Class 4 Exercises

CS250/EE387, Winter 2025

1. Fix ag, 01, ..., € Fy. Fix yo,y1,...,Yr € Fy. Let

~  Li(X)
f(X) part 7 Li(al) )
where T (x )
LX) = o = T[(X —a)).

J#i
(Note that L; depends on the definition of the «;’s).
(a) Show that f(ay) =y, for all £ =0,...,7. (If you haven’t seen this before, this is called Lagrange
Interpolation.)

(b) Explain what part (a) has to do with the fact (which we saw in the lecture videos/notes) that a
Reed-Solomon code is MDS (Maximum Distance Separable).

(¢) In the lecture videos/notes, we defined a natural encoding map for a Reed-Solomon code RS(&, n, k)
by
(f07 RN} fk—l) = (f(QO)a R f(an—l))

for evaluation points «y, . .., a,—1. Use part (a) to give a systematic encoding map for RS(a, n, k):
that is, an encoding map of the form

(o, vy Th1) ¥ (T0y e oy The1y 2y Zhtls -« s Zn—1)
where the message symbols appear as the first £ symbols of the codeword.

(If you finish this one early, jump to Question 3 and then 4, and we’ll come back together
before embarking on Question 2).

2. Fix A= (A1,...,\n) € F" and & = (oa,...,a,) € F™ so that the \;’s are all nonzero and the a;’s are
all distinct. The generalized Reed-Solomon code GRS (X, a,n, k) of dimension k is given by

GRS(X;@,n, k) = {(Mf(ar), Aaf(az), ..., Anflan)) : f € F[X],deg(f) < k}.

(a) What is the generator matrix for GRS(X; &, n, k)? Convince yourself that generalized RS codes
are MDS codes.

(b) Forget about generalized RS codes for a moment. Fix distinct a, ..., a, € F. Show that, for any
polynomial h(X) with deg(h) < n — 1, we have

— h(o)
; Li(og) 0

—



where
Li(X) =[(X —a))
J#i
as in the previous problem.
Hint: Write out h(X) using Lagrange interpolation with all n points a1, s, ..., a,. What is the
coefficient on X"~ when you write it out this way?
(c) Back to GRS codes.
i. Show that RS(a,n, k)* = GRS(X; a,n,n — k) for some vector X. What is X, in terms of @?
ii. Find a parity-check matrix for RS(&,n, k), in terms of a?
iii. (Bonus) More generally, show that GRS(X; a,n, k)* = GRS(d;d,n,n—k) for some . What
is @, in terms of X and @? What is the parity-check matrix of GRS(X; &, n, k)?
3. (Bonus, if time) Let n = ¢ — 1 and suppose that f : F, — F, given by f(X) = Z?;OI fiX? and
g : Fqg — F, given by g(X) = Z;ZOI ¢; X? are polynomials that both vanish on v,~2%,...,7" %, for a
primitive element « of F,. Prove that the polynomial h(X) given by

n—1

WX) = ZfigiXi
i=0
vanishes on 7,72, ...,y "2k +1,

Hint: There is a short proof using something from the lecture videos/notes...
4. (Extra Bonus, if even more time)

(a) Over finite fields, we can define something called a Hasse derivative, as follows. Let f € F,[X] be
a polynomial over IF;. Then the k’th Hasse derivative of f is denoted f ONS F,[X], and is defined
to satisfy the Taylor-like expansion:

deg(f)
fX) =Y fO>a) (X -a)f Va € F,.
£=0

(Note: you can define f(¥)(X) directly by defining the £’th Hasse derivative of X" as (;)X"* and
extending linearly, but this isn’t important for this problem).

Let a1, a2, ...,a, € F, be n distinct evaluation points. Define a new code C (called a derivative
code or univariate multiplicity code) as follows. Let C' C (F;*)" be defined by taking all codewords
of the form
f(an) f(az) fan)
FM () FM (a2) FO ()
: , : AR : c (F;n)”
fr Ve L] L)

for all polynomials f of degree at most k — 1.

i. What is the rate of this code?

ii. What is the distance?
Hint: You may use the fact that a degree d polynomial has at most d roots counting multi-
plicities. For example, g(X) = (X — 1) has a root of multiplicity 2 at X = 1, which means
that it can’t have any more roots. Formally, the multiplicity of a root a is £ + 1 for the
largest ¢ so that f(a), fM(a),..., f®(a) all vanish. For example, ¢/)(X) = 2X — 2, so
g(1) = gM(1) = 0; and ¢ (X) = 2 which doesn’t vanish at X = 1, so the multiplicity of the
root at 11is 2.



(b)

iii. What happens if £ > n? Does it still make sense?

Notice that we can write f(«) as “f(X) mod (X — «)”. Thus, if we like, we can write an RS
codeword as:

(f(X) mod (X —a), f(X) mod (X —as),...,f(X) mod (X —ay)).
For f € Fy[X] of degree at most k — 1, consider the corresponding codeword
(f(X) mod (X —ay)™, f(X) mod (X —a)™, ..., f(X) mod (X —a,)™).

Here, we can think of this as a polynomial of degree at most m — 1 (since we can view it as the
remainder when we divide by a polynomial of degree m). Thus, we can also think about it as a
vector in Fy* (eg, the coefficients of that degree at most m — 1 polynomial).

Consider the code that we get when taking all such codewords (for all f € F,[X] of degree at most
k —1). This code lies in (IF}*)". Show that it is equivalent to the derivative code in the previous
part (possibly up to taking a fixed linear transformation Lj; : Fy" — Fy" in each coordinate i).

(Super open-ended) Try to develop a theory of all codes that you can get by starting with a
polynomial and modding out by a polynomial F;(X) in the i’th position. What do you think
their rate and distance will be? What assumptions do you need on the polynomials that you mod
out by? Can you think of any other examples that have a standalone interpretation?



