Class 8 Exercises

CS250/EE387, Winter 2025

1. In the lecture videos/notes, we saw the “Kautz-Singleton” construction for group testing matrices, and
we instantiated it using RS codes. Say that N = 300 and d = 2 and you want to build a RS-based
Kautz-Singleton group testing matrix. How will you choose parameters for ¢, k7 What will your final
group testing matrix look like? How many tests does it use? (Note: you may need to come up with
a group testing matrix for N’ > N items, and then drop some items, since 300 is not a power of a
prime).

Solution

Following the Note, let’s take N’ = 343 = 73. Then we can choose ¢ = 7 and k = 3, so that
N’ = ¢*. Then we’ll just drop 43 of the items to get 300.

Following the construction from the notes: In the lecture notes, we chose the full-length RS
code, that is, with n = ¢. In this case, the number of tests is ¢2, which is 49. We need to check
that dist(C) > n (432) = 7/2 for the matrix to be d-disjunct. Fortunately, dist(C) = ¢ —k+1 =
7—3+1=>5, which is indeed larger than 7/2 = 3.5. So the final matrix is 49 x 300, where each
of the 300 columns are associated with a polynomial of degree at most 2 over Fr, and each of the
rows are associated with a pair of numbers (i, j) for 4,5 € {0,1,...,6}. The entry indexed by (i, j)
and fis 1if f(i) =j mod 7 and 0 otherwise.

Slightly better by taking a non-full-length RS code: Say we choose an RS code over F; of
length 5. Then we’d need to check that dist(C) > n (1) = 5/2 = 2.5. Fortunately, the distance
isn—k+1=5—3+1=3, which is indeed larger than 2.5. This approach leads to 35 tests.
Can you do better by looking at different-length RS codes over a different field? Formally, we’re
looking for ¢, k so that ¢® > 300, and so that (2k — 1) - ¢ is as small as possible. (That’s because
we need dist(C) > n (¢2) akan —k+1 > n/2 aka n > 2k — 2, so we can choose n = 2k — 1, and
then the number of tests is n- ¢ = (2k — 1) - ¢, and we want to minimize that.) I get 35 tests in a
different way by setting k = 4,¢ = 5, but I haven’t optimized among all possibilities for g...

2. In this problem we will adapt the Kautz-Singleton construction from the lecture videos/notes to deal
with false negatives and false positives. The set-up is the same: we have N items, at most d of which
are positive, and we wish to make T tests. However, now there may be up to E false negatives and F
false positives. (Here, a “false positive” is a test that does not contain any positive items but comes up
positive anyway; a “false negative” is a test that does contain a positive item but comes up negative).

(a) Come up with a condition that is similar to d-disjunctness and prove a statement like “if a pooling
matrix ® satisfies [your condition], then ® can identify up to d positive items, even with up to E
false positives and F false negatives. Assume that the false negatives/positives are worst-case.

Solution

A natural condition is the following:
Definition 1. A matriz ® € {0,1}7*N is (d, E)-disjunct if for any set A C [N] of size d,



and any other i € [N]\ A, there are at least 2E + 1 wvalues of j € [T] so that ®;, = 1 and
@, =0 forallr € A.
Now we’ll prove that this definition is enough to identify up to d positive items, even with E
false positives/negatives. As in the lecture videos/notes, we’ll do a proof by algorithm. Here
is the algorithm:
e For i € [N]:

— If all but E of i’s tests come up positive, declare that ¢ is positive.

— Otherwise, declare that 7 is negative.
Now we prove that this algorithm works. Suppose that i is indeed positive. Then all of i’s
tests should come up positive, but there might be F false negatives, so all but E tests will
come up positive, and we will say that ¢ is positive. Now suppose that ¢ were negative, and
A is the set of true positives. Then by the disjunctness requirement, there are at least 2E + 1
tests that ¢ is involved in that should come up negative. At most E of these can come up
positive due to the false positives. So there are still £ + 1 tests that ¢ is involved in that
come up negative. Therefore we do not declare i to be positive.

(b) Adapt the Kautz-Singleton argument to show that RS-code-based group testing schemes can
handle false positives/negatives. How do the parameters depend on E? (Note: you don’t need
to change the construction, just the parameters). Your final answer should be of the form “the
number of tests T' needs to be at least [some function of N, d, and EJ].”

Solution

Copying the K-S argument, let C' be an RS code with dimension & and length n = g. Consider
the matrix ® € {0,1}7* where N = ¢* items, and T' = ¢*. Thus, we have k = log,(N) and
q=T.

Let A be any set and let ¢ be any other item. The ¢’th column of ® can agree with any other
in at most k — 1 places, by the distance of the RS code. Thus, provided that ¢ > dk+2F +1,
there are at least 2F + 1 evaluation points of the RS code where codeword i does not agree
with any of the codewords in A, which translates to there being at least 2F + 1 elements j of
[T] so that ®;; = 1 and ®;, = 0 for all » € A. (I am omitting some details here, it is exactly
the same as the argument in the lecture notes). Thus, if ¢ > d(k — 1) + 2E + 1, our testing
matrix is (d, E)-disjunct.

Working out the parameters, we need

VT =q>d(k—1)+2E +1=dlog,(N) +2E + 1

" T > (d(log,(N) — 1) + 2E + 1)°.

As in class, we have g > d, so it suffices to take
T > (d(logy(N) — 1) + 2E + 1)2.

Notice that if E' is small compared to dlog,(N), this doesn’t asymptotically affect the answer
that we got before with no false positives/negatives. However, if E > dlog,(N), then the
T > E? term starts to dominate.

3. (Bonus — if you finish early, here’s something else to work on!) Can you come up with a
way to set parameters in the Kautz-Singleton construction to get good results when, say, d = N/100?
(Notice that the bound of d?log N isn’t great in this parameter regime...) What’s the best group
testing scheme you can come up with in this setting? (Don’t worry about false postives/negatives).
What’s a natural lower bound on the number of tests you would need?



Solution

This one’s a bit open—ended The KS construction doesn’t work well. A natural lower bound is
log (Zj) ~ log((eN/d)?) = 100 -1og(100 - €) bits. I'm actually not sure what the best construction
is here!

4. (Bonus — if you finish early, here’s yet another thing to work on!) Say that a group testing

matrix ® € {0, 1}**V is “d-good” if it can identify up to d defective items. More precisely, for d < N,
® € {0,1}*¥ is d-good iff the map from sets T' C [N] with |T'| < d to outcomes in {0, 1} given by

T+ (\/ @17i, \/ @271',..., \/ (I)t,i>

ieT ieT ieT
is injective.
In class we proved that if ® € {0, 1}**¥ is d-disjunct, then it is d-good.
(a) Show that for d = 2, there are matrices that are d-good but not d-disjunct. (It’s okay if you show
this by giving a somewhat silly example).
(b) Show that any d-good matrix is (d — 1)-disjunct.

(¢) Can you come up with a family of d-good matrices that are not d-disjunct for general d (and
which isn’t a somewhat silly example)?

Solution

(a) Consider

O~ O
—_ 0 = O
—_o O = =

0

This matrix is 2-good, since the possible outcomes are:

— (0,0,0,0,0)
(1,0, 0) —(1,0,1,0,0)
(0,1,0) — (0,1,0,1,1)
(0,0,1) — (1,1,0,0,1)
(1,1,0) — (1,1,1,0,0)
(1,0,1) — (1,1,1,0,1)
(0,1,1) — (1,1,0,1,1)

and all of these outcomes are different. However, it’s not 2-disjunct, since the third column
is covered by the union of the first two. This is a bit silly since it’s tall and skinny. If you
want to make this example less silly, you can do that: if the matrix above is called M, then
consider the block matrix

M 0

v 3

where @ is a large 2-disjunct matrix. Then you’ll get a matrix that is short and fat and still
serves as a counter-example.




(b) Suppose that ® is d good. Let T C [N] be any set of size at most d — 1, and let ¢ ¢ T
be any other index. Then by the definition of good, the outcomes of the tests for 7" and
for T'U {4} are distinct. But this means that there’s some index j so that \/,c, ®;, = 0
and VeeTu{z‘} ®;, = 1, which means that ®;; = 1 and ®;, = 0 for all £ € T. Thus, ® is

(d — 1)-disjunct.




