
Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw local list decoding, and an algorithm to locally list-decode
the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture
videos, and today we’ll see another application: hardcore predicates from one-way-functions.

Our goal will be to make pseudorandom generators from one-way permutations. Here are some
intuitive definitions1:

Definition 1. A pseudorandom generator (PRG) G takes a short seed x ∈ Fk
2 and outputs a (much

longer) string of bits G(x) ∈ FN
2 so that it is computationally difficult to tell if a string y ∈ FN

2 was
generated uniformly at random or if it was generated as the output of G.

Definition 2. A one-way permutation (OWP) is a permutation f : Fk
2 → Fk

2 so that:

• Given x ∈ Fk
2, it is computationally easy to compute f(x)

• Given y ∈ Fk
2, it is computationally hard to find x so that f(x) = y, with any non-negligable

probability.

Group Work: Here are some ways we might try to make a PRG from a OWP.

1. Let f : Fk
2 → Fk

2 be a OWP. Consider the generator

G(x) = f(x) • f(f(x)) • f(f(f(x))) • · · · • f (◦t)(x) • · · · ,

where • denotes concatenation and f (◦t) denotes f composed with itself t times. Explain why
G is not a good PRG.

2. How about this attempt?

G(x) = [f(x)]1 • [f(f(x))]1 • [f(f(f(x)))]1 • · · · • [f (◦t)]1 • · · · ,

where [y]1 denotes the first element of y ∈ Fk
2. Is this a good PRG? If not, give an example

that proves it (assuming one-way-permutations exist).

Solution

1. This is not a good PRG because we can easily check that, say, the second chunk is
f([the first chunk]).

2. This might not be a good PRG... Let g : Fk−1
2 → Fk−1

2 be a one-way permutation. Let
f : Fk

2 → Fk
2 be defined by

f(x) = x1 • g(x2, . . . , xk).

Then f is a permutation, and it’s one-way (otherwise we could invert g). But then the

1For more formal versions of everything we’ll do today, see https://www.wisdom.weizmann.ac.il/~oded/

prg-primer.html

1

https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 
https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html 


PRG defined in the problem is just x 7→ x1 • x1 • x1 • · · · , which is not very random
looking...

It turns out that there’s something like the second attempt that will work, using the following
definition:

Definition 3 (Hard-core bit). Let f : Fk
2 → Fk

2 be a function. We say that b : Fk
2 → F2 is a

hard-core bit for f if:

• It is computationally efficient to compute b.

• Given f(x), it is hard to determine b(x) with any probability non-negligably larger than 1/2.

Formally, for any randomized algorithm A that runs in time polynomial in k, and for any
function ε(k) that tends to zero polynomially fast in k,

Pr
x∼Fk

2

[A(f(x)) = b(x)] ≤ 1

2
+ ε(k).

(The probability is over both the choice of x and any randomness in A).

Group Work:

3. Show that if b is a hard-core bit for a OWP f . Show that G given below is a PRG:

G(x) = b(x) • b(f(x)) • b(f(f(x)) • · · · • b(f (◦t)(x)) • · · ·

More precisely, show that it’s hard to predict b(x) given (b(f(x)), b(f(f(x))), . . . , b(f (◦t)(x)), . . .).
It turns out that if you can’t predict any one bit given the others, then you can’t distinguish
the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you could predict b(x) from the
other bits? It’s okay to be very hand-wavey in your answer, since we haven’t given a precise
definition of a PRG.

Solution

Suppose that we could predict b(x) from the rest of the bits. We will show that we can predict
b(x) from f(x), which would be a contradiction. But indeed we can, since given f(x), we can
compute the rest of those bits b(f(x)), b(f(f(x)), . . ., and use those to predict b(x).

It turns out that in fact, any one-way-permutation has a hard-core predicate!

Theorem 1 (Goldreich-Levin Theorem). Suppose that f : Fk
2 → Fk

2 is a OWP. Consider the
function g : F2k

2 → F2k
2 given by

g(x, r) = f(x) • r,

where • denotes concatenation. Then g(x, r) is a one-way permutation, and

b(x, r) = ⟨x, r⟩

is a hard-core bit for g.

2



We’ll prove this theorem2 by contradiction: suppose that b is not hard-core. Then there is some
efficient algorithm A that can predict b(x, r) given f(x, r). We will use A as a black box to build
an efficient algorithm B that inverts f . But since f was supposed to be a one-way permutation,
this will be a contradiction!
Group Work:

4. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = ⟨x, r⟩] = 1. Give an

efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] = 1.

(Above and throughout, the probabilities are also over the randomness of A,B).

Solution

The algorithm B is:

• For i = 1, . . . , k, set xi ← A(f(x) • ei).
• Return (x1, . . . , xk).

This works since A(f(x) • ei) = A(g(x, ei)) = ⟨x, ei⟩ = xi.

5. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = ⟨x, r⟩] ≥ 3/4 + ε. Give

an efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] ≥ ε′ for some constant ε′ (that can

depend on ε).

Solution

Essentially, the algorithm A is giving us access to a noisy Hadamard codeword. In more
detail, the hypothesis tells us that

Ex Pr
r
[A(g(x, r)) ̸= ⟨x, r⟩] ≤ 1

4
− ε.

Say that x is “good” if

Pr
r
[A(g(x, r)) ̸= ⟨x, r⟩] ≤ 1

4
− ε

2
.

For any “good” x, then A gives us query access to some y so that yr = ⟨x, r⟩ for at least
a 3/4 + ε fraction of the positions r. Then, we can use A as a query “oracle” in the
unique local decoding algorithm that we saw for the Hadamard code to recover x.

In more detail, let T = O(log(k)/ε2), and suppose that x is good. The algorithm B is:

• Input: f(x)

• For i = 1, . . . , k:

– For t = 1, . . . , T :

∗ Draw a random r
(t)
i ∼ Fk

2.

∗ x
(t)
i ← A(f(x) • r

(t)
i )⊕A(f(x) • (r(t)i + ei))

– Let xi be the majority vote of {x(t)i }t∈[T ].

• Return (x1, . . . , xk)

2We’ll prove that ⟨x, r⟩ is hard-core for g. You can check for yourself that g(x, r) is a OWP if f(x) is.

3



To analyze this algorithm, notice that the probability that A(f(x) • r(t)i ) =
〈
x, r

(t)
i

〉
and

A(f(x)•r(t)i +ei) =
〈
x, r

(t)
i + ei

〉
is at least 1/2+ε, by the union bound. If that happens,

the x
(t)
i = xi. Thus, the probability that the majority-vote fails is the probability that

the sum of T Bernoulli-1/2+ ε random variables is less than T/2. By a Chernoff bound,
this is at most exp(−Ω(ε2T )) = 1/poly(k), so we can choose the constants so that we can
take a union bound over all values of i ∈ [k], and this succeeds with very high probability.

It remains to figure out the probability that x is good; we want this to be at least ε′, for
some ε′ > 0. We know that

Ex[Pr
r
[A(g(x, r)) ̸= ⟨x, r⟩]] ̸= 1

4
− ε.

Thus, by Markov’s inequality, the probability that x is bad is at most

Pr
x
[Pr
r
[A(g(x, r)) ̸= ⟨x, r⟩] ≥ 1

4
− ε/2] ≤ 1/4− ε

1/4− ε/2
= 1−O(ε).

Above, we have used the fact that

1/4− ε

1/4− ε/2
=

1− 4ε

1− 2ε
= (1− 4ε)(1 + 2ε+ 4ε2 + · · · ) = 1− 4ε+O(ε2) = 1−O(ε).

Thus, the probability that we succeed over both the randomness of x and of r is at least
Ω(ε) (the probability that x is good), minus the probability that the Hadamard local
list-decoder fails, which can be as small as we like; let’s make it O(1/ε2) to be very
conservative. Thus, we can take ε′ = Ω(ε) and guarantee that we win with probability
at least ε′, as desired.

6. Suppose that A is an efficient algorithm so that Prx,r∼Fk
2
[A(g(x, r)) = ⟨x, r⟩] ≥ 1/2 + ε. Give

an efficient algorithm B so that Prx∼Fk
2
[B(f(x)) = x] ≥ ε′ for some ε′ that may depend on ε.

Solution

Now we can use the local-list-decoding algorithm for Hadamard codes! Let List-Decode
be that algorithm (or rather, what we get when we run that algorithm k times, once for
each of the message bits). Our new algorithm is:

• Input: f(x).

• Run List-Decode on z ∈ F2k
2 with query access given by

zr = A(f(x) • r).

Get a list S = {x(1), . . . , x(L)} ⊆ Fk
2 of possible messages.

• For each i = 1, . . . , L, compute f(x(i)). If it is equal to f(x), return x(i).

Then we can do exactly the same argument as above about why ε′ = Ω(ε) fraction of the
x’s are good.

4



7. Conclude that ⟨x, r⟩ is a hard-core bit for g(x, r).

Solution

As outlined above, suppose otherwise. Then we can recover ⟨x, r⟩ from g(x, r) with
probability at least 1/2 + ε for some non-negligable ε. But then by the above we can
recover x from f(x) with some non-negligable probability ε′. This contradicts the one-
way-ness of f .

5


