

CS250/EE387 - LECTURE 11- GURUSWAMI-SUDAN ALG.

AGENDA

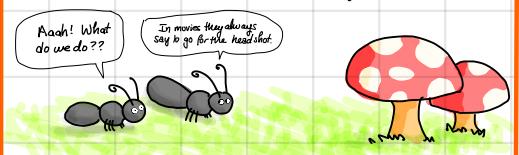
- ① Recap
- ① Aside: How hard is decoding RS codes?
- ② Sudan Algorithm
- ③ Guruswami-Sudan Algorithm.

① RECAP.

Last time, we saw LIST-DECODING:

TODAY'S ANT FACT

There is a type of fungus, found in tropical forests, which infects ants and turns them into "zombies." The ants are compelled to climb to an appropriate height, bite onto a leaf, and wait to die. When they do, the fungus erupts from their corpse and sends its spores down to infect more ants. Pretty gruesome!



DEF. A code $\mathcal{C} \subseteq \Sigma^n$ is (p, L) -LIST-DECODABLE if $\forall y \in \Sigma^n$,

$$|\{c \in \mathcal{C} : \delta(c, y) \leq p\}| \leq L.$$

The LIST-DECODING CAPACITY THM says that there \exists codes that are $(p, 1/\epsilon)$ -list-decodable with rate $R = 1 - H_2(p) - \epsilon$, for $p \leq 1 - 1/q$.

- That's the same trade-off as for random errors!
- Moreover, notice that p can get as big as $1 - 1/q$. If we demand unique decoding, the Plotkin bound says we can't hope to do better than $\frac{1-1/q}{2}$ with $R > 0$.

OUR NEXT QUESTION: How list-decodable are codes we know and love?

For example, Reed-Solomon Codes?

Last time we saw the JOHNSON BOUND which says that codes with good distance are decently list-decodable.

- For RS codes, the Johnson bound says that an RS code of rate R is list-decodable up to distance $p = 1 - \sqrt{R}$.
- Notice that list-decoding capacity is $p = H_q^{-1}(1-R) \approx 1-R$ for large q . So $p = 1 - \sqrt{R}$ is less good than it could be.

① ASIDE: How hard is it to decode RS codes?

More precisely, given we \mathbb{F}_q^n , find $c \in \text{RS}_q(n, k)$ so that $\delta(w, c)$ is minimized.

How hard this depends a lot on the assumptions we can make about $\min_{c \in \text{RS}} \delta(w, c)$. For example, if $\exists c \text{ s.t. } \delta(c, w) < \frac{1-R}{2}$, then Welch-Berlekamp will do this in polynomial time. How about if $\delta(w, c)$ is larger?

Fraction of errors p	0	$\frac{1-R}{2}$	$1 - \sqrt{R}$	$1-R$	1
List-decoding status	At most one codeword c with $\Delta(c, w) \leq p$	By the Johnson Bound, there are $\leq \text{poly}(n)$ codewords c with $\Delta(c, w) \leq p$	$\left(\#\{c \text{ s.t. } \delta(c, w) \leq p\} \right) \leq ???$ For some choices of RS codes, it's exponential. For others, $O(1)$. In general, this is not well understood.	Definitely exponentially many codewords c s.t. $\delta(c, w) \leq p$ for any p in this range. (Bk of list.dec.ccip-thm)	
How hard is it to find the closest codeword?	We can find c efficiently w/ (eg) Welch-Berlekamp or else efficiently decide no such c exists.	TODAY! We will see how to find all these $\leq \text{poly}(n)$ codewords efficiently, and then we can search to find the closest.	Also ??? But there are some p 's in here where doing MLD up to distance p is as hard as discrete log.	For large enough p , this is known to be NP-hard (A taste of this on HW!)	

2 SUDAN ALGORITHM

The Sudan Alg is a warmup to the Guruswami-SUDAN alg, which will be able to efficiently list-decode RS codes up to the Johnson bound, $p = 1 - \sqrt{R}$.

2A BIVARIATE POLYNOMIALS

A bivariate polynomial $Q(X, Y) \in \mathbb{F}_q[X, Y]$ is:

$$Q(X, Y) = \sum_{\substack{i=0, \dots, m_X \\ j=0, \dots, m_Y}} \alpha_{ij} X^i Y^j, \text{ where } m_X =: \deg_X(Q) \\ m_Y =: \deg_Y(Q)$$

Notice that we can also think about Q as an element of $(\mathbb{F}_q[X])[Y]$:

$$Q(X, Y) = \sum_{j=0, \dots, m_Y} Q_j(X) \cdot Y^j$$

The coefficients live in $\mathbb{F}_q[X]$

Polynomials in $(\mathbb{F}_q[X])[Y]$ behave a lot like a "normal" polynomial in Y .

FOR EXAMPLE: Consider $Q(Y) = Y^2 - 1$.

Then $Q(1) = 0$, which implies that $(Y-1) \mid Y^2 - 1$

Similarly, consider $Q(X, Y) = Y^2 - f(X)^2$.

Then $Q(X, f(X)) = 0$, which implies that $(Y - f(X)) \mid Q(X, Y)$

FACT. Let $Q(X, Y) \in \mathbb{F}_q[X, Y]$, and let $f \in \mathbb{F}_q[X]$. Then

$$Q(X, f(X)) = 0 \iff (Y - f(X)) \mid Q(X, Y)$$

\equiv "means" "is identically 0" aka, all the coefficients are 0.

\mid "divides" aka, $Q(X, Y) = (Y - f(X)) \cdot h(X, Y)$ for some $h \in \mathbb{F}_q[X, Y]$.

Moreover, we can find such f 's efficiently, and there are at most $\deg_Y(Q)$ such f 's.

(2B) RECALL the BERLEKAMP-WELCH ALGORITHM:

Given $y = (y_1, \dots, y_n) \in \mathbb{F}_q^n$:

Recall, $E(X)$ was supposed to be the ERROR LOCATOR POLY, $E(X) = \prod_{i:y_i \neq y_i} (X - \alpha_i)$, so that $E(\alpha_i) \cdot f(\alpha_i) = E(\alpha_i) \cdot y_i \quad \forall i$.

1. Find low-degree polynomials $E(X), B(X)$ s.t. $E(\alpha_i) \cdot y_i = B(\alpha_i) \quad \forall i = 1, \dots, n$
2. Return $f(X) = B(X)/E(X)$

We can recast this in terms of bivariate polys:

1. Find $Q(X, Y)$ (^{meant to be} $Q(X, Y) = E(X) \cdot Y - B(X)$) s.t. $Q(\alpha_i, y_i) = 0 \quad \forall i = 1, \dots, n$
2. Find a poly $f(X)$ s.t. $Q(X, f(X)) = 0$, and return f .

(Notice that $f(X) = B(X)/E(X)$ will work in the Q we were supposed to find).

We'll use the same framework for SUDAN'S ALGORITHM for list-decoding.

PROBLEM : Given $y = (y_1, \dots, y_n)$, k , and t , find all polynomials $f \in \mathbb{F}_q[X]$ s.t. :

- $\deg(f) < k$
- $f(\alpha_i) = y_i$ for at least t of the α_i 's.

(2C) Finally, SUDAN's ALG.

What t 's can we handle? We'll see later!

INTERPOLATION STEP

1. Find a **LOW-DEGREE** polynomial $Q(X, Y)$ so that $Q(\alpha_i, y_i) = 0 \quad \forall i = 1, \dots, n$

What exactly should this mean?

ROOT-FINDING STEP

2. Factor $Q(X, Y)$ to find polynomials $f(X)$ s.t. $Q(X, f(X)) = 0$.
Return all such f 's.

- We can do STEP 1 as long as we have more variables (coeffs of Q) than constraints.
- To make sure that STEP 2 is correct, we'll have to argue that whenever $f(\alpha_i) = y_i$ for $\geq t$ values of i , then $Q(X, f(X)) = 0$. The fact that the list is small will follow from the fact that Q is low-deg.

This algorithm basically works, and is called SUDAN'S ALGORITHM.

THM If $t > 2\sqrt{nk'}$, then we can solve the list-decoding problem in polynomial time.

Before we prove the THM, we can ask how good this is.

$$(\text{#agreements between } f \text{ and } y) = t > 2\sqrt{nk'}$$

$$\Delta(f, y) = n - t < n - 2\sqrt{nk'}$$

$$\text{So this works up to radius } p \leq \frac{n-t}{n} = 1 - 2\sqrt{R'}$$

Remember that we were shooting for $1 - \sqrt{R}$, so this isn't quite right – but we'll get there!

Now we'll prove the THM, and finish specifying the alg. along the way.

pf/algorithm:

STEP 1 (INTERPOLATION). Choose $\ell = \sqrt{nk'}$.

Find $Q(X, Y)$ st. $\deg_X(Q) \leq \ell$ and $\deg_Y(Q) \leq n/\ell$,
so that $Q(x_i, y_i) = 0 \quad \forall i = 1, \dots, n$.

To do this, we need:

$$\underbrace{\left(\begin{array}{c} \text{#coeffs in } Q \\ \hline \end{array} \right)}_{(\ell+1)\left(\frac{n}{\ell}+1\right) \text{ of these}} > \underbrace{\left(\begin{array}{c} \text{#constraints} \\ \hline \end{array} \right)}_{n \text{ of these}}$$

and indeed we have $(\ell+1)\left(\frac{n}{\ell}+1\right) = n + \frac{n}{\ell} + \ell + 1 > n$

STEP 2 on NEXT PAGE

pf ctd.

STEP 2. (ROOT-FINDING STEP) Return all $f(x)$ s.t. $\mathcal{Q}(x, f(x)) = 0$.

Note that we can do this efficiently, and the size of our list will be at most $\deg_Y(\mathcal{Q}) = n/l = n/\sqrt{kn} = 1/\sqrt{R}$, a constant.

Now we need to argue why this step is a good idea.

Suppose $\deg(f) < k$ and that $f(x_i) = y_i$ for $\geq t$ vals of i .

We need to show that we will return f , so we need to show $\mathcal{Q}(x, f(x)) = 0$.

Let $R(x) := \mathcal{Q}(x, f(x))$.

Then $\deg(R) \leq \deg_X(\mathcal{Q}) + \deg(f) \cdot \deg_Y(\mathcal{Q}) < l + k \cdot \frac{n}{l} = 2\sqrt{nk}$

But $R(x_i) = \mathcal{Q}(x_i, f(x_i)) = \mathcal{Q}(x_i, y_i) = 0$

for at least t values of i .

↑ This is why we chose $l = \sqrt{nk}$, to balance these two terms.

So R has degree $< 2\sqrt{nk}$, but $t > 2\sqrt{nk}$ roots, hence $R(x) = 0$, as desired.

③ GURUSWAMI-SUDAN ALG.

Now we'll fix this up so that we can actually get up to $p = 1 - \sqrt{R}$, meeting the JOHNSON BOUND.

Two CHANGES:

1. We will change how we measure "LOW-DEGREE"
2. We will require something a bit stronger than $\mathcal{Q}(x_i, y_i) = 0$; we'll ask for \mathcal{Q} to vanish with high MULTIPLICITY.

CHANGE 1.

DEF. The $(1, k)$ -degree of $X^i Y^j$ is $i+kj$
 The $(1, k)$ -degree of $Q(X, Y)$ is the max $(1, k)$ -degree
 of any monomial in Q .

Just this change is enough to make SOME progress:

THM If $t > \sqrt{2nk}$, then we can solve the list-decoding problem in polynomial time.

pf. sketch
 Same alg, but now demand the $(1, k)$ -degree of Q is $\leq \sqrt{2kn}$

STEP 1. INTERPOLATION.

Find $Q(X, Y)$ s.t.

$(1, k)$ -deg is $\leq \sqrt{2kn}$.

Turns out (FUN EXERCISE!) there are $> D^2/2k$ coeffs in a poly

w/ $(1, k)$ -deg $\leq D$ So

(#variables) $> \frac{(2kn)}{2k} = n =$ (#constraints)

and we can find Q .

STEP 2. ROOT-FINDING.

(same as before)

Now we have $\deg(R) = \deg(Q(X, f(X))) \leq (1, k)$ -deg of $Q \leq \sqrt{2nk}$

So the argument goes through as before with a slightly better bound.

But we want $1 - \sqrt{R}$! Not $1 - \sqrt{2R}$!

CHANGE 2.

DEF. $Q(X, Y)$ has a root of multiplicity r at (a, b) if
 $Q(X+a, Y+b)$ has no terms of total degree $< r$.

Example: $Q(X, Y) = (X-1)^2(Y-1)$ has a root of multiplicity 3 at $(1, 1)$,
 because $Q(X+1, Y+1) = X^2 \cdot Y$ which has no terms of total degree < 3 .

GURUSWAMI-SUDAN ALGORITHM.

Choose a parameter r

$$\text{Suppose } t \geq \sqrt{kn(1+\frac{1}{r})}$$

1. INTERPOLATION STEP.

Find a polynomial $Q(X, Y)$ with $(1, k)$ -degree $D = \sqrt{kn \cdot r \cdot (r+1)}$
so that $Q(x_i, y_i) = 0$ with multiplicity r for $i=1, \dots, n$.

2. ROOT-FINDING STEP.

Return all f so that $Q(X, f(X)) = 0$.

[Notice that there are $\leq \deg_Y(Q) \leq D/k \approx \sqrt{R}$ of these.]

ANALYSIS:

Again we need to show that 1. is possible and that 2. is a good idea.

1. FUN EXERCISE: The number of constraints in " $Q(x_i, y_i) = 0$ w/ mult. r " is $n \cdot \binom{r+1}{2}$.

So that's MORE constraints than before, which seems like a bad thing...

we'll see later why it's actually good.

The number of variables is still $> D^2/2k$, so we need

$$D^2 \geq 2k \cdot n \cdot \binom{r+1}{2} = knr(r+1),$$

which is TRUE by our choice of D .

2. Let $R(X) = Q(X, f(X))$ as before.

Then not only does $R(X)$ have $\geq t$ roots [as before], it has $\geq t$ roots which EACH have multiplicity r .

Justification on next page...

ANALYSIS ctd.

CLAIM. If $f(\alpha_i) = y_i$, then $(X - \alpha_i)^r \mid R(X)$.

aka, $R(X)$ has a root of multiplicity r at each α .

Pf.

Let's drop the i subscripts for notational sanity.

Recall that since \mathbb{Q} has a root of multiplicity r at (α, y) , $\mathbb{Q}(X + \alpha, Y + y)$ has no terms of total degree $< r$.

Now, consider $\bar{f}(X) := f(X + \alpha) - y$. We have

$$R(X + \alpha) = \mathbb{Q}(X + \alpha, f(X + \alpha)) = \mathbb{Q}(X + \alpha, \underbrace{\bar{f}(X) + y}_{\text{This is a sum of monomials}})$$

$\bar{f}(X) + y = \sum c_i X^i \cdot \bar{f}(X)^d$ where $c_i d \geq r$.

Now, since $f(\alpha) = y$, $\bar{f}(0) = 0$, so \bar{f} has no constant term. Thus, those monomials $X^c \bar{f}(X)^d$ are all divisible by X^{c+d} , and hence are all divisible by X^r .

Then $X^r \mid R(X + \alpha)$, which means $(X - \alpha)^r \mid R(X)$, as desired.

Now given this claim, the fact that $f(\alpha_i) = y_i$ for at least t different i 's means that $R(X)$ has $t \cdot r$ roots, counting multiplicities.

Since $\deg(R) \leq D$, if R is nonzero we must have

$$\begin{aligned} tr &< D \\ \sqrt{kn(1+\frac{1}{r})} \cdot r &< \sqrt{knr(r+1)} \\ \sqrt{knr(r+1)} &< \sqrt{knr(r+1)} \end{aligned}$$

This is why it was OK to take a hit in the number of constraints! Now we get $r \cdot t$ roots instead of r .

That's not true, so $R(X) = 0$, and the proof concludes as before.

This proves the following theorem:

THM If $t > \sqrt{nk(1+r)}$ then we can solve the list-decoding problem in $\text{poly}(n)$ time, with list size $r \cdot \sqrt{\frac{n}{k}}$.

Once again, we calculate that this means we can take $P = \frac{n-t}{n} = 1 - \sqrt{R(1+r)}$, so we conclude

THM. For all $r > 0$, RS codes of rate R are $(1 - \sqrt{R(1+r)}, r/\sqrt{R})$ list-decodable, and the Guruswami-Sudan algorithm can do the list-decoding in time $\text{poly}(n, r)$.

Thus, we can ratchet up r as large as we like (say, $r = \text{poly}(n)$) and approach the Johnson bound with polynomial-time algorithms. Hooray!

The moral of the story:

WE CAN EFFICIENTLY LIST-DECODE RS CODES up to the JOHNSON BOUND

NOTE.

As presented, the Guruswami-Sudan algorithm runs in time $\mathcal{O}(n^3)$, but people have optimized the heck out of it and it can be made to run in time $\mathcal{O}(n \log(n))$.

see, eg, [Alekhnovich, 2005]

disclaimer:
maybe there's
another $\log \log(n)$
factor in there

QUESTIONS TO PONDER

- ① What breaks in the GS algorithm beyond the Johnson bound?
- ② Can you come up with a "bad" list of close-together RS codewords beyond the Johnson bound?
- ③ What if I modify the constraints so that instead of " $f(\alpha_i) = y_i$ " they are " $f(\alpha_i) \in \{y_i, y_i^+, y_i^-\}$ "