, since we haven't given a precise definition of a PRG.

It turns out that in fact, *any* one-way-permutation has a hard-core predicate!

Theorem 1 (Goldreich-Levin Theorem). *Suppose that $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$ is a OWP. Consider the function $g : \mathbb{F}_2^{2k} \rightarrow \mathbb{F}_2^{2k}$ given by*

$$g(x, r) = f(x) \bullet r,$$

where \bullet denotes concatenation. Then $g(x, r)$ is a one-way permutation, and

$$b(x, r) = \langle x, r \rangle$$

is a hard-core bit for g .

We'll prove this theorem² by contradiction: suppose that b is *not* hard-core. Then there is some efficient algorithm \mathcal{A} that can predict $b(x, r)$ given $f(x, r)$. We will use \mathcal{A} as a black box to build an efficient algorithm \mathcal{B} that inverts f . But since f was supposed to be a one-way permutation, this will be a contradiction!

Group Work:

- Suppose that \mathcal{A} is an efficient algorithm so that $\Pr_{x, r \sim \mathbb{F}_2^k} [\mathcal{A}(g(x, r)) = \langle x, r \rangle] = 1$. Give an efficient algorithm \mathcal{B} so that $\Pr_{x \sim \mathbb{F}_2^k} [\mathcal{B}(f(x)) = x] = 1$.
(Above and throughout, the probabilities are also over the randomness of \mathcal{A}, \mathcal{B}).
- Suppose that \mathcal{A} is an efficient algorithm so that $\Pr_{x, r \sim \mathbb{F}_2^k} [\mathcal{A}(g(x, r)) = \langle x, r \rangle] \geq 3/4 + \varepsilon$. Give an efficient algorithm \mathcal{B} so that $\Pr_{x \sim \mathbb{F}_2^k} [\mathcal{B}(f(x)) = x] \geq \varepsilon'$ for some constant ε' (that can depend on ε).
- Suppose that \mathcal{A} is an efficient algorithm so that $\Pr_{x, r \sim \mathbb{F}_2^k} [\mathcal{A}(g(x, r)) = \langle x, r \rangle] \geq 1/2 + \varepsilon$. Give an efficient algorithm \mathcal{B} so that $\Pr_{x \sim \mathbb{F}_2^k} [\mathcal{B}(f(x)) = x] \geq \varepsilon'$ for some ε' that may depend on ε .
- Conclude that $\langle x, r \rangle$ is a hard-core bit for $g(x, r)$.

²We'll prove that $\langle x, r \rangle$ is hard-core for g . You can check for yourself that $g(x, r)$ is a OWP if $f(x)$ is.