
Class 4 Exercises

CS250/EE387, Winter 2025

1. Fix α0, α1, . . . , αr ∈ Fq. Fix y0, y1, . . . , yr ∈ Fq. Let

f(X) =

r∑
i=0

yi
Li(X)

Li(αi)
,

where

Li(X) =

∏r
j=0(X − αj)

X − αi
=
∏
j 6=i

(X − αj).

(Note that Li depends on the definition of the αj ’s).

(a) Show that f(α`) = y` for all ` = 0, . . . , r. (If you haven’t seen this before, this is called Lagrange
Interpolation.)

(b) Explain what part (a) has to do with the fact (which we saw in the lecture videos/notes) that a
Reed-Solomon code is MDS (Maximum Distance Separable).

(c) In the lecture videos/notes, we defined a natural encoding map for a Reed-Solomon codeRS(~α, n, k)
by

(f0, . . . , fk−1) 7→ (f(α0), . . . , f(αn−1))

for evaluation points α0, . . . , αn−1. Use part (a) to give a systematic encoding map for RS(~α, n, k):
that is, an encoding map of the form

(x0, . . . , xk−1) 7→ (x0, . . . , xk−1, zk, zk+1, . . . , zn−1)

where the message symbols appear as the first k symbols of the codeword.

(If you finish this one early, jump to Question 3 and then 4, and we’ll come back together
before embarking on Question 2).

2. Fix ~λ = (λ1, . . . , λn) ∈ Fn and ~α = (α1, . . . , αn) ∈ Fn so that the λj ’s are all nonzero and the αj ’s are

all distinct. The generalized Reed-Solomon code GRS(~λ; ~α, n, k) of dimension k is given by

GRS(~λ; ~α, n, k) = {(λ1f(α1), λ2f(α2), . . . , λnf(αn)) : f ∈ F[X],deg(f) < k}.

(a) What is the generator matrix for GRS(~λ; ~α, n, k)? Convince yourself that generalized RS codes
are MDS codes.

(b) Forget about generalized RS codes for a moment. Fix distinct α1, . . . , αn ∈ F. Show that, for any
polynomial h(X) with deg(h) < n− 1, we have

n∑
i=1

h(αi)

Li(αi)
= 0,
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where
Li(X) =

∏
j 6=i

(X − αj)

as in the previous problem.

Hint: Write out h(X) using Lagrange interpolation with all n points α1, α2, . . . , αn. What is the
coefficient on Xn−1 when you write it out this way?

(c) Back to GRS codes.

i. Show that RS(~α, n, k)⊥ = GRS(~λ; ~α, n, n− k) for some vector ~λ. What is ~λ, in terms of ~α?

ii. Find a parity-check matrix for RS(~α, n, k), in terms of ~α?

iii. (Bonus) More generally, show that GRS(~λ; ~α, n, k)⊥ = GRS(~σ; ~α, n, n−k) for some ~σ. What

is ~σ, in terms of ~λ and ~α? What is the parity-check matrix of GRS(~λ; ~α, n, k)?

3. (Bonus, if time) Let n = q − 1 and suppose that f : Fq → Fq given by f(X) =
∑n−1

i=0 fiX
i and

g : Fq → Fq given by g(X) =
∑n−1

i=0 giX
i are polynomials that both vanish on γ, γ2, ..., γn−k, for a

primitive element γ of Fq. Prove that the polynomial h(X) given by

h(X) =

n−1∑
i=0

figiX
i

vanishes on γ, γ2, . . . , γn−2k+1.

Hint: There is a short proof using something from the lecture videos/notes...

4. (Extra Bonus, if even more time)

(a) Over finite fields, we can define something called a Hasse derivative, as follows. Let f ∈ Fq[X] be
a polynomial over Fq. Then the k’th Hasse derivative of f is denoted f (`) ∈ Fq[X], and is defined
to satisfy the Taylor-like expansion:

f(X) =

deg(f)∑
`=0

f (`)(a)(X − a)` ∀a ∈ Fq.

(Note: you can define f (`)(X) directly by defining the `’th Hasse derivative of Xr as
(
r
`

)
Xr−` and

extending linearly, but this isn’t important for this problem).

Let α1, α2, . . . , αn ⊆ Fq be n distinct evaluation points. Define a new code C (called a derivative
code or univariate multiplicity code) as follows. Let C ⊆ (Fm

q )n be defined by taking all codewords
of the form 


f(α1)
f (1)(α1)

...
f (m−1)(α1)

 ,


f(α2)
f (1)(α2)

...
f (m−1)(α2)

 , · · · ,


f(αn)
f (1)(αn)

...
f (m−1)(αn)


 ∈ (Fm

q )n

for all polynomials f of degree at most k − 1.

i. What is the rate of this code?

ii. What is the distance?
Hint: You may use the fact that a degree d polynomial has at most d roots counting multi-
plicities. For example, g(X) = (X − 1)2 has a root of multiplicity 2 at X = 1, which means
that it can’t have any more roots. Formally, the multiplicity of a root α is ` + 1 for the
largest ` so that f(α), f (1)(α), . . . , f (`)(α) all vanish. For example, g(1)(X) = 2X − 2, so
g(1) = g(1)(1) = 0; and g(2)(X) = 2 which doesn’t vanish at X = 1, so the multiplicity of the
root at 1 is 2.
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iii. What happens if k > n? Does it still make sense?

(b) Notice that we can write f(α) as “f(X) mod (X − α)”. Thus, if we like, we can write an RS
codeword as:

(f(X) mod (X − α), f(X) mod (X − α2), . . . , f(X) mod (X − αn)).

For f ∈ Fq[X] of degree at most k − 1, consider the corresponding codeword

(f(X) mod (X − α1)m, f(X) mod (X − α2)m, . . . , f(X) mod (X − αn)m).

Here, we can think of this as a polynomial of degree at most m − 1 (since we can view it as the
remainder when we divide by a polynomial of degree m). Thus, we can also think about it as a
vector in Fm

q (eg, the coefficients of that degree at most m− 1 polynomial).

Consider the code that we get when taking all such codewords (for all f ∈ Fq[X] of degree at most
k − 1). This code lies in (Fm

q )n. Show that it is equivalent to the derivative code in the previous
part (possibly up to taking a fixed linear transformation Li : Fm

q → Fm
q in each coordinate i).

(c) (Super open-ended) Try to develop a theory of all codes that you can get by starting with a
polynomial and modding out by a polynomial Ei(X) in the i’th position. What do you think
their rate and distance will be? What assumptions do you need on the polynomials that you mod
out by? Can you think of any other examples that have a standalone interpretation?
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