Class 4 Exercises

CS250/EE387, Winter 2025

1. Fix ag,a1,...,00 € Fg. Fix yo,91,...,yr € Fq. Let

100 =2 n 700,
7‘:0 1 3
where T (x)
LX) = o = T[(X —).

J#i
(Note that L; depends on the definition of the «;’s).
(a) Show that f(ay) =y, for all £=0,...,r. (If you haven’t seen this before, this is called Lagrange
Interpolation.)

(b) Explain what part (a) has to do with the fact (which we saw in the lecture videos/notes) that a
Reed-Solomon code is MDS (Maximum Distance Separable).

(¢) In the lecture videos/notes, we defined a natural encoding map for a Reed-Solomon code RS(&, n, k)
by
(f07 B fk—l) = (.f(ao)a ceey f(an—l))

for evaluation points ap, . . ., a,—1. Use part (a) to give a systematic encoding map for RS(&, n, k):
that is, an encoding map of the form

(To, s Th—1) = (T0y -+ o, The1s 2k Zht s+ -+ s Zn—1)
where the message symbols appear as the first & symbols of the codeword.

(If you finish this one early, jump to Question 3 and then 4, and we’ll come back together
before embarking on Question 2).

Solution

(a) We can just plug in:

fla) = S u T4 = s
=i 7 (3

because L;(a;) = 0 if j # 1.

(b) Part (a) tells us how to do polynomial interpolation: given any r pairs (o, y;), we can come up
with a degree-r polynomial that goes through those evaluation points. One way to define an
MDS code of dimension k is that any k points completely determine a codeword. Applying part
(a), with r < k — 1, we see that any k points completely determines a degree < k polynomial,
and hence a Reed-Solomon codeword (which are the evaluations of that polynomial).

(¢c) We interpolate f(X) as in part (a) so that f(a;) =, for i =0,...,k —1. Then f has degree

at most k — 1. Then we set z; = f(«;) for j > k.

2. Fix X = (M. s An) €F? and @ = (o, ..., a,) € F” so that the \;’s are all nonzero and the «;’s are
all distinct. The generalized Reed-Solomon code GRS (X, a,n, k) of dimension k is given by

GRS(X;@,n, k) = {(Mf(a1), Aaf(az),.... A f(am)) © f € FIX],deg(f) < k}.

-

(a) What is the generator matrix for GRS(A; &, n, k)? Convince yourself that generalized RS codes

are MDS codes.

Solution

The generator matrix is given by Dy - G, where Dy is the diagonal matrix with X on the
diagonal, and G is a Vandermonde matrix (the generator matrix for RS(&, n, k)). GRS codes
are MDS since any k x k submatrix of this generator matrix is full rank; that’s true because
we saw in the lecture videos/notes that it was true for G, and multiplying by Dy won’t

change that.

(b) Forget about generalized RS codes for a moment. Fix distinct aq, ..., a, € F. Show that, for any

polynomial h(X) with deg(h) < n — 1, we have

; Li(ai) N

where
Li(X) =T[(X —a))
J#i
as in the previous problem.

Hint: Write out h(X) using Lagrange interpolation with all n points a1, as, ..., a,. What is the

coefficient on X"~ ! when you write it out this way?

Solution

Following the hint, we can write

h(X) = 3 hlad 7 os.

In this view, the coefficient on X" ! is

h(oy
- L_((‘Z_)) - (Coeff on X" in L;(X)).
i 3 K3
We observe that L;(X) = [];,;(X — a;) has degree exactly n — 1, and that the leading

coefficient is 1. (That’s because the only way to get X"~ in this product is to take the “X”
from each term (X — «;)). Thus, the coefficient on X"~! in h(X) is

h(a;)
; Li(a)

On the other hand, the degree of h(X) is at most n — 2 by assumption. So the coefficient on
X"~ is zero. This is what we wanted to show.

(c) Back to GRS codes.

i. Show that RS(a,n,k)* = GRS(X; a,n,n — k) for some vector X. What is X, in terms of a7

Solution

We can use part (b). Let A\, = m Let f(X) be a degree < k polynomial corre-
sponding to a codeword c of the RS code, and let g(X) be a degree < n — k polynomial
corresponding to a codeword ¢’ of the GRS code with weights);. Then the degree of
MX)=f(X)g(X)isatmost k—1+n—k—1=n—2<n—1, sowe apply part (b) to
h(X). We get that

> ek =3 faphig(an) = 0 G o,

ii. Find a parity-check matrix for RS(&,n, k), in terms of &7

Solution

A parity-check matrix for RS(&,n,k) is the transpose of a generator matrix for its
dual, which by part i is GRS(X\;d@,n,n — k), where \; = 1/L;(a;). So it is VT - D,

where V € F?’“” is Vandermonde with evaluation points a1, ..., a,, and D € Fp*™ is
diagonal with 1/L;(«;) in the i’th diagonal position.
Notice that this generalizes the example we saw in the lecture videos where @ = (79,41, ... 1

In that case, L;(a;) = 1 for all 4.

iii. (Bonus) More generally, show that GRS(X; &, n, k)* = GRS(; @, n, n—k) for some &. What
is &, in terms of A and &? What is the parity-check matrix of GRS(X; &, n, k)?

Solution

The same proof as above works, but we should take o; = /\%(a) (And the parity-check
matrix is the same as above, just with the o; instead of the \;).

3. (Bonus, if time) Let n = ¢ — 1 and suppose that f : F, — F, given by f(X) = Z;:Ol fiX? and
g :F, — F, given by g(X) = 7" g;X? are polynomials that both vanish on 7,72, ...,4" ¥, for a
primitive element v of F,. Prove that the polynomial h(X) given by

n—1
WX) = figi X'
=0

vanishes on 7,v2, ..., 4"~ 2k+1

Hint: There is a short proof using something from the lecture videos/notes...

Solution

By the dual view of RS codes, the coefficients f; of f(X) = Z?;OI fi X" are evaluations of a
polynomial f of degree at most k — 1: that is, f; = f(a') for i = 1,...,n. The same is true for g
and a degree-< k — 1 polynomial §. Thus, the coefficients h; = f; - g; are given by

hi = 5(a) - (o).
Now, the polynomial A(X) = f(X) - §(X) has degree at most 2k — 2, and so by the duality of RS
codes again, the polynomial h(X) vanishes on a,a?,..., a" 2**1 as desired.

4. (Extra Bonus, if even more time)

(a) Over finite fields, we can define something called a Hasse derivative, as follows. Let f € F,[X] be
a polynomial over [F;. Then the £’th Hasse derivative of f is denoted f) ¢ F,[X], and is defined
to satisfy the Taylor-like expansion:

deg(f)
fX) =" fO>a) (X -a)f Va € F,.

£=0

(Note: you can define f(¥)(X) directly by defining the £’th Hasse derivative of X" as (;) X" and
extending linearly, but this isn’t important for this problem).

Let a1, s, ...,a, CF, be n distinct evaluation points. Define a new code C (called a derivative
code or univariate multiplicity code) as follows. Let C' C (F;")" be defined by taking all codewords
of the form
f(an) f(az) fan)
FP(an) F(az) F(an)
: , : AR : c (FZL)”
()] Lfr) 7 ()

for all polynomials f of degree at most k — 1.

i. What is the rate of this code?
ii. What is the distance?
Hint: You may use the fact that a degree d polynomial has at most d roots counting multi-
plicities. For example, g(X) = (X — 1)? has a root of multiplicity 2 at X = 1, which means
that it can’t have any more roots. Formally, the multiplicity of a root a is £ + 1 for the
largest £ so that f(a), fM(a),..., f®(a) all vanish. For example, gV (X) = 2X — 2, so
g(1) = g (1) = 0; and ¢ (X) = 2 which doesn’t vanish at X = 1, so the multiplicity of the
root at 11is 2.
iii. What happens if £ > n? Does it still make sense?
(b) Notice that we can write f(a) as “f(X) mod (X — «)”. Thus, if we like, we can write an RS
codeword as:

(f(X) mod (X —a), f(X) mod (X —az),...,f(X) mod (X — ay,)).
For f € F,[X] of degree at most k — 1, consider the corresponding codeword
(f(X) mod (X —ay)™, f(X) mod (X —a)™, ..., f(X) mod (X —a,)™).

Here, we can think of this as a polynomial of degree at most m — 1 (since we can view it as the
remainder when we divide by a polynomial of degree m). Thus, we can also think about it as a
vector in i (eg, the coefficients of that degree at most m — 1 polynomial).

Consider the code that we get when taking all such codewords (for all f € F,[X] of degree at most
k —1). This code lies in (IFj*)". Show that it is equivalent to the derivative code in the previous
part (possibly up to taking a fixed linear transformation Lj; : Fy* — Fy" in each coordinate 7).

(¢) (Super open-ended) Try to develop a theory of all codes that you can get by starting with a
polynomial and modding out by a polynomial F;(X) in the i’th position. What do you think
their rate and distance will be? What assumptions do you need on the polynomials that you mod
out by? Can you think of any other examples that have a standalone interpretation?

Solution

(a) i. The rate is k/mn. That’s because we want to encode k symbols over F, and end up

k
encoding nm of them. (Formally, the rate is logq: 191 _ lj)‘;%éiq,))n =k

ii. The distance is n—k/m (assuming m divides k; otherwise it’s this up to some floors/ceilings

and/or +1).

First, we show that the distance is at least this. Let f be a polynomial of degree at most
k — 1, and consider the codeword corresponding to f. If the i’th symbol vanishes, then
f®(a;) = 0 for £ = 0,1,...,m — 1. This means that f has a root of order m at «;.
Since there are at most k roots with multiplicity, this means that there are at most |k/m |
places that this codeword can vanish. So the distance is at least n — |k/m]. (Here we
use the fact that this code is still linear over Fy, so it suffices to look at the lowest-weight
codeword.)

To see that this is tight, consider the polynomial (X —aq)™ (X —a2)™ -+, (X — ag/m)™.
The corresponding codeword vanishes on k/m places.

iii. It does make sense! The reason that we couldn’t do this with Reed-Solomon codes is
that X? is the same as X over [y, so if k > ¢, then we’d have two polynomials, e.g. X?
and X, that would map to the same codeword. More generally, X is the same as (X"
mod T[] ,(X — «;)) if we only look at evaluations on a4, ..., a,, which is why we can’t
take k > n. If we did, our encoding map wouldn’t be injective.

But for multiplicity codes, we can have k > n! To get some intuition for this, let’s suppose
that n = ¢ and consider f(X) = X7 and g(X) = X. Now f)(X) = ¢X?! =0 in F,,
while ¢ (X) = 1 in F,. So even though f(a) = g(a) for all a € F,, if we look at
(f(a), fV(a)) and (g(a), g™ (a)), these will actually always be different.

Formally, the way to see this is to look at our distance proof above. It’s enough to show
that no polynomial of degree at most k£ — 1 will have all zeros, and the distance proof
above shows that this will happen as long as k/m < n, meaning that k < nm. So we can
actually take & much bigger than n!

(b) Consider f(X) mod (X — a)™. By the Taylor expansion formula above, we can write

k—1
FX) =3 fP)X -a).
£=0

Thus, mod (X —)™, all of the terms with £ > m vanish, and we are left with

m—1

F(X) mod (X —a)™ =Y fO(a)(X - a)".

=1
The coefficients of this polynomial are exactly the vector
FO(e)
FO ()
Fm=1(a)

aka the a’th symbol of the encoding with the derivative code.
(Note that this isn’t quite the same as the description above of how we represent f(X)

mod (X —a)™, since there we’d take the coefficients when we write it out in the (1, X, X2,..., X

basis, rather than the (1, X —a, (X —a)?,..., (X —a)™!) basis. But you can convince your-
self that changing from one basis to another is just a linear transformation, which we can
capture as the L; noted in the problem statement.)

