
Class 7 Exercises

CS250/EE387, Winter 2025

1. What is (approximately) the rate of the best explicit binary code that we know exists with distance
1/4? Compare this to (approximately) the rate of the best non-explicit binary code that we know
exists with distance 1/4.

If it helps, here is a plot of the function ϕ(r) = r ·
(
1− 1/4

H−1(1−r)

)
:

And here is a plot of the binary entropy function:

1



Solution

The best explicit binary code that we know of lies on the Zyablov bound, which is conveniently
R = maxr ϕ(r). Eyeballing the plot of ϕ(r), it looks like this is about 0.02 or a bit bigger.

The best non-explicit binary code that we know of lies on the GV bound, or R = 1−H(δ). Again
eyeballing the plot of H(x), we see that H(1/4) ≈ 0.8, so 1−H(1/4) ≈ 0.2. So this is quite a bit
bigger than the Zyablov bound.

2. With the Zyablov bound, we saw (finally) a construction of an “explicit” asymptotically good bi-
nary code using concatenated codes. However, the definition of “explicit” may not have been super-
satisfying. In this exercise we’ll see a construction with a more satisfying definition of “explicit.”

(a) Explain why the construction from the videos might not be super satisfying in terms of explicitness.
(Recall that “explicit” meant that “there exists a polynomial-time algorithm to find it.” What
could we hope for instead? )

Solution

Our definition still involved exhaustive search for the generator matrix of a good inner code.
A more satisfying definition (sometimes called “strongly explicit”) might be for a description
that efficiently tells us a single entry of this matrix, say in time polylog(n).
For example, Reed-Solomon codes are “strongly explicit”, because I can tell you that the i, j
entry of the generator matrix is αji really quickly. (Perhaps I need to take O(log n) time to

compute αji ).

(b) Fix a parameter k. Let Q = 2k. We can identify the finite field FQ with the vector space Fk2 .
These aren’t the same thing, but it turns out that they have the same additive structure. That
is, there is some map φ : Fk2 → FQ so that

φ(0) = 0 and φ(x+ y) = φ(x) + φ(y) ∀x,y ∈ Fk2 .

For α ∈ FQ, with α ̸= 0, consider the linear code Cα ⊂ F2k
2 of dimension k and length 2k over F2

given by the encoding map
x 7→ x ◦ φ−1(φ(x) · α),

where ◦ denotes concatenation.

There is no question for this part, just make sure you understand the construction. Notice that
there are 2k − 1 different codes Cα that you can create like this.

(c) Let ε > 0, and let η = 2−2εk. Show that at least a 1− η fraction of the α’s in F2 have

dist(Cα) ≥ H−1
2 (1/2− ε).

Hint. Consider a fixed nonzero y ∈ F2k
2 with weight less than 2k ·H−1

2 (1/2− ε). How many such
vectors y are there? How many different codes Cα can each vector y lie in?

Solution

First, observe that any nonzero y ∈ F2k
2 can lie in at most one Cα. Indeed, suppose that

y = (x, αx) = (x′, βx′). Then, since y is nonzero, we must have x nonzero, hence x = x′ ̸= 0,
and thus αx = βx, which implies that α = β. (Above, we are abusing notation and using
αx to mean αφ(x)).
Now, let’s count the number of nonzero y’s with weight less than ρ := H−1

2 (1/2− ε). There
are at most

Vol2(ρ, 2k)− 1 ≤ 22kH2(ρ) − 1 = 22k(1/2−ε) − 1 = 2kη − 1

such vectors (where the minus 1 is just discounting the all-zero vector). Thus, at most 2kη−1

2



values of α can have dist(Cα) ≤ ρ. Therefore, the fraction of “good” Cα’s is

1− 2kη − 1

2k − 1
≥ 1− η,

as desired.
(Note: Above I have been a bit pedantic to make sure that removing the all-zero vector is
okay with the desired inequality. But even if it weren’t, it would be a negligable difference,
so it’s fine to ignore it for the answer to this exercise).

(d) Let Q = 2k as before. Consider the code C (called the Justesen code) formed as follows:

• Let RS be a Reed-Solomon code over FQ with length N = Q− 1, evaluation points FQ \ {0},
and rate R. Thus, each symbol of RS is associated with an element α ∈ FQ \ {0}.

• For each α ∈ FQ \ {0}, let Cα be as in the previous part.

• Consider the “concenated-like” code where the inner code is different for each symbol: we
concatenate the α’th symbol of a codeword in RS with the inner code Cα.

Show that the rate of this code is at least R/2, and that the distance is at least (1 − R − η) ·
H−1

2 (1/2− ε).

Solution

To see the rate, notice that there are QRN = 2kRN codewords, and that the length (in bits)
of the output is N · 2k. So the rate is

log2(Q
RN )/(2Nk) = (kRN)/(2Nk) =

R

2
.

For the distance, observe that this code is F2-linear, so it suffices to show that any nonzero
codeword has relative weight at least (1 − R − η) · H−1

2 (1/2 − ε). First, any nonzero RS
codeword has weight at least (1 − R)N , by the distance of RS codes. At most ηN of the
symbols are concatenated with a “bad” inner code, i.e., one that has distance less than
H−1

2 (1/2 − ε). Thus, at least (1 − R − η)N of the inner codewords have weight at least
H−1

2 (1/2− ε) · 2k, so any nonzero codeword has weight at least

(1−R− η)H−1
2 (1/2− ε) · 2Nk,

which is what we wanted to show.

(e) Does the Justesen code meet your definition of “satisfyingly explicit” from part (a)? Why or why
not?

Note: If you haven’t seen the correspondence between F2k and Fk2 (as per the map φ above)
before, it may be tricky to answer this question precisely. In that case, just try to think about
whether it seems plausible and then move on.

Solution

It meets my definition. The generator matrix G ∈ F2kN×Rkn
q is given by G1 · G2, where

G2 ∈ FkN×kRN
2 represents the generator matrix for the RS code and G1 ∈ F2kN×kN

2 does the
concatenation.
In more detail, G2 is the block matrix where each symbol β ∈ FQ of the RS code’s generator
matrix in FN×RN

Q is replaced by a k × k binary matrix that represents multiplication by β

in Fk2 .
The matrix G1 is block-diagonal, and the 2k × k block corresponding to α ∈ FQ is again
a block matrix where the top part is the identity and the bottom part is the k × k matrix

3



representation of α.
Thus, G = G1 ·G2 ∈ F2kN×kRN

2 is a block matrix consisting of 2k × k blocks, and the block
corresponding to α ∈ FQ and i ∈ [RN ] is given by I

−−−−
Mα

 ·
[
M i
α

]
=

 Mα

−−−
M i+1
α

 ,
where Mα ∈ Fk×k2 is the matrix that represents multiplication by α. To compute this, we
just need to be able to compute powers αi+1 and then to turn it into binary. Both of these
can be done in time poly(k), and k is logarithmic in the block length of the code.
(Note: Since we haven’t gone into detail about how FQ works as a vector space over F2 in
this class, you didn’t need to write out exactly how to compute each entry of the generator
matrix, just convince yourself that it’s plausible).

(f) Does this construction give you an asymptotically good code of distance, say, 1/4 (c.f. Exercise
1)? How about for distance 1/20? How does this compare to the Zyablov/GV bound? (Better or
worse?) (Note: for distance 1/20, the Zyablov bound is about 0.27. The binary entropy of 1/20
is about 0.29).

Hint. Since the question is about asymptotics, you can set ε, η = 0 in your answer to (d). (The
reason is that we can choose ε > 0 to be arbitrarily small; and then suppose that k is big enough
compared to 1/ε that η = 2−2kε is also arbitrarily small.)

Solution

Letting R∗ be the rate of the final code, we see that the distance δ can approach

δ = (1−R)H−1
2 (1/2) = (1− 2R∗)H−1

2 (1/2).

(if we let ε, η → 0). Solving for R∗ in terms of δ, we get

R∗ =
1

2
− δ

2H−1
2 (1/2)

.

Looking at the plot from Exercise 1, H−1
2 (1/2) ≈ 0.1, so the best rate we can get with this

construction and distance δ is

R∗ ≈ 1

2
− δ

2× 0.1
=

1

2
− 5δ.

For δ = 1/4, this is 1/2 − 5/4 < 0, so we don’t get anything useful here. Since we did get
something useful for δ = 1/4 from the Zyablov bound, this guarantee is substantially worse
than the Zyablov bound. However, if δ is small enough, say δ = 1/20, we’d get

R∗ ≈ 1

2
− 5

20
=

5

20
= 0.25,

which at least gives us a satisfyingly explicit asymptotically good code. It’s a bit worse than
the Zyablov bound (0.27) and definitely not as good as the GV bound (0.71), but not bad!

(g) (Bonus). How would you modify the construction above to achieve a better trade-off? Can you
match the Zyablov bound this way?

4



Solution

(Sketch). One way to modify it is to improve the rate of the inner code by keeping just the
first s bits of φ−1(φ(x) ·α) in the definition of Cα. It turns out that most codes in this family
have distance at least H−1(s/(s+ k)− ε). By doing this, we can get a final code with rate

R∗ = max
1/2<r<1−H2(δ)

r ·
(
1− δ

H−1(1− r)

)
,

which looks a lot like the Zyablov bound except for the extra constraint on r. It turns out
that this coincides with the Zyablov bound for rates larger than 1/3 or so.

(h) (Bonus 2). Does the algorithm that we saw for decoding concatenated codes work for our
Justesen code?

Solution

Essentially, yes. In the analysis, we just need to ignore the η fraction of inner codes that
don’t have good distance, and this doesn’t really affect anything.

———————-

Stuff below here is super-bonus, we definitely won’t get to it in class. The lecture notes
promised that “in class” we’d see a construction of a code near the GV bound in time 2O(n) (rather

than 2O(n2))...but then we decided that the above would be more fun. If you want to know how to
construct such a code, work through the steps below!

3. (Deterministic codes on the GV bound in time 2O(n).) In the lecture videos/notes, we said that it
is open (in most parameter regimes) to find an efficient deterministic construction of an asymptotically
good code near the GV bound, even though “most” linear codes lie close to this bound.

(0) Fix some constant δ and let ε > 0. Describe a straightforward algorithm that finds an asymptot-
ically good code of length n near the GV bound (that is, with dimension at least (1−H(δ)− ε)n

and distance at least δ) in time 2O(n2). In the big-Oh notation, we treat ε, δ as constants and n
as growing.

Solution

We exhaust over all generator matrices G ∈ Fk×n2 , where k = n(1−H2(δ)−ε). The GV bound tells
us that at least one such matrix has good distance. To test distance, we look at all 2k codewords
and see what the lowest non-zero weight is. This all takes time

O(2kn · 2k · n) = O(2kn+k+log2(n)) = 2O(n2).

However, we can do a little bit better than 2O(n2) (and this may be useful soon for using concatenated
codes to get an explicit construction of an asymptotically good code...).

In this exercise we’ll prove the following theorem:

Theorem 1. There is a deterministic algorithm that finds a binary linear code C ⊂ Fn2 with rate
R = 1−H2(δ)− o(1) in time 2O(n).

Fix constants ε, δ > 0. Suppose that k ≥ 1 − H2(δ) − ε. In the following, we will come up with a
distribution D on matrices G ∈ Fn×k2 so that

5



(i) A matrix G ∼ D can be sampled using O(n) bits of randomness.

(ii) A matrix G ∼ D is full rank with probability at least 2/3.

(iii) Let C ⊆ Fn2 be a (random) code with generator matrix G ∼ D; then C has distance at least δ with
probability at least 2/3.

(a) Explain why coming up with such a distribution D would prove the theorem.

Solution

Suppose that there is such a D, and say we sample from it via a function G : 0, 1r → Fn×k2 , so
that G(ω) is the matrix that we’d draw with random seed ω. By (i), we may take r = O(n).
By (ii) and (iii) and a union bound, with probability at least 1/3 G is both full rank and
corresponds to a code with distance at least δ. In particular, there exists some ω so that
G(ω) has these properties. Thus, we may enumerate over all possible seeds ω in time 2O(n)

and we will encounter such a G. To find such a matrix, we need to test each G(ω): this takes
time poly(n) (to check the rank) plus time 2O(k) (to check the distance; we just enumerate
over all codewords and check their weight). So the total time is 2O(n).
Once we have found such a G, it is the generator matrix for a code with dimension k (using
(ii)) and distance at least δ (using (iii)), as desired.

(b) Define a distribution D on matrices G by letting G be a random Toeplitz matrix. That is, G is of
the form

G =



X0 X1 · · · Xk−1

Xk X0 X1
. . .

Xk+1 Xk X0
. . .

...
Xn+k−2


.

where X0, . . . , Xn+k−2 are i.i.d. uniform random variables in F2.

(There is no question here, just understand the distribution).

Solution

Understood!

(c) Show that, for any x ∈ Fk2 , Gx is uniformly distributed when G ∼ D.

Solution

Fix an x ∈ Fk2 , and suppose that x has support I ⊆ {0, . . . , k − 1} and let i∗ be the smallest
element of I. Let J ⊂ {0, . . . , k + n− 2} be

J = {j : Xj appears in G[:, i
∗]} .

Let φ denote an assignment of the variables Xj for j ̸∈ J : that is,

φ : {0, . . . , n+ k − 2} \ J → F2,

and let G|φ denote the conditional random variable where these variables Xj for j ̸∈ J have
been fixed to Xj = φ(j). (But the Xj for j ∈ J are still random).

Claim 2. Fix any such φ and any y ∈ Fn2 . We claim that there is exactly one realization
ψ : J → F2 so that

G|φ,ψx = y.

6



, aka ∑
i∈I

G|φ,ψ[:, i] = y. (1)

Proof. To see this, consider trying to solve (1) for the assignment ψ : J → F2, going variable-
by-variable, where the variables in J are ordered from top-to-bottom of column G[:, i∗]. The
first variable, in the spot G[0, i∗], is determined by (1), because the variables in G[0, i∗ +1 :]
are already fixed by φ; this follows from the Toeplitz structure of G, which implies that
G[0, i∗ + 1 :] ∩ J = ∅.
Next, the second variable, in the spot G[1, i∗], was free (because we hadn’t yet encountered
it, but is now fixed by (1), by the same logic; there are no free variables in any of relevant
positions in row 1.
We can continue in this way to uniquely determine the assignment ψ.

Now, the statement in this part follows from the claim. Indeed, for any fixed y, let’s count
the number of instantiations of G so that Gx = y. By the claim, this is precisely the number
of ways to assign boolean variables to a set of size (n + k − 1) − n = k − 1, which is 2k−1.
Thus, when G is drawn from the distribution described above, the probability of obtaining
any fixed y is the number of ways to obtain y, divided by the number of instantiations of G,
which is

P {Gx = y} =
2k−1

2n+k−1
=

1

2n
,

and this proves this part.

(d) Show that (i), (ii), and (iii) are satisfied by D.

Solution

(i) The number of random bits we need to draw G ∼ D is O(n), since we just need to pick
bits for the first row and first column of G.

(ii) To see that the matrix is full-rank with high probability, we can use the previous part. If
G is not full-rank, then there is some kernel vector x ̸= 0 so that Gx = 0. For any fixed
nonzero x,

P {Gx = 0} = 2−n

by the previous part. Thus, by a union bound over all 2k such x,

Pr[∃x ̸= 0, Gx = 0] ≤ 2k−n

which is tiny, way smaller than 1/3.

(iii) The fact that G has good distance with good probability follows exactly as the proof of
the Gilbert-Varshamov bound from the videos/notes (Class 3?). Since Gx is uniform for
all x, the probability that wt(Gx) < δn is at most

P {wt(Gx) < δn} ≤ 2n(H2(δ)−1),

and so by a union bound over all 2k possible x’s, the probability that any codeword in
the code C with generator matrix G is at most

P {dist(C) < δn} ≤ 2k2n(H2(δ)−1),

and so if k < n(1−H2(δ)− ε) for any ε > 0, this probability is less than 1/3.

7


