Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw local list decoding, and an algorithm to locally list-decode
the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture
videos, and today we’ll see another application: hardcore predicates from one-way-functions.

Our goal will be to make pseudorandom generators from one-way permutations. Here are some
intuitive definitions':

Definition 1. A pseudorandom generator (PRG) G takes a short seed x € F§ and outputs a (much
longer) string of bits G(x) € FY so that it is computationally difficult to tell if a string y € FY was
generated uniformly at random or if it was generated as the output of G.

Definition 2. A one-way permutation (OWP) is a permutation f : F§ — FX so that:

e Given x € IF’;, it is computationally easy to compute f(x)

e Giveny € IFIS, it is computationally hard to find x so that f(x) =y, with any non-negligable
probability.

Group Work: Here are some ways we might try to make a PRG from a OWP.
1. Let f : FX — F5 be a OWP. Consider the generator
G(x) = f(z) o f(f(x)) ® f(f(f(x)) @0 fCD(x)e---,

where e denotes concatenation and £ denotes f composed with itself ¢ times. Explain why
G is not a good PRG.

2. How about this attempt?

G(a) = [f@h e [F(f@)i e [f(f(f@)]ie--o[f e,

where [y]; denotes the first element of y € F. Is this a good PRG? If not, give an example
that proves it (assuming one-way-permutations exist).

Solution

1. This is not a good PRG because we can easily check that, say, the second chunk is
f([the first chunk]).

2. This might not be a good PRG... Let g : Fg_l — Fg_l be a one-way permutation. Let
f: F5 — F% be defined by
f(z) =z 0g(xa,...,xk).

Then f is a permutation, and it’s one-way (otherwise we could invert g). But then the

'For more formal versions of everything we’ll do today, see https://www.wisdom.weizmann.ac.il/~oded/
prg-primer.html

https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html
https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html

PRG defined in the problem is just = + 21 ¢ 1 @ z1 @ ---, which is not very random
looking...

It turns out that there’s something like the second attempt that will work, using the following
definition:

Definition 3 (Hard-core bit). Let f : F§ — F% be a function. We say that b : F5 — Fy is a
hard-core bit for f if:

o [t is computationally efficient to compute b.

o Given f(x), it is hard to determine b(x) with any probability non-negligably larger than 1/2.

Formally, for any randomized algorithm A that runs in time polynomial in k, and for any
function (k) that tends to zero polynomially fast in k,

Pr [A(f(2)) = b(a)] < 5 + (k).

93NIF’2“
(The probability is over both the choice of x and any randomness in A).

Group Work:

3. Show that if b is a hard-core bit for a OWP f. Show that G given below is a PRG:
G(x) = b(x) ¢ b(f(x)) @ b(f(f(x)) @+ e b(f(z)) -

More precisely, show that it’s hard to predict b(z) given (b(f(x)),b(f(f(x))),...,b(f)(x)),...).
It turns out that if you can’t predict any one bit given the others, then you can’t distinguish
the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you could predict b(z) from the
other bits? It’s okay to be very hand-wavey in your answer, since we haven’t given a precise
definition of a PRG.

Solution

Suppose that we could predict b(z) from the rest of the bits. We will show that we can predict
b(x) from f(z), which would be a contradiction. But indeed we can, since given f(x), we can
compute the rest of those bits b(f(z)),b(f(f(x)),..., and use those to predict b(x).

It turns out that in fact, any one-way-permutation has a hard-core predicate!

Theorem 1 (Goldreich-Levin Theorem). Suppose that f : IF'§ — IF'§ is a OWP. Consider the
function g : F%k — F%k given by

g(@,r) = f(z)er,
where o denotes concatenation. Then g(x,r) is a one-way permutation, and

b(xz,r) = (x,r)

is a hard-core bit for g.

We’ll prove this theorem? by contradiction: suppose that b is not hard-core. Then there is some
efficient algorithm A that can predict b(z,r) given f(z,r). We will use A as a black box to build
an efficient algorithm B that inverts f. But since f was supposed to be a one-way permutation,
this will be a contradiction!

Group Work:

4. Suppose that A is an efficient algorithm so that Pro Fk [A(g(x,r)) = (z,7)] = 1. Give an

efficient algorithm B so that Pr,_p B(f(z)) =z] =1.

(Above and throughout, the probabilities are also over the randomness of A, B).

Solution
The algorithm B is:
e Fori=1,...,k, set x; + A(f(z) ® &;).
e Return (z1,...,zk).
This works since A(f(z) @ ¢;) = A(g(x,€;)) = (z,¢e;) = ;.

5. Suppose that A is an efficient algorithm so that Pr, . gx [A(g(z,7)) = (z,7)] > 3/4+¢. Give
an cfficient algorithm B so that Pr, g [B(f(x)) = x] > &' for some constant & (that can
depend on ¢).

Solution

Essentially, the algorithm A is giving us access to a noisy Hadamard codeword. In more
detail, the hypothesis tells us that

E. PrlA(g(z,) # ()] < 7 — <
Say that z is “good” if .
PrlA(g(a,r)) # (z,r)] < - 2.

For any “good” x, then A gives us query access to some y so that y, = (x,r) for at least
a 3/4 + ¢ fraction of the positions r. Then, we can use A as a query “oracle” in the
unique local decoding algorithm that we saw for the Hadamard code to recover x.

In more detail, let T = O(log(k)/c?), and suppose that z is good. The algorithm B is:
e Input: f(x)
e Fore=1,... k:
—Fort=1,...,T:
* Draw a random rl(t) ~ k.

x 2 A(f(z) o)) @ A(f(2) o (rl + €3))

— Let x; be the majority vote of {:L‘Et)}te[T].
e Return (x1,...,xx)

*We'll prove that (x,r) is hard-core for g. You can check for yourself that g(x,r) is a OWP if f(z) is.

To analyze this algorithm, notice that the probability that A(f(z) e ry)) = <x, 7“@@> and
A(f(x) orl(.t) +e;) = <x, rgt) + ei> is at least 1/2+¢, by the union bound. If that happens,

the :cgt) = x;. Thus, the probability that the majority-vote fails is the probability that
the sum of 7" Bernoulli-1/2 + ¢ random variables is less than 7'/2. By a Chernoff bound,
this is at most exp(—Q(e2T)) = 1/poly(k), so we can choose the constants so that we can
take a union bound over all values of i € [k], and this succeeds with very high probability.

It remains to figure out the probability that = is good; we want this to be at least &', for
some & > 0. We know that

E.[Pr{A(g(e,) # (@] # ¢ <.

Thus, by Markov’s inequality, the probability that x is bad is at most

PrlPrlAlgo,) # (o,rl] 2 § — /2] < {05 = 1= 0C).

Above, we have used the fact that

1/4—e 1—4e 2 1 2y -1 —
1/4—5/2_1—2€_(1 4e)(14+2e4+4e*4+---)=1—4e+0(e*) =1 - 0O(e).

Thus, the probability that we succeed over both the randomness of x and of r is at least
Q(e) (the probability that x is good), minus the probability that the Hadamard local
list-decoder fails, which can be as small as we like; let’s make it O(1/e%) to be very
conservative. Thus, we can take &’ =)(¢) and guarantee that we win with probability
at least €/, as desired.

6. Suppose that A is an efficient algorithm so that Pr,, , g [A(g(z,r)) = (x,r)] > 1/2 + €. Give
an efficient algorithm B so that Pr,_px [B(f(x)) = x] > €’ for some ¢’ that may depend on e.

Solution

Now we can use the local-list-decoding algorithm for Hadamard codes! Let LIST-DECODE
be that algorithm (or rather, what we get when we run that algorithm & times, once for
each of the message bits). Our new algorithm is:

e Input: f(z).
e Run LisST-DECODE on z € F%k with query access given by

zr = A(f(z) o).
Get a list S = {1, ... (1)} C F§ of possible messages.
e For each i =1,..., L, compute f(z(®). If it is equal to f(x), return z(*).

Then we can do exactly the same argument as above about why ¢’ = Q(e) fraction of the
x’s are good.

7. Conclude that (z,r) is a hard-core bit for g(x,r).

Solution

As outlined above, suppose otherwise. Then we can recover (z,r) from g(x,r) with
probability at least 1/2 + ¢ for some non-negligable €. But then by the above we can
recover x from f(z) with some non-negligable probability . This contradicts the one-

way-ness of f.

