
Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw local list decoding, and an algorithm to locally list-decode
the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture
videos, and today we’ll see another application: hardcore predicates from one-way-functions.

Our goal will be to make pseudorandom generators from one-way permutations. Here are some
intuitive definitions1:

Definition 1. A pseudorandom generator (PRG) G takes a short seed x ∈ Fk
2 and outputs a (much

longer) string of bits G(x) ∈ FN
2 so that it is computationally difficult to tell if a string y ∈ FN

2 was
generated uniformly at random or if it was generated as the output of G.

Definition 2. A one-way permutation (OWP) is a permutation f : Fk
2 → Fk

2 so that:

• Given x ∈ Fk
2, it is computationally easy to compute f(x)

• Given y ∈ Fk
2, it is computationally hard to find x so that f(x) = y, with any non-negligable

probability.

Group Work: Here are some ways we might try to make a PRG from a OWP.

1. Let f : Fk
2 → Fk

2 be a OWP. Consider the generator

G(x) = f(x) • f(f(x)) • f(f(f(x))) • · · · • f (◦t)(x) • · · · ,

where • denotes concatenation and f (◦t) denotes f composed with itself t times. Explain why
G is not a good PRG.

2. How about this attempt?

G(x) = [f(x)]1 • [f(f(x))]1 • [f(f(f(x)))]1 • · · · • [f (◦t)]1 • · · · ,

where [y]1 denotes the first element of y ∈ Fk
2. Is this a good PRG? If not, give an example

that proves it (assuming one-way-permutations exist).

It turns out that there’s something like the second attempt that will work, using the following
definition:

Definition 3 (Hard-core bit). Let f : Fk
2 → Fk

2 be a function. We say that b : Fk
2 → F2 is a

hard-core bit for f if:

• It is computationally efficient to compute b.

1For more formal versions of everything we’ll do today, see https://www.wisdom.weizmann.ac.il/~oded/

prg-primer.html

1

https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 
https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 


• Given f(x), it is hard to determine b(x) with any probability non-negligably larger than 1/2.

Formally, for any randomized algorithm A that runs in time polynomial in k, and for any
function ε(k) that tends to zero polynomially fast in k,

Pr
x∼Fk

2

[A(f(x)) = b(x)] ≤ 1

2
+ ε(k).

(The probability is over both the choice of x and any randomness in A).

Group Work:

3. Show that if b is a hard-core bit for a OWP f . Show that G given below is a PRG:

G(x) = b(x) • b(f(x)) • b(f(f(x)) • · · · • b(f (◦t)(x)) • · · ·

More precisely, show that it’s hard to predict b(x) given (b(f(x)), b(f(f(x))), . . . , b(f (◦t)(x)), . . .).
It turns out that if you can’t predict any one bit given the others, then you can’t distinguish
the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you could predict b(x) from the
other bits? It’s okay to be very hand-wavey in your answer, since we haven’t given a precise
definition of a PRG.

It turns out that in fact, any one-way-permutation has a hard-core predicate!

Theorem 1 (Goldreich-Levin Theorem). Suppose that f : Fk
2 → Fk

2 is a OWP. Consider the
function g : F2k

2 → F2k
2 given by

g(x, r) = f(x) • r,
where • denotes concatenation. Then g(x, r) is a one-way permutation, and

b(x, r) = 〈x, r〉

is a hard-core bit for g.

We’ll prove this theorem2 by contradiction: suppose that b is not hard-core. Then there is some
efficient algorithm A that can predict b(x, r) given f(x, r). We will use A as a black box to build
an efficient algorithm B that inverts f . But since f was supposed to be a one-way permutation,
this will be a contradiction!
Group Work:

4. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = 〈x, r〉] = 1. Give an

efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] = 1.

(Above and throughout, the probabilities are also over the randomness of A,B).

5. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = 〈x, r〉] ≥ 3/4 + ε. Give

an efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] ≥ ε′ for some constant ε′ (that can

depend on ε).

6. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = 〈x, r〉] ≥ 1/2 + ε. Give

an efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] ≥ ε′ for some ε′ that may depend on ε.

7. Conclude that 〈x, r〉 is a hard-core bit for g(x, r).

2We’ll prove that 〈x, r〉 is hard-core for g. You can check for yourself that g(x, r) is a OWP if f(x) is.

2


