Class 7 Exercises

CS250/EE387, Winter 2025

1. What is (approximately) the rate of the best explicit binary code that we know exists with distance
1/4? Compare this to (approximately) the rate of the best non-explicit binary code that we know
exists with distance 1/4.

If it helps, here is a plot of the function ¢(r) =r - (1 — %):

r(1-0.25/Hinv(1-r))

0.02 4

0.015 A

0.005 1

And here is a plot of the binary entropy function:

H(x)

14
0.8
0.6
0.4

0.2 1

Solution
The best explicit binary code that we know of lies on the Zyablov bound, which is conveniently
R = max, ¢(r). Eyeballing the plot of ¢(r), it looks like this is about 0.02 or a bit bigger.

The best non-explicit binary code that we know of lies on the GV bound, or R = 1— H(J). Again
eyeballing the plot of H(x), we see that H(1/4) ~ 0.8, so 1 — H(1/4) =~ 0.2. So this is quite a bit
bigger than the Zyablov bound.

2. With the Zyablov bound, we saw (finally) a construction of an “explicit” asymptotically good bi-
nary code using concatenated codes. However, the definition of “explicit” may not have been super-
satisfying. In this exercise we’ll see a construction with a more satisfying definition of “explicit.”

(a) Explain why the construction from the videos might not be super satisfying in terms of explicitness.

(b)

(Recall that “explicit” meant that “there exists a polynomial-time algorithm to find it.” What
could we hope for instead?)

Solution

Our definition still involved exhaustive search for the generator matrix of a good inner code.
A more satisfying definition (sometimes called “strongly explicit”) might be for a description
that efficiently tells us a single entry of this matrix, say in time polylog(n).

For example, Reed-Solomon codes are “strongly explicit”, because I can tell you that the 4, j

entry of the generator matrix is o] really quickly. (Perhaps I need to take O(logn) time to

compute o).

Fix a parameter k. Let Q = 2*. We can identify the finite field Fg with the vector space Fk.
These aren’t the same thing, but it turns out that they have the same additive structure. That
is, there is some map ¢ : F§ — F(so that

p(0)=0 and @(x+y)=w(x)+¢(y) Vxy€F5.

For a € Fg, with a # 0, consider the linear code C, C F2* of dimension k and length 2k over Fy
given by the encoding map

x = x 09" p(x) - a),
where o denotes concatenation.
There is no question for this part, just make sure you understand the construction. Notice that
there are 2% — 1 different codes C,, that you can create like this.

Let € > 0, and let n = 272¢%. Show that at least a 1 — 7 fraction of the a’s in Fy have
dist(Co) > Hy '(1/2 — ¢).

Hint. Consider a fixed nonzero y € F2¥ with weight less than 2k - Hy *(1/2 —). How many such
vectors y are there? How many different codes C, can each vector y lie in?

Solution

First, observe that any nonzero y € F2* can lie in at most one C,. Indeed, suppose that
y = (x,ax) = (x/, fx’). Then, since y is nonzero, we must have x nonzero, hence x = x’ # 0,
and thus ax = Ox, which implies that « = 8. (Above, we are abusing notation and using
ax to mean ap(x)).

Now, let’s count the number of nonzero y’s with weight less than p := H, *(1/2 —). There

are at most
Voly(p, 2k) — 1 < 22kH2(p) _ 1 — 92k(1/2=¢) _ 1 — oky _ 1

such vectors (where the minus 1 is just discounting the all-zero vector). Thus, at most 2¥n—1

values of v can have dist(C,,) < p. Therefore, the fraction of “good” C,’s is

2kp — 1

1—
2k —1

217777

as desired.

(Note: Above I have been a bit pedantic to make sure that removing the all-zero vector is
okay with the desired inequality. But even if it weren’t, it would be a negligable difference,
so it’s fine to ignore it for the answer to this exercise).

(d) Let Q = 2* as before. Consider the code C (called the Justesen code) formed as follows:
o Let RS be a Reed-Solomon code over Fg with length N = @ — 1, evaluation points Fg \ {0},
and rate R. Thus, each symbol of RS is associated with an element o € Fg \ {0}.
o For each o € Fg \ {0}, let C, be as in the previous part.
e Consider the “concenated-like” code where the inner code is different for each symbol: we
concatenate the a’th symbol of a codeword in RS with the inner code C,.

Show that the rate of this code is at least R/2, and that the distance is at least (1 — R —17) -
H;'(1/2 —¢).

Solution

To see the rate, notice that there are Q*N = 2FEN codewords, and that the length (in bits)
of the output is N - 2k. So the rate is

logy (@Q")/(2NK) = (kRN)/(2NK) = &.

For the distance, observe that this code is Fa-linear, so it suffices to show that any nonzero
codeword has relative weight at least (1 — R —) - Hy *(1/2 — ¢). First, any nonzero RS
codeword has weight at least (1 — R)N, by the distance of RS codes. At most nN of the
symbols are concatenated with a “bad” inner code, i.e., one that has distance less than
H;'(1/2 —¢). Thus, at least (1 — R —)N of the inner codewords have weight at least
H;'(1/2 — ¢€) - 2k, so any nonzero codeword has weight at least

(1-R-n)H;'(1/2 —¢) - 2Nk,

which is what we wanted to show.

(e) Does the Justesen code meet your definition of “satisfyingly explicit” from part (a)? Why or why
not?
Note: If you haven’t seen the correspondence between For and F5 (as per the map ¢ above)
before, it may be tricky to answer this question precisely. In that case, just try to think about
whether it seems plausible and then move on.

Solution

It meets my definition. The generator matrix G € is given by Gi - G5, where

Go € FEN*FEN represents the generator matrix for the RS code and G € Fa*N*AN does the
concatenation.

In more detail, G2 is the block matrix where each symbol 3 € Fg of the RS code’s generator
matrix in Fg *BN s replaced by a k x k binary matrix that represents multiplication by 3
in IFIQ“

The matrix G is block-diagonal, and the 2k x k block corresponding to a € Fq is again
a block matrix where the top part is the identity and the bottom part is the k x k& matrix

F2kN>< Rkn
q

representation of a.
Thus, G =G -Gy € ngNXkRN is a block matrix consisting of 2k x k blocks, and the block

corresponding to a € Fg and ¢ € [RN] is given by

I Mo
|)= |-
M, M

where M, €]13‘]2C *F i the matrix that represents multiplication by o. To compute this, we
just need to be able to compute powers a’t! and then to turn it into binary. Both of these
can be done in time poly(k), and k is logarithmic in the block length of the code.

(Note: Since we haven’t gone into detail about how Fg works as a vector space over Fy in
this class, you didn’t need to write out exactly how to compute each entry of the generator
matrix, just convince yourself that it’s plausible).

(f) Does this construction give you an asymptotically good code of distance, say, 1/4 (c.f. Exercise
1)? How about for distance 1/207 How does this compare to the Zyablov/GV bound? (Better or
worse?) (Note: for distance 1/20, the Zyablov bound is about 0.27. The binary entropy of 1/20
is about 0.29).

Hint. Since the question is about asymptotics, you can set €, = 0 in your answer to (d). (The
reason is that we can choose € > 0 to be arbitrarily small; and then suppose that k is big enough
compared to 1/e that n = 272%¢ is also arbitrarily small.)

Solution

Letting R* be the rate of the final code, we see that the distance § can approach
§=(1—-R)H;'(1/2) = (1 —2R*)H; '(1/2).
(if we let €,7 — 0). Solving for R* in terms of §, we get

.1 5

2 2H;'(1/2)

Looking at the plot from Exercise 1, H{1(1/2) ~ 0.1, so the best rate we can get with this
construction and distance ¢ is

L1) 1
R N§_2xo.1_§_55'

For § = 1/4, this is 1/2 — 5/4 < 0, so we don’t get anything useful here. Since we did get
something useful for § = 1/4 from the Zyablov bound, this guarantee is substantially worse
than the Zyablov bound. However, if ¢ is small enough, say § = 1/20, we'd get

. 1 5 5
R' % 5 = o5 = 55 = 0.25,

which at least gives us a satisfyingly explicit asymptotically good code. It’s a bit worse than
the Zyablov bound (0.27) and definitely not as good as the GV bound (0.71), but not bad!

(g) (Bonus). How would you modify the construction above to achieve a better trade-off? Can you
match the Zyablov bound this way?

Solution

(Sketch). One way to modify it is to improve the rate of the inner code by keeping just the
first s bits of ™1 (p(x)- @) in the definition of C,. It turns out that most codes in this family
have distance at least H~1(s/(s + k) — €). By doing this, we can get a final code with rate

*

0
= B I [
1/2<TH<1?§H2(6)T (H-1(1 - 7")) ’

which looks a lot like the Zyablov bound except for the extra constraint on r. It turns out
that this coincides with the Zyablov bound for rates larger than 1/3 or so.

(h) (Bonus 2). Does the algorithm that we saw for decoding concatenated codes work for our
Justesen code?

Solution

Essentially, yes. In the analysis, we just need to ignore the n fraction of inner codes that
don’t have good distance, and this doesn’t really affect anything.

Stuff below here is super-bonus, we definitely won’t get to it in class. The lecture notes
promised that “in class” we’d see a construction of a code near the GV bound in time 20 (rather
than 20("2))...but then we decided that the above would be more fun. If you want to know how to
construct such a code, work through the steps below!

. (Deterministic codes on the GV bound in time 2°(").) In the lecture videos/notes, we said that it
is open (in most parameter regimes) to find an efficient deterministic construction of an asymptotically
good code near the GV bound, even though “most” linear codes lie close to this bound.

(0) Fix some constant § and let € > 0. Describe a straightforward algorithm that finds an asymptot-
ically good code of length n near the GV bound (that is, with dimension at least (1 — H(d) —e)n
and distance at least ¢) in time 20("*) In the big-Oh notation, we treat ¢, as constants and n
as growing.

Solution

We exhaust over all generator matrices G € FE*" where k = n(1— H(8)—¢). The GV bound tells
us that at least one such matrix has good distance. To test distance, we look at all 2¥ codewords
and see what the lowest non-zero weight is. This all takes time

O(2kn . 2k . n) _ O(2kn+k+log2(n)) _ 20(712).

However, we can do a little bit better than 20(n*) (and this may be useful soon for using concatenated
codes to get an explicit construction of an asymptotically good code...).

In this exercise we’ll prove the following theorem:
Theorem 1. There is a deterministic algorithm that finds a binary linear code C C F§ with rate

R=1— Hy(8) — o(1) in time 20,

Fix constants £,0 > 0. Suppose that k& > 1 — Ho(d) — e. In the following, we will come up with a
distribution D on matrices G € F5** so that

(i) A matrix G ~ D can be sampled using O(n) bits of randomness.
(ii) A matrix G ~ D is full rank with probability at least 2/3.

(iii) Let C C F% be a (random) code with generator matrix G ~ D; then C has distance at least 6 with
probability at least 2/3.

(a) Explain why coming up with such a distribution D would prove the theorem.

Solution

Suppose that there is such a D, and say we sample from it via a function G : 0,1" — IF;LXI“, SO
that G(w) is the matrix that we’d draw with random seed w. By (i), we may take r = O(n).
By (ii) and (iii) and a union bound, with probability at least 1/3 G is both full rank and
corresponds to a code with distance at least §. In particular, there exists some w so that
G(w) has these properties. Thus, we may enumerate over all possible seeds w in time 20(n)
and we will encounter such a G. To find such a matrix, we need to test each G(w): this takes
time poly(n) (to check the rank) plus time 2°®*) (to check the distance; we just enumerate
over all codewords and check their weight). So the total time is 20("),

Once we have found such a G, it is the generator matrix for a code with dimension & (using
(ii)) and distance at least ¢ (using (iii)), as desired.

(b) Define a distribution D on matrices G by letting G be a random Toeplitz matriz. That is, G is of

the form
Xo X1 - Xpa
X Xo X4
G = Xpr1 X Xo
X7L+k—2
where Xg, ..., X;+k—2 are i.i.d. uniform random variables in Fs.

(There is no question here, just understand the distribution).

Solution

Understood!

(c) Show that, for any x € F§, Gz is uniformly distributed when G ~ D.

Solution
Fix an x € F%, and suppose that = has support I C {0,...,k — 1} and let i* be the smallest
element of I. Let J C {0,...,k+n — 2} be
J ={j : X; appears in G[;,i"]}.
Let ¢ denote an assignment of the variables X; for j ¢ J: that is,

w:{0,...,n+k—2}\J— Fy,

and let G|, denote the conditional random variable where these variables X; for j & J have
been fixed to X; = ¢(j). (But the X; for j € J are still random).

Claim 2. Fix any such ¢ and any y € Fy. We claim that there is exactly one realization
¥ J — Fy so that
G|¢7¢x =Y.

, aka

S Clouliil = v. 1)

iel
Proof. To see this, consider trying to solve (1) for the assignment ¢ : J — Fa, going variable-
by-variable, where the variables in J are ordered from top-to-bottom of column G[:, ¢*]. The
first variable, in the spot GJ0,4*], is determined by (1), because the variables in G[0,7* + 1 :]
are already fixed by ¢; this follows from the Toeplitz structure of G, which implies that
G0, +1:]nJ =0.
Next, the second variable, in the spot G[1,i*], was free (because we hadn’t yet encountered
it, but is now fixed by (1), by the same logic; there are no free variables in any of relevant
positions in row 1.
We can continue in this way to uniquely determine the assignment). O
Now, the statement in this part follows from the claim. Indeed, for any fixed ¥, let’s count
the number of instantiations of G so that Gx = y. By the claim, this is precisely the number
of ways to assign boolean variables to a set of size (n +k — 1) —n = k — 1, which is 2¢1.
Thus, when G is drawn from the distribution described above, the probability of obtaining
any fixed y is the number of ways to obtain y, divided by the number of instantiations of G,
which is

2k—1 1

and this proves this part.

Show that (i), (ii), and (iii) are satisfied by D.

Solution

(i) The number of random bits we need to draw G ~ D is O(n), since we just need to pick
bits for the first row and first column of G.

(ii) To see that the matrix is full-rank with high probability, we can use the previous part. If
G is not full-rank, then there is some kernel vector = # 0 so that Gz = 0. For any fixed
nonzero x,

P{Gzx=0}=2""
by the previous part. Thus, by a union bound over all 2* such z,
Pr[3z #0,Gz = 0] < 2k~

which is tiny, way smaller than 1/3.

(iii) The fact that G has good distance with good probability follows exactly as the proof of
the Gilbert-Varshamov bound from the videos/notes (Class 37). Since Gz is uniform for
all z, the probability that wt(Gz) < dn is at most

P {wt(G) < dn} < 272D,

and so by a union bound over all 2¢ possible z’s, the probability that any codeword in
the code C with generator matrix G is at most

P {dist(C) < on} < 2kon(H200)-1)

and so if k£ < n(1 — Hz(0) — ¢€) for any € > 0, this probability is less than 1/3.

