
Class 5 Exercises

CS250/EE387, Winter 2025

In this class, we’ll investigate/develop the (starting point1 for the) Berlekamp-Massey Algorithm for
decoding Reed-Solomon codes. Some notation:

• We will be working with a RS code C ⊆ Fn
q with length n = q − 1 over Fq and with evaluation points

1, γ, γ2, . . . , γn−1.

• We will try to decode C from e errors. Suppose that v ∈ Fn
q is the received word, so v = c + p for

c ∈ C and p ∈ Fn
q is an error vector so that wt(p) ≤ e.

• Let p = (p0, . . . , pn−1) be the error vector, and let E = {i : pi ̸= 0} . be the locations of the errors.

• Let d = n− k+1 be the distance of the RS code, and assume that e ≤
⌊
d−1
2

⌋
, so that unique decoding

is possible.

Now onto the questions.

1. The first step of the Berlekamp-Massey algorithm is to compute the syndrome s = Hv, where H is the
parity-check matrix for C. Write s = (s1, . . . , sd−1), and let s(Z) =

∑d−1
i=1 siZ

i.

Show that

s(Z) =
∑
i∈E

pi ·
(
γiZ − (γiZ)d

1− γiZ

)
.

Hint/Outline:

• First, show that s(Z) =
∑

i∈E pi
∑d−1

ℓ=1 (γ
iZ)ℓ. (To do that, write out what s(Z) is, in terms of the γi’s and pj ’s,

by using the definition of the parity-check matrix and the fact that Hv = s).

• Then, remember that
∑n

j=1 x
j = xn+1−x

x−1
...

Solution

First, Hv = H(c + p) = Hp. Next, we know that Hj,i = γij where j is 1-indexed and i is
(obnoxiously) zero-indexed. Thus,

sj = j’th row of Hp

=

n−1∑
i=0

γijpi

1In fact, what’s usually called the “Berlekamp-Massey Algorithm” picks up where these questions leave off. Today we are
going to design an algorithm that runs decently fast. The BM algorithm starts with this outline and makes it much faster.

1

and so

s(Z) =

d−1∑
j=1

sjZ
j

=

d−1∑
j=1

n−1∑
i=0

pjγ
ijZj

=

n−1∑
i=0

pi

d−1∑
j=1

(γiZ)j

=
∑
i∈E

pi

(
γiZ − (γiZ)d

1− γiZ

)
as desired.

2. Let σ(Z) =
∏

i∈E(1 − γiZ). Explain why we will be in good shape for decoding if we can figure out
what σ is.

Solution

We have i ∈ E ⇔ σ(γ−i) = 0. So if we find σ, we can factor it and find E. Once we know E, we
can, for example, treat the errors as erasures and just solve a linear system to find the original
codeword.

3. Consider σ(Z) · s(Z). Show that this can be written as

σ(Z) · s(Z) = w(Z) + Zdr(Z),

where w(Z) and r(Z) are polynomials, and deg(w) ≤ e. Write down an expression for w(Z).

Solution

We can use our expression earlier for s(Z) to write

s(Z)σ(Z) =
∑
i∈E

pi(γ
iZ − (γiZ)d)

∏
j∈E\{i}

(1− γjZ).

(Essentially, we are using σ(Z) to clear the denominator in our expression for s(Z)). By staring,
this polynomial has the desired form, and

w(Z) =
∑
i∈E

piγ
iZ

∏
j∈E\{i}

(1− γjZ).

4. Let’s explore this polynomial w(Z) a bit more.

(a) For all r ∈ E, w(γ−r) = pr ·
∏

j∈E\{r}(1 − γj−r). Use this to explain why we will be done (that

is, we can figure out the error vector p) if we can figure out both σ(Z) and w(Z).

(b) (Optional:) w(Z) and σ(Z) are relatively prime. That is, there is no polynomial g(Z) (other
than g(Z) ≡ 1) that divides them both.

Note: if you don’t feel like showing this, take it as given and skip this part; you can come back and think about it

later if you have time!

2

Solution

(a) Plugging in γ−r, we have

w(γ−r) =
∑
i∈E

piγ
i−r

∏
j∈E\{i}

(1− γj−r).

The product vanishes unless i = r, so we are left with only the i = r term, which is

w(γ−r) = prγ
r−r

 ∏
j∈E\{i}

(1− γj−r)

 = pr
∏

j∈E\{r}

(1− γj−r)

as desired.
This means that if we can figure out both σ(Z) and w(Z), we’ll be done: σ(Z) can tell us
where the errors occur, as in Question 2. Then, if we know an error occurs at location r, we
can plug γ−r into w to get pr · (stuff we can compute), from which we can recover pr. Then
we’d know all of p, which is what we wanted.

(b) Since σ(Z) factors completely, it suffices to show that (1− γrZ) does not divide w(Z) for any
r ∈ E. But we just saw that for all r ∈ E, w(γ−r) = pr ̸= 0, so γ−r is not a root of w, so
(1− γrZ) cannot divide it.

5. The previous part implies that, for all r with e+ 1 ≤ r ≤ d− 1, we have

coefficient on Zr in s(Z)σ(Z) = 0.

What is that coefficient, in terms of the coefficients of s (which we know) and the coefficients of σ
(which we don’t know)? Write down a system of d− e− 1 linear constraints that the coefficients of σ
must satisfy. Your constraints should be in terms of the si. Explain why there is at least one solution
to this system of equations.

Solution

For each r, the coefficient on Zr in s(Z)σ(Z) is given by the convolution

coefficient on Zr =

e∑
i=0

σisr−i,

where σ(Z) =
∑e

i=0 σiZ
i. This gives us a system of equations

Se+1 Se Se−1 · · · S1

Se+2 Se+1 Se · · · S2

Se+3
. . .

. . .
...

Sd−1 Sd−2 Sd−2 · · · Sd−e−1

 ·



σ0

σ1

...

...
σn−1

 = 0⃗.

There is at least one solution to these equations, because σ is a solution!

6. Suppose we were to solve your system of equations to obtain (σ̃0, . . . , σ̃n−1) and a corresponding
polynomial σ̃(Z) =

∑e
i=0 σ̃iZ

i. Explain why we can write

s(Z)σ̃(Z) = w̃(Z) + Zdr̃(Z)

for some polynomials w̃(Z), r̃(Z) with deg(w̃) ≤ e.

3

Hint: Don’t overthink it. (Think about what we did to answer the previous question...)

Solution

The system of linear equations that we solved to find σ̃ precisely says that all of the coefficients of
s(Z)σ̃(Z) between Ze+1 and Zd−1 (inclusive) are zero. Therefore, s(Z)σ̃(Z) has the desired form.

In more detail, you can imagine extending the system of equations above to

S0 0 · · ·
S1 S0 0 · · ·
...
Se Se−1 · · ·

− − −
Se+1 Se Se−1 · · · S1

Se+2 Se+1 Se · · · S2

Se+3
. . .

. . .
...

Sd−1 Sd−2 Sd−3 · · · Sd−e−1

−−−
Sd Sd−1 Sd−2 · · ·Sd−e

Sd+1 Sd · · ·
...



·



σ0

σ1

...

...
σn−1

 =



w0

w1

...
we

−−
0
0
0
...
0

−−
r0
r1
...



.

If you replace σ with σ̃, you’ll get something of the same form, and that will tell you the coefficients
for w̃(Z) and r̃(Z).

7. Show that σ̃(Z)w(Z) = σ(Z)w̃(Z).

Hint: Consider σ(Z)s(Z)σ̃(Z). Further hint: (σ(Z)s(Z))σ̃(Z) = σ(Z)(s(Z)σ̃(Z)).

Solution

Following the hint, we have

s(Z)σ(Z)σ̃(Z) = (s(Z)σ(Z))σ̃(Z) = (w(Z) + Zdr(Z))σ̃(Z) = w(Z)σ̃(Z) + Zd · [stuff].

Symmetrically,
s(Z)σ(Z)σ̃(Z) = w̃(Z)σ(Z) + Zd · [stuff]′.

Thus,
w̃(Z)σ(Z) = w(Z)σ̃(Z) + Zd · [stuff]′′,

for some (polynomial) value of [stuff]′′. Since w̃, w, σ̃, σ all have degree at most e, σ(Z)w̃(Z) and
σ̃(Z)w(Z) both have degree at most 2e, which is strictly less than d by our assumption on the
number of errors. Thus, the Zd · [stuff]′′ term doesn’t collide with the lower-order terms, and we
conclude that

w̃(Z)σ(Z) = w(Z)σ̃(Z)

as desired.

8. Explain how, given σ̃ and w̃, to find σ and w.

Hint: By Question 7,
w̃(Z)
σ̃(Z)

=
w(Z)
σ(Z)

.... Part 4(b) might be useful. Further hint: Suppose that I was thinking of two

integers that are relatively prime (like 2 and 5). Suppose I told you that the one divided by the other was the same as

40/100. How could you recover the two numbers?

4

Solution

The previous part implies that
w̃(Z)

σ̃(Z)
=

w(Z)

σ(Z)
.

Since w(Z) and σ(Z) are relatively prime, they have no common factors. Thus, if we reduce the

fraction w̃(Z)
σ̃(Z) by dividing out any common factors, what we are left with must be the rational

function w(Z)
σ(Z) , and we know that the numerator must be w and the denominator must be σ.

9. Put all the pieces together to write down an efficient (polynomial-time) algorithm to recover the
codeword c given v. What is the running time of your algorithm, in terms of the number of operations
over Fq?

If it helps, finding the gcd (or reducing a fraction) of two degree-D polynomials (with, say, Euclid’s
algorithm) takes O(D2) operations over Fq. Finding the roots of a degree-D polynomial in Fq can be
done with O(D2 log q) operations over Fq. Evaluating a degree D polynomial at a point can be done
with about O(D logD) operations over Fq.

Solution

Here’s an algorithm:

• Find the syndrome s = Hv.

• Solve the system of linear equations that we came up with above (which only depends on s,
which we just found) to find σ̃(Z).

• Let w̃(Z) = s(Z)σ̃(Z) mod Zd.

• Compute g(Z) = gcd(w̃(Z), σ̃(Z)).

• Let σ(Z) = σ̃(Z)/g(Z) and let w(Z) = w̃(Z)/g(Z).

• Find the roots of σ(Z) =
∏

i∈E(1− γiZ) to find E.

• For i ∈ E, let

pi =
w(γ−i)∏

j∈E\{i}(1− γj−i)
.

For i ̸∈ E, let pi = 0.

• Return c = v − p.

The running time, calculated as number of operations over Fq, is (naively):

• O(nd) operations to compute the syndrome.

• O(d3) operations to solve our ≈ d× d linear system.

• O(ed) = O(d2) to multiply s(Z) with σ̃(Z) and chop off the end to get w̃(Z).

• O(d2) operations to take the GCD and reduce the fraction w̃(Z)/σ̃(Z).

• O(d2 log q) to find the roots of σ(Z).

• O(d2 log d) operations to evaluate w(Z) on e = O(d) points. (This is O(d log d) per point,
since there are O(d) terms to add up, and each term takes O(log d) operations to compute by
repeated squaring).

• O(n) to finally compute c and return it.

So the total is something like O(nd + d3 + d2 log n) = npoly(d) operations over Fq. (FWIW,
each operation over Fq can be performed in something like O(log2(n)) time). If we don’t need to
compute the syndrome, and d ≪ n is small enough, this can actually be sublinear in n!

10. (Bonus) Can you think of a way to speed up your algorithm? What steps seem especially lossy?

5

Solution

There are several ways to speed this up. Most notably, the linear system that we are solving is very
structured – the matrix is actually a Toeplitz matrix, and there are fast algorithms for solving such
systems. This can reduce the running time to something like O(nd+d log2(d) log log(d)+d2 log n)
operations over Fq.

In fact, the “Berlekamp-Massey” algorithm usually refers to a particular very fast way to solve
this system of linear equations.

11. (Bonus) A linear feedback shift register (LFSR) is defined as follows. We have a register, which initially
holds t field symbols s0, s1, . . . , st−1 ∈ Fq. Fix some vector τ⃗ ∈ Ft

q. We are going to modify this register
over time, as follows. At time j, suppose that the register holds (sj , sj+1, . . . , sj+t−1). To move to
time j + 1, we do the following:

• Write the contents of the register as s⃗ = (sj , . . . , sj+t−1), and compute sj+t = s⃗ · τ⃗ .
• Shift all the contents of the register over by one, dropping the first one, so now it looks like
(sj+1, . . . , sj+t−1,).

• Fill in the last black with sj+t, so now we have (sj+1, . . . , sj+t).

Then we repeat for a while! A question that one might ask about such a thing is: Given a sequence of
“dropped” bits s0, s1, s2, . . . , sN , can you recover the coefficient vector τ⃗?

If you look up the Berlekamp-Massey algorithm on the internet, it is often described as a very fast way
to solve this LFSR problem. But today we said that it was a fast algorithm for decoding RS codes.
What does the LFSR problem have to do with decoding Reed-Solomon codes??

Solution

Solving the system of equations we wrote down with si and σj can be seen as finding the coefficients
of a LFSR. To see this, notice that the first equation says that

∑e
i=0 σise+1−i = 0, or

se+1 =
−σ1

σ0
se +

−σ2

σ0
se−1 + · · ·+ −σe

σ0
s1.

The second equation can be written as

se+2 =
−σ1

σ0
se+1 +

−σ2

σ0
se + · · ·+ −σe

σ0
s2,

and so on. So, this is exactly the same problem as the LFSR problem, where the coefficients are
τi =

−σi

σ0
. (In fact, in our setting, we have σ0 = 1 (why?), so actually τi = −σi).

6

