
CS250/EE387 - LECTURE 11-GURUSINAMI-SUDAN

ALG .

ENDA TODAY'SANT FACT

g Recap There is a typeof fungus, foundin tropical

d Aside: How hard is decoding RScodes
? forests

,

which infects ants and turns them

e Sudan Algorithm
into "zombies

.

"

The ants are compelled

to climb 10 an appropriate height, bite

f Guruswami-Sudan Algorithm. Onto a leaf
,

and wait t die. When

they do
,

the fungus erupts from their

corpse and sends its spores down

gRECAP
.

10 infect more ants. Pretty gruesome
!

Last time
,

we saw LIST-DECODING :

· D

·

A

codeisStop
i Vy

,
The LIST-DECODING CAPACITY THM says

that there I codes that are

(p ,
"E) fist-decodable withoate R= -Hz(p) -E

g
for
P-1-4g .

· That's the same trade-off as for random errors!

· Moreover
,

noticethat
p

can
get

as big as 1-"g
.

Ifwe demand
unique

decoding,
the Plotkin bound

says
wecan'thope to do betterthan with RO.

P
NEXT QUESTON: How list-decodableare codeswe know and love

?IForexample, Reed-Solomon Cocks?



Last time we saw the JOHNSON Bound which
says
that codes with good distance

aredecently list-decodable.

· For RS codes
,

the Johnson bound
says

that an RS code of rate Rislist-decodable

up
to distance

p
= 1-1

.

· Notice that list-decoding capacity is
p

= Hg (A-R) 1-R for large g
So

p
= 1-1 is less

good than
it couldbe

d ASIDE : How hard is it to decoden RS codes?

not
o

a

questio... Opo

More precisely, given
we Eg" ,

find ceRSg(n , k) so that

5
.

w
,
C) is minimized.

How hard this depends a lot on the assumptions we can make about

min s(w
. c) .

For example, if JCs .
t. S(c

,W) **, then Welch-Berlekamp
CERS

will do this in
polynomial time. How about if f(c,W) is larger?

-11Fraction
oa !

E 1-F 1-R 1

Bound
,
thereare Definitelyexponentlyao

=poly(n)

edine I TODAY! Wewill see-

...
on

P
·withBodewards

any pintisran,,atim)

to findthe efficientlyw/leg)
how to find all these MoButh Forlarge enough:Missi

closest codeword ? Welch-Berlekamp = poly(n) codewords
whereGoingMDs (A tuste of this on HW ! (

orelseeficienta efficiently, and then
hard as discrete log .

c exists. we can search to find

theclosest.



e SUDAN ALGURITHM

The Sudan Alg is a
warmup

to the Guruswami-SuDAN alg ,

which will be able to eciently

list-decode RS codes
up

to the Johnson bound , P
= 1-V
.

⑫ BIVARIATEPOLYNOMIALS

A bivariate
polynomial Q(X .Y) #g [X ,

Y] is :

Q(X
,
Y) = [xij * "Y" ,

where
Ma =: dege(a)

i = 0
, ...,m my

= : degy (0)
j = 0

....,
m

=

Notice that we can also think aboutC as an element of (Fg[X]) [Y] :

Q(X
,Y) = [ Oity) · y

j = 0
... my

Lirecoefficientslive in Ag[X].

Polynomials in (Fg[X]) [Y] behave a lot like a "normal"

polynomial
in

FOR EXAMPLE : Consider Q(Y) = Y2-1
.

-

Th
0 ,

which implies that

(-1)(421Similarly ,
consider O(X.) = Y2-f(x)?

Then Q(X
,
f(X)) = 0

,

which implies that (X-f(x)Q(X ,Y

·

FeQiangTheSt
T Y ±

"divides
.

"

aka
,
Q(X

,Y) = (Y-f(x))· h(X
,Y)

"means"isidenticallyya forsomeheF[X]
.

IMoreover
,

wecanfindsuchs
efficiently,

andhe

e e



⑬ RECALL the BERLEKAMP-WELCH ALGORITAM :

Given
y

= (y1 , . . ., yn) EFg"
:

³RecallEwssupposed i

1

. Find low-degree polynomials E(X) , B(X) s.
t . Ekiloyi = B(xi) Vitten

2
.
Relum f(x) = B(x)/E(X)

We can recast this in terms of bivariatepolys
:

1
.
Find Q(X ,Y) (meantENY-B(X) st . Okiyi) = 0 fi = ,

, .. ,

2. Find a poly f(x) s .
t . Q(X

,
f(x)) = O

,

and relum f.

(Noticethat f(x)= B(X)/E(X) will work in the C we were supposed tofind) .

We'll use the same framework for SUDAN's ALGORITM for list-decoding
.

GiveGodFallpolynaniasfex
What t's can we handle? We'llsee later!

⑫ Finally ,

SUDAN's ALG
.

In this context
, Berlekamp-Welch is :

³
Whatexactlyshould this mean?

INTERPOLATION
1

.
Find a -DEGREE polynomial C(X 1Y) so that Qaiyi) =O FEbron

STEP

ROOT-FINDING 2
.
Factor Q(X

,Y) to find polynomials f(x) < . t .
((X

,
f(x)) = 0.

STEP

Relum all such f's.

· We can do STEP 1 as long as we have more variables (coefts of Q) than constraints.

· To make sure that STEP 2 is correct
,

we'll have to
argue

that whenever f(xil=y :
for > valuesofis

then Q(X
,
f(X)) = 0

.
The factthatthe list is small will follow from the fact that Q is low-dy.



This algorithm basically works, and is called SUDAN'S ALGORITHM.

#If
toZer

,
thenwe can solve the list-decoding problem

in

polynomial
time

.

Beforewe
prove

the THM
,

we can ask howgood
this is

(Hagreements between fand y) = t z

ElA(fy) =

n - t > n -2n

So thisworks
up

to radius
p==

1-2.

Remember that wewere shooting for 1- ,
so this isn't quite right-

butwe'll
get there

!

Nowwe'll
prove

theTHM
,
and finish specifyingthealg . alongtheway.

algorithm:

STEP1 (INTERPOLATION). Choose 1=

Find Q(X ,
Y) sit

. degy(Q) -1 and degy (0) -
> M/l
,

so that Qayi) =0 Fiz,
, ...

n.

I-
To do this

,
we need :

(#coeffs in Q) <
constraints

(

(+ 1) ofthese n of these

anb indeed we have (1+ 1)(n + 1) = n +E +1+1)n-

STEP2 on NEXTPAGE



pf ctel
.

STEP2
.

(ROOT-FINDINGSTEP) Return all f(x) c t
. @ (X

,
f(x)) = 0.

±
Notethatwe can do this efficiently

,

andthe
sizeof our list will beat most

deg (a) = /1=En =/
,

a constant.

Now we need to
arguewhy this step is a good

idea.

Suppose deg(f) < & and that flxil =

y : for stvalsof.

Let R(X) := Q(X
,
f(x)) .↳But R(xi) = &(xi

· fail) = C(ai
, yi) = O

to balancethese
for atleast + valuesof i. two terms.

f GURUSWAMI-SUDAN ALG

Now we'll fix this up so that we can actually get up
to

p
= 1-1

, meeting theJOHNSON BOUND
.

Two CHANGES:

1
.
Wewillchangehow we measure "LOW-DEGREE"

2. Wewill require something abit stronger than C(xi ,Yi) =0 ; we'll ask for O

to vanishwith high MULMPLICITY.



CHANGE1
.

&

igree ofisitsth-degreeof
any

monomial in Q.
.

Justthis change is enough to make SOMEprogress
:

sketch

Ew/ (1 ,k)-degED So

andwecan findQ.

STEP 2
.
ROOT-FINDING Now we

have
deg(R)

=

deg(((X ,f(x)) < (1 ,k)-deg ofQnk'

Isameasbefore So the
argument goes though as beforewitha slightlybetter bound.

But we want 1- ! Not I-VR !

CHANGE Z
.

DEF
.

hasNotomultiplicityratlabits
-

G(XiY)
= (X-1)

>

(4-1) has a roof of multiplicity 3 at 17
,1)

,because Q(X+1
,Y+ 1) = X2Y which has no terms of total degree < 3.



GURUSWAMI-SUDAN ALGORITHM.

Chooseaparameter r

Suppose t=(1+4)

1
. INTERPOLATION STEPEl- ,Find a polynomial Q(X ,

Y) with (1 , k)-degreeDur(r-1)
so that Qiyi) = 0 with

multiplicity
r for is... n

2. ROOT-FINDING STEP
.

Return all
f so that QIX , f(x)) =0.

[Noticethat there are =degy (0) = D/k =e of these . I

ANALYSIS

Gain
we need to show thata is possible and that 2. is a good idea. I

1
.

FUN EXERCISE: The number of constraints in "Okiyil =0 w/mult. r" is n .)
+

).Vi

So that's MORE constraints than before,
which seems like a bad thing

....

we'll see laterwhy it's actually good
.

The numberof variables is still > D3/2k
,

so we need
-

Da = 2k . n . (r)) = knr(r + 1)
,Twhich is TRUE by our choice ofD.

Justification on next
page
...

I2
.

Let R(X) = Q(X
,
f(X)) as before.

Then not only
does R(X) have at roots Cas before)

,

it has st roots

which EACH have multiplicity r.



AWALYSISctd
.

aka
,
R(X) has a not

CAM . If flail -yi ,

then (X-ai)" (R(X). ofmultiplicityw at
each
4

#. Let's dropthei subscripts for notational sanity .

-

Recall that since C has a root of multiplicity
wat (

, y),

Q(X+, Y+y) has no terms of totaldegree >r .

Now
,
consider F(x) := f(X + 1) -

y
.

We have

R(X + 1) = Q(X +1
, f(x + x))
=

F + y)

This is a sum ofmonomialsE* F(E)" where+crNow
,
Since Fhasnoconstant

e

a

and hence areall divisibleby
Y

Then#
) R(X+) ,

whichesis (X -1) )R(X),L ±
Now

given
this claim

,
the fact that flxi

-ye
forat least I different is

means that R(X) has for roots, counting multiplicities.

±
This is why it was

Since deg(R)
=D

,
if R is nonzero we must have

Ok to takea hit in

tr [ D
the numberof

constraints! Now

en(i+"r)' op [ (H)

Funr(r+ 1)
- Manr(r+ 1) ↳ weget

rot roots insteada

That's not true, so R(X) =0
,

and the proof concludesas before.
#

I



This
proves

the followingtheorem :

±thenwe candve
the list-decoding pole

se

Once again ,
we calculatethat this means we can takep=

so we conclude

#

WaldesfRa
=-can do the list-decoding in time poly (n ,r) .

Thus
,

we can rachet
up

was large as we like Isay ,

r=poly(n)) and approach

The Johnson bound with polynomial-time algorithms. HOORAY !

The moral of the story :

IMECANEfICITYLIST-DECODE RS CODES up
to theJOHNSON BOUND

NOTE ge
, eg ,

fleknovich
, 2005

As presented ,
the Guruswami-Sudan algorithm runs in time O(v)

,

but people
have optimized the heck out of

it and it can bemade to run in timeO(nlog(n)

disclaimer
:

QUESTIONS TO PONDER maybe there's

another
loglog(n)

factor in there

D What breaks in the GS algorithm beyond
theJohnson bound?

e Can
you

come
up
with a "bad" list of close-together RS codewords

beyond the Johnson bound ?

f What if I modify theconstraints so that instead of "flxil-y :

"

they are

3)

f(xi) e5Yi , Yi , y : 3"


