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atleast in the lecture notes
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AGENDA

d Logistics
about ANTS !

1505387-km
e CoursePitch What do ants have to do

f Basic problem in coding theory
This isjust for fun t

Of formal definitions TODAY'S ANT FACT :

f Rate vs. Distance : Hamming bound Ants are found on

every
continent

except Antarctic!

DLOGISTICS

· COURSE ELEMENTS

·Pre-recorded videos
,

with
corresponding Lecture notes

· In-classexercises
,

meant to
practice,

reinforce
,

and extend material in the videos/notes.

· 3 HW assignments
/

· final project
· CLASS MEETINGS

·This is a "flipped"class - Watchthevideos before class and come to class ready to
engage

!

SEE COURSE WEBSITE FOR MORE DETAILS ! Also for the schedule
,

materials
,

assignments, etc.

e COURSEPITCH

"ALGEBRATE
OR CORRECTING CODES

"

- communication

-

storage

I
.
Error correcting codes are a fundamental tool for > -

complexitytheory

#
I

S-

algorithm design
I

. Algebraic techniques are a fundamental tool for designing ECCs· cryptography
-

pseudorandomness

Basically ,
this course is about the following fact

: - etc...

LOW-DEGREE POLYNOMIALS

DON'T HAVE TOO MANY ROOTS.

As we will see
,
this fact is stupidly useful throughout C6 and

E



[CoursePitch ctd.]

Inthis class we will discussi

what

X
· Basics of Error Correcting Codes : combinatorial bounds + existentialresults

arecodes?
· Some basic abstract

algebra [finite fields- nothingfuncy

Howdo TheClassicpolynomialcodes:ReedSolomonand
Reed.Mlea

Multiplicity Codes
,

Folded RS codes

How do
· Algorithms for manipulating these codes in various settings

Unique decoding, list decoding ,

local
decoding

hydo
· Applicationa

Inthis class we will NOT discuss :

·

Niltygritty details of any one application (this is a THEORY course)
· LDPC codes

,

Turbocodes
,
Raptor Codes

,

Fountain Codes
,

...

[See Montanan's course EE388 for all that good stuff. I

Athe end of this course :

YOU SHOULD HAVE THE TOOLS TO USE

ERROR-CORRECTING CODES (andthealgebraictools behind them)
IN YOUR OWN RESEARCH/LIFE.

That means :

·

Enough familiarity with terminology ,

constructions
, algorithms,

and notions of decoding to pick up a research
paper

and understand it.

·

Exposure to lots of examples of how ECCs can be

useful in a wide variety of settings
.



O3 TheBASIC PROBLEM in CODING THEORY

The picture looks like this :

CODEWORD C of length n

-

1
-ENCODE

MESSAGE X

*
SOMETHING BAD HAPPENS

of length R

i-1

-

CORRUPTED CODEWORDY

maybe some entries

got
deleted

, changed,
etc.

The goal :

W,
FIND (SOMETHINGABOUT) X
.

EXAMPLE
: COMMUNICATION

⑳
1

.
Alicehas

some cAliceencolaas

3. Alice sends

Ci
to

say
???

Message X c to Bob over

she would like a noisy channel; Yto send to Bob.
ALICE

Bob hears

BOB



EXAMPLE
: STORAGE

#
1. Suppose X is a file .

2. Encodex as a codeword c.

3. c is stored; say
on

aCDbut somethinga
or in a RAID array

·

5
.
I still want x !

IKINGS
WE CARE ABOUT :

dWe should be able to handle the SOMETHING BAD
,
whateverthat means.

e We should be able to recoverWHATWEWANTTO KNOW aboutX.

f We want to MINIMIZE OVERHEAD
: In should be as as possible.

big
& Wewant to to all this EFFICIENTLY

.

MESTON What are the trade-offs betweenD-$ ?

It depends on how we model
things

:

· What is the SOMETHINGBAD ?

· What

exactly
do weWANT TOKNOW?

· What counts as EFFICIENT? What kind of access do wehave to 2 ?

Todaywe'll look at one
way

of
answering

these
questions.

There are

many legit ways, and we will see more throughoutthequarter
.



d FORMAL DEFINITIONS

Let [ be
any
finite set and let us o be an integer.

Sometimes I will sayrengthinstead

"block

length .

"

IMPLES.
C = SHELLOWORLD ,

BRUNCHTIME
, ALLTHETIME

is a code of block length 10 over[ = [A ,By -.
X

.
Y

,

z3
.

AMPLEZ 10
,
0

,

0
,

0

±
This is not

a very interesting

10
,

1
,

0
,

does capturethe

vastmajority

S
10

,
0

,

1
,

iron
com

code
, although it

2 =
10

,
1

,
1

,
0

of
my thoughts.

11
,
0 ,

0
, of lengthPover

11
,

0
,

1
,
0

250, 13. .

"This second(1 ,
1

,
0

, 0
If [= 50

, 13
,

we

say exampleis

(1 ,
1

,
1

,
1) C is a BINARY CODE.

a bit more

interesting

.

What does this have to do with the picture
from before ? [his one 1)

CODEWORD C of length n

ConsiderTOMEMNGD
ENC :

message
X codewordC

-

For example, ENC(10,
1
, 1)) = 10

,
1

,
1
,

0)
. CORRUPTEDCODEWORDdet

Then C = Im(ENC)
.

That is
,
C is the setof all codewords that could

be obtained
using

this

encoding map.



The second example can actually
be used to fix bad stuff.

Suppose you see :

o
XThe SOMETHING BAD that happened

What is the missing bit
?

obscuredthis entry
. &

This is calledan EASURE

It must be a 1
,
since Ot

+
O

= 1 mod 2
.

We knowwhich bit

goterased
,

but we

don't know what its

Suppose instead you see :
original valuewas.

00 0 1

Then we know SOMETHING went
wrong

(at least onebit was flipped) but
we are not surewhat it was &This is called an ERROR.

One bit
may

havebeen
CORRECT one ERASURE changed, but we don't

We
say
that the code in EXAMPLEZ can S DETECT ERROR

know which one.

But itcenot CORRECToneERROR Let's see a code that can

EXAMPLE3 .

Consider the

encoding map
ENC: 50,

13"+ 30
,
13 allmod

Y

ENC : (X,
,

Xc
,
Xs

,
Xp)1> (X,

,
Xz

,

X3
,

Xp
,
Xz+ Xz +Xp

,
X

,
+X3+Xp ,

X, +x2+x4)

Let C = Im(ENC)
.

So C = 50
,

13T aka C is a BINARY CODE of LENGTH7

ANOTHER WAY to VISUALIZE this CODE :

C =x
,
+Xz+

X4
= Put the

message XI ,
Xz

,
X3

,
X4

tell
you
how to fill in the rest.

·
in themiddle

,
and then thecircles



MVZZLE: I took some ceC and flipped at most one bit
,
to obtain :

=2 = (0 + 110 0)

What is c ?

-

ALTERNATIVE LOOK 2 =

0
8

at thePUZZLE :

i = 1

&
-

-

T

BUTION
:&± =sum to 0

.

Here
,

both the
green

circle and
-

#codeword again:

And
,
> is the ONLY solution because

flipping any
other bit would mess

up
other circles·



Hooray ! That works. But it seems pretty
ad hoc.

Forthe restof this lectureand some of nextone
,
we'll
try

to introduce some formalism to makethis solution

seem less ad hoc . At the same timewe will flesh out what

we care about for ECCs

-

Southam B
Whatevethat

messa

- thesethings .
f We want to MINIMIZE OVERHEAD : In should be as small as possible .

first some definitions :
& We want to to all this EFFICIENTLY

.

p

i m In particular,

7
Notice:

this is a metic.

The RELATIVE HAMMING DISTANCE between X
,ye[" is

it obeys the

triangleinequality.

f(x
,y)

:=[= 1[X : +
y ;]=xy)

f. The MINIMUM DISTANCE of a code 222" is

imin Alc,
c)

C+C SometimesI'lljust
in C call this "distance

.

"

M The code in EXAMPLE3 has minimum distance 3.



If the CLAIM is true
,
it explains why that code can correct oneerror

:

at least3

s

%
Manany

otherceC.

CLAIMER
=011010

at least 2

I will frequently draw

pictures as though Hamming
distance is Euclidean

distance
,
and 50

,
13" is IR2

Indeed
,
if D(c , c) >3 CceC,

then

D(Ec) = 1 => Dack2 Feel other than c.

by the triangle inequality. Thus ,
the "correct" codeword ceC is

uniquely defined by
"the orethat is closestfo 2 .

"

To
prove

the CLAIM :

·

You can probably convince yourselfby staring
at&Ointhe same

way
we convinced

ourselves we could always
fix one error).

· But we'll see amuch less adhoc
way

to

establish distance after we build
up
somemachinery for LINEAR CODES

in Lecture I
,

so let's put it aside for now.

The POINT of this dicussion was that :

MINIMUMDISTANCE is a

reasonablePOm



That is
,

· In EXAMPLE 2
,

the code had minimum distance 2 (checkthis! ) and could CORRECT 1 ERASURE

and DETECT 1 ERROR.

· In EXAMPLE 3
,
the code had minimum distance 3

,
and could CORRECT 1 ERROR

More generally ,
a code with distance d can :

· correct =d-1 erasures

[ · detect =-1 errors

[
·

correct = () errors

³
For thesetwo

,
the (inefficient) algorithm

is : For this one
,
the(ineficient) alg. is :

"If
you
see?
,

return ceC that's closest to ?
"

"If EXC, say
that

something
is

wrong
.

"

The
picture

looks like this :

⑩M
at cudewards are

disjoint
&

These hamming balls

of radius d-1 centered

at codewords are not

disjoint, but they
each contain exactly

one codeword.

Some othercodeward C'

· If c is the "correct" codeword and l errors are introduced
,

we
may

end
up

with
.

Since all the

&balls
are disjoind,

we can find c from

· However
,
if d-1 errors are introduced

,
we
may

end
up
with 22

.
Now it's possible

thata came from cor that it came from c' ; we can't tell. However
,

sinceeacha
ball doesn't contain

any
codeword other than its center

,
we can tell that something

went wrong

.



To I from earlier)

Remmingin
the

first two thing
a

dWe shouldbe able to handlethe SOMETHING BAD
,

whateverthat means.

e We should be able to recover WHAT WE WANTTO KNOW about X.

f We want to MINIMIZE OVERHEAD: In should be as small as possible.

& Wewant to to all this EFFICIENTLY.

If we want :

D We should be able to handle (E) WORST-CASE ERRORS or d-1 WORST-CASE ERASURES

e Wewant to recover ALLOFX laka correct the errors or erasures)

handle worcase errors/erasures ?
"

For example, if my
code has

=
minimum distance d

,
and I have two codewords:

c = (00000000000000) c 9913

c = (11110000000000) = 50, 13

i -

Then if an adversary chooses to flip the first two bits
,

we'd be confused.

But instead
say

two bits

get flippe
bat random. The probability we get&

confused is
which might be quite

small

The random-error model (also called the "Shannonmodel" or "Stochasticmodel" (

is natural and important! Wewill discuss it a little bit in this class. However,

most of our focus will be in the worst-casemodel (also called the "Hamming
model" or



Moving on to B
,

what do we mean by "Overhead"?

I

-TheMESSAGE/SometimescalledDIMENSION of aca
This definition makes sense with our operational understanding

:

Increase
of lengthMovers)>

Lodeword11h possibilities

So 11= 121 aka h = logize .

±Muttwockeghnoveanalphebla
So if R is close to 1

,
that's GOOD. Not much overhead.

And if R is close to O
,
that's BAD

.

Lotsof overhead.

.

A code with distanced
, message length

k
,

block length n
,

Iema alphabet & is called a (n,
, d) cod.

ON.WHAT IS THE BEST TRADE-OFF BETWEEN RATE AND DISTANCES
This

question is still open forbinary codes !

But there's lots we do know.



d RATEVs .
DISTANCE : HAMMING BOUND

What is the best trade-off between rate and distance we can hope for?

The HAMMING BOUND gives one bound on this
.

Letsreturn to the
picture we had before

,
with disjoint Hamming

also

d⑪l&
Ye

Ein
C

· We have 121 disjoint Hamming balls of radius() .
There can't be too

many
of them or they wouldn't all fit in &"

Tobe a bit more precise
:

-

Man
Notice that IBsn(X ,

el) does not depend on X. Notes:

· Sometimes Iwilldrop

Say that 1[1
=

g.
Then

the"E"" from the

Bin(X ,
e) notation

· Sometimes I willwrite

Volg(e,
n) = 1 + (2)(g-) + (2)(g- 1)2+ ... + (2)(g-1)2

Br(X ,e) if it's

*the elements
±

all the elements
±

all the elementsof[ more convenient to talkabout

of ["ofweight)
of ["ofweight2" of weighte. relativedistance.



So that means that if a codeC =" has distance d and messagelengthk, where Kl
=

g,

121 ·

Volg (() , n) = g
um

-

total volume in the
os

total volumein[

so taking logs of both
sides
,

log(e)
+ logg(Vog(L

#Cute=-Voll
This

is called the HAMMING BOUND

Back to EXAMPLE3 which was a (7
,
4

, 3)a code
S

-

*& q

· We have (*) =

1

· V(+ , 7) = 1 +-

#N= 1-

(8)
= 1-37 = 47

· And in fact= 4/7 ,
so in this case the Hamming bound is tight

!

Notes about this example :

· When the Hamming bound is tight , we say
the code is PERFECT.

· EXAMPLE3 (which isperfect) is a special caseof something
called a HAMMING CODE

·

You will explore this more in in-class exercises and on homework.



e RECAP Now weunderstand the first 3 of our desiderate:

IKINGS
WE CARE ABOUT :

dWe shouldbe able to handlethe SOMETHING BAD
,

whateverthat means.

THESETHREE
e We should be able to recover WHAT WE WANTTO KNOW about X.E
f We want to MINIMIZE OVERHEAD:In should be as large as possible.

& Wewant to to all this EFFICIENTLY.

That is
, (for now) ,

our goal is to design
codes 2

= ["
so that :

·

The DISTANCE of 2 is as largeas possible.

·

The RATE of C is as close to 1 as possible.

Even without the algorithmic considerations, understanding the trade-off between rate
and distance turns out to be a fuscinating combinatorial question

!

In fact, for binary
codes (121=2) ,

this question is STILL OPEN
!

(We saw that EXAMPLE 3 wasoptimal for n =7 and K = 4
,
but what about in general ? (

Nextime
,
we'll

give an
overview of abstract

algebra ,

and then give
some

more definitions that will further de-ad-hoc-ify . EXAMPLE 3.

That's it for today .

QUESTIONST PONDER :

O How would
you generalize

the codeinAMPLE3 to larger n
?

eWhat is the best bound
you

can come up
with on the rate of a code

C = 50
,

13 " with distance d ?


