

## Class 15 Exercises

CS250/EE387, Winter 2025

In the lecture videos/notes, we saw *local list decoding*, and an algorithm to locally list-decode the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture videos, and today we'll see another application: *hardcore predicates from one-way-functions*.

Our goal will be to make *pseudorandom generators* from *one-way permutations*. Here are some intuitive definitions<sup>1</sup>:

**Definition 1.** A pseudorandom generator (PRG)  $\mathcal{G}$  takes a short seed  $x \in \mathbb{F}_2^k$  and outputs a (much longer) string of bits  $\mathcal{G}(x) \in \mathbb{F}_2^N$  so that it is computationally difficult to tell if a string  $y \in \mathbb{F}_2^N$  was generated uniformly at random or if it was generated as the output of  $\mathcal{G}$ .

**Definition 2.** A one-way permutation (OWP) is a permutation  $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$  so that:

- Given  $x \in \mathbb{F}_2^k$ , it is computationally easy to compute  $f(x)$
- Given  $y \in \mathbb{F}_2^k$ , it is computationally hard to find  $x$  so that  $f(x) = y$ , with any non-negligible probability.

**Group Work:** Here are some ways we might try to make a PRG from a OWP.

1. Let  $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$  be a OWP. Consider the generator

$$\mathcal{G}(x) = f(x) \bullet f(f(x)) \bullet f(f(f(x))) \bullet \dots \bullet f^{(ot)}(x) \bullet \dots,$$

where  $\bullet$  denotes concatenation and  $f^{(ot)}$  denotes  $f$  composed with itself  $t$  times. Explain why  $\mathcal{G}$  is *not* a good PRG.

2. How about this attempt?

$$\mathcal{G}(x) = [f(x)]_1 \bullet [f(f(x))]_1 \bullet [f(f(f(x)))]_1 \bullet \dots \bullet [f^{(ot)}]_1 \bullet \dots,$$

where  $[y]_1$  denotes the first element of  $y \in \mathbb{F}_2^k$ . Is this a good PRG? If not, give an example that proves it (assuming one-way-permutations exist).

### Solution

1. This is not a good PRG because we can easily check that, say, the second chunk is  $f([the\ first\ chunk])$ .
2. This might not be a good PRG... Let  $g : \mathbb{F}_2^{k-1} \rightarrow \mathbb{F}_2^{k-1}$  be a one-way permutation. Let  $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$  be defined by

$$f(x) = x_1 \bullet g(x_2, \dots, x_k).$$

Then  $f$  is a permutation, and it's one-way (otherwise we could invert  $g$ ). But then the

<sup>1</sup>For more formal versions of everything we'll do today, see <https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html>

PRG defined in the problem is just  $x \mapsto x_1 \bullet x_1 \bullet x_1 \bullet \dots$ , which is not very random looking...

It turns out that there's something like the second attempt that will work, using the following definition:

**Definition 3** (Hard-core bit). *Let  $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$  be a function. We say that  $b : \mathbb{F}_2^k \rightarrow \mathbb{F}_2$  is a hard-core bit for  $f$  if:*

- *It is computationally efficient to compute  $b$ .*
- *Given  $f(x)$ , it is hard to determine  $b(x)$  with any probability non-negligibly larger than  $1/2$ .*

*Formally, for any randomized algorithm  $\mathcal{A}$  that runs in time polynomial in  $k$ , and for any function  $\varepsilon(k)$  that tends to zero polynomially fast in  $k$ ,*

$$\Pr_{x \sim \mathbb{F}_2^k} [\mathcal{A}(f(x)) = b(x)] \leq \frac{1}{2} + \varepsilon(k).$$

*(The probability is over both the choice of  $x$  and any randomness in  $\mathcal{A}$ ).*

### Group Work:

3. Show that if  $b$  is a hard-core bit for a OWP  $f$ . Show that  $\mathcal{G}$  given below is a PRG:

$$\mathcal{G}(x) = b(x) \bullet b(f(x)) \bullet b(f(f(x))) \bullet \dots \bullet b(f^{(\circ t)}(x)) \bullet \dots$$

More precisely, show that it's hard to predict  $b(x)$  given  $(b(f(x)), b(f(f(x))), \dots, b(f^{(\circ t)}(x)), \dots)$ . It turns out that if you can't predict any one bit given the others, then you can't distinguish the whole string from uniformly random.

Hint: Try a proof by contradiction. What could you do if you *could* predict  $b(x)$  from the other bits? It's okay to be very hand-wavey in your answer, since we haven't given a precise definition of a PRG.

### Solution

Suppose that we could predict  $b(x)$  from the rest of the bits. We will show that we can predict  $b(x)$  from  $f(x)$ , which would be a contradiction. But indeed we can, since given  $f(x)$ , we can compute the rest of those bits  $b(f(x)), b(f(f(x))), \dots$ , and use those to predict  $b(x)$ .

It turns out that in fact, *any* one-way-permutation has a hard-core predicate!

**Theorem 1** (Goldreich-Levin Theorem). *Suppose that  $f : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$  is a OWP. Consider the function  $g : \mathbb{F}_2^{2k} \rightarrow \mathbb{F}_2^{2k}$  given by*

$$g(x, r) = f(x) \bullet r,$$

*where  $\bullet$  denotes concatenation. Then  $g(x, r)$  is a one-way permutation, and*

$$b(x, r) = \langle x, r \rangle$$

*is a hard-core bit for  $g$ .*

We'll prove this theorem<sup>2</sup> by contradiction: suppose that  $b$  is *not* hard-core. Then there is some efficient algorithm  $\mathcal{A}$  that can predict  $b(x, r)$  given  $f(x, r)$ . We will use  $\mathcal{A}$  as a black box to build an efficient algorithm  $\mathcal{B}$  that inverts  $f$ . But since  $f$  was supposed to be a one-way permutation, this will be a contradiction!

**Group Work:**

4. Suppose that  $\mathcal{A}$  is an efficient algorithm so that  $\Pr_{x, r \sim \mathbb{F}_2^k}[\mathcal{A}(g(x, r)) = \langle x, r \rangle] = 1$ . Give an efficient algorithm  $\mathcal{B}$  so that  $\Pr_{x \sim \mathbb{F}_2^k}[\mathcal{B}(f(x)) = x] = 1$ .

(Above and throughout, the probabilities are also over the randomness of  $\mathcal{A}, \mathcal{B}$ ).

**Solution**

The algorithm  $\mathcal{B}$  is:

- For  $i = 1, \dots, k$ , set  $x_i \leftarrow \mathcal{A}(f(x) \bullet e_i)$ .
- Return  $(x_1, \dots, x_k)$ .

This works since  $\mathcal{A}(f(x) \bullet e_i) = \mathcal{A}(g(x, e_i)) = \langle x, e_i \rangle = x_i$ .

5. Suppose that  $\mathcal{A}$  is an efficient algorithm so that  $\Pr_{x, r \sim \mathbb{F}_2^k}[\mathcal{A}(g(x, r)) = \langle x, r \rangle] \geq 3/4 + \varepsilon$ . Give an efficient algorithm  $\mathcal{B}$  so that  $\Pr_{x \sim \mathbb{F}_2^k}[\mathcal{B}(f(x)) = x] \geq \varepsilon'$  for some constant  $\varepsilon'$  (that can depend on  $\varepsilon$ ).

**Solution**

Essentially, the algorithm  $\mathcal{A}$  is giving us access to a noisy Hadamard codeword. In more detail, the hypothesis tells us that

$$\mathbb{E}_x \Pr_r[\mathcal{A}(g(x, r)) \neq \langle x, r \rangle] \leq \frac{1}{4} - \varepsilon.$$

Say that  $x$  is “good” if

$$\Pr_r[\mathcal{A}(g(x, r)) \neq \langle x, r \rangle] \leq \frac{1}{4} - \frac{\varepsilon}{2}.$$

For any “good”  $x$ , then  $\mathcal{A}$  gives us query access to some  $y$  so that  $y_r = \langle x, r \rangle$  for at least a  $3/4 + \varepsilon$  fraction of the positions  $r$ . Then, we can use  $\mathcal{A}$  as a query “oracle” in the *unique* local decoding algorithm that we saw for the Hadamard code to recover  $x$ .

In more detail, let  $T = O(\log(k)/\varepsilon^2)$ , and suppose that  $x$  is good. The algorithm  $\mathcal{B}$  is:

- **Input:**  $f(x)$
- For  $i = 1, \dots, k$ :
  - For  $t = 1, \dots, T$ :
    - \* Draw a random  $r_i^{(t)} \sim \mathbb{F}_2^k$ .
    - \*  $x_i^{(t)} \leftarrow \mathcal{A}(f(x) \bullet r_i^{(t)}) \oplus \mathcal{A}(f(x) \bullet (r_i^{(t)} + e_i))$
    - Let  $x_i$  be the majority vote of  $\{x_i^{(t)}\}_{t \in [T]}$ .
- Return  $(x_1, \dots, x_k)$

---

<sup>2</sup>We'll prove that  $\langle x, r \rangle$  is hard-core for  $g$ . You can check for yourself that  $g(x, r)$  is a OWP if  $f(x)$  is.

To analyze this algorithm, notice that the probability that  $\mathcal{A}(f(x) \bullet r_i^{(t)}) = \langle x, r_i^{(t)} \rangle$  and  $\mathcal{A}(f(x) \bullet r_i^{(t)} + e_i) = \langle x, r_i^{(t)} + e_i \rangle$  is at least  $1/2 + \varepsilon$ , by the union bound. If that happens, the  $x_i^{(t)} = x_i$ . Thus, the probability that the majority-vote fails is the probability that the sum of  $T$  Bernoulli- $1/2 + \varepsilon$  random variables is less than  $T/2$ . By a Chernoff bound, this is at most  $\exp(-\Omega(\varepsilon^2 T)) = 1/\text{poly}(k)$ , so we can choose the constants so that we can take a union bound over all values of  $i \in [k]$ , and this succeeds with very high probability. It remains to figure out the probability that  $x$  is good; we want this to be at least  $\varepsilon'$ , for some  $\varepsilon' > 0$ . We know that

$$\mathbb{E}_x[\Pr_r[\mathcal{A}(g(x, r)) \neq \langle x, r \rangle]] \neq \frac{1}{4} - \varepsilon.$$

Thus, by Markov's inequality, the probability that  $x$  is bad is at most

$$\Pr_x[\Pr_r[\mathcal{A}(g(x, r)) \neq \langle x, r \rangle]] \geq \frac{1}{4} - \varepsilon/2 \leq \frac{1/4 - \varepsilon}{1/4 - \varepsilon/2} = 1 - O(\varepsilon).$$

Above, we have used the fact that

$$\frac{1/4 - \varepsilon}{1/4 - \varepsilon/2} = \frac{1 - 4\varepsilon}{1 - 2\varepsilon} = (1 - 4\varepsilon)(1 + 2\varepsilon + 4\varepsilon^2 + \dots) = 1 - 4\varepsilon + O(\varepsilon^2) = 1 - O(\varepsilon).$$

Thus, the probability that we succeed over *both* the randomness of  $x$  and of  $r$  is at least  $\Omega(\varepsilon)$  (the probability that  $x$  is good), minus the probability that the Hadamard local list-decoder fails, which can be as small as we like; let's make it  $O(1/\varepsilon^2)$  to be very conservative. Thus, we can take  $\varepsilon' = \Omega(\varepsilon)$  and guarantee that we win with probability at least  $\varepsilon'$ , as desired.

6. Suppose that  $\mathcal{A}$  is an efficient algorithm so that  $\Pr_{x, r \sim \mathbb{F}_2^k}[\mathcal{A}(g(x, r)) = \langle x, r \rangle] \geq 1/2 + \varepsilon$ . Give an efficient algorithm  $\mathcal{B}$  so that  $\Pr_{x \sim \mathbb{F}_2^k}[\mathcal{B}(f(x)) = x] \geq \varepsilon'$  for some  $\varepsilon'$  that may depend on  $\varepsilon$ .

### Solution

Now we can use the local-list-decoding algorithm for Hadamard codes! Let LIST-DECODE be that algorithm (or rather, what we get when we run that algorithm  $k$  times, once for each of the message bits). Our new algorithm is:

- **Input:**  $f(x)$ .
- Run LIST-DECODE on  $z \in \mathbb{F}_2^{2^k}$  with query access given by

$$z_r = \mathcal{A}(f(x) \bullet r).$$

Get a list  $\mathcal{S} = \{x^{(1)}, \dots, x^{(L)}\} \subseteq \mathbb{F}_2^k$  of possible messages.

- For each  $i = 1, \dots, L$ , compute  $f(x^{(i)})$ . If it is equal to  $f(x)$ , return  $x^{(i)}$ .

Then we can do exactly the same argument as above about why  $\varepsilon' = \Omega(\varepsilon)$  fraction of the  $x$ 's are good.

7. Conclude that  $\langle x, r \rangle$  is a hard-core bit for  $g(x, r)$ .

**Solution**

As outlined above, suppose otherwise. Then we can recover  $\langle x, r \rangle$  from  $g(x, r)$  with probability at least  $1/2 + \varepsilon$  for some non-negligible  $\varepsilon$ . But then by the above we can recover  $x$  from  $f(x)$  with some non-negligible probability  $\varepsilon'$ . This contradicts the one-way-ness of  $f$ .